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Environmental factors have a profound impact on the evaluation of grain production
efficiency. Taking environmental factors into account can more accurately measure grain
production efficiency and identify the development stage of grain production. Based on the
global super-efficiency SBM model, environmental factors are included in the grain
production efficiency measurement system, while the temporal and spatial evolution
characteristics of grain production environmental efficiency and the sources of
inefficiency are analyzed. In addition, the Spatial Durbin Model is used to investigate
the influencing factors and spatial spillover effects of China’s grain production
environmental efficiency. The results show that: environmental factors have a
significant impact on the efficiency of grain production in China; the environmental
efficiency of grain production in China fluctuates with a downward trend; the
environmental efficiency of grain production in different provinces show obvious spatial
differentiation and geographical agglomeration; the main influencing factors of the
environmental efficiency loss of grain production in major grain production areas are
carbon emissions, non-point source pollution of grain production and labor input; the level
of education, the level of technological development, and labor transfer have a significant
positive spillover effect on the environmental efficiency of China’s grain production, yet
disaster rate has a significantly negative one. Thus, it is important to pay attention to
resource conservation and pollution control, strengthen cooperation and exchanges
between provinces, and take the path of coordinated development between the
environment and grain production.

Keywords: environmental factors, carbon sinks, grain production, spatial spillover effect, the global super-efficiency
SBM model

1 INTRODUCTION

Food security has always been the foundation of national security, social stability and economic
development, and a major strategic issue that concerns the overall situation. In recent years, China’s
overall grain production capacity has steadily increased, but many problems are worsening, such as
waste of resources, water and soil pollution, and ecological damage in the process of grain
production. The study pointed out that from 2010 to 2050, due to expected changes in
population and income levels, without technological changes and special mitigation measures,
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the environmental impact of the grain system may increase by
50–90% (Springmann et al., 2018). In the face of challenges, in
2015, the Ministry of Agriculture of China launched a zero-
growth campaign to contain the use of chemical fertilizers and
pesticides, vigorously promoting the reduction of chemical
fertilizers and efficiency, and the reduction of pesticides to
control the harm. The No. One Central Document of 2021
further proposes to “continue to promote the reduction of
fertilizers and pesticides and increase efficiency, and to
promote green products and technologies for the prevention
and control of crop diseases and insect pests.” In general, the
scope of environmental governance has been expanded and the
governance has been continuously strengthened (Liao et al., 2018;
Shi et al., 2020). Correspondingly, the grain production
environment gets improved. However, there is still a gap in
the sustainable development capacity of grain production
between China and agricultural developed countries. In order
to better carry out the construction of ecological civilization in the
new era and implement the development concept of harmonious
coexistence betweenman and nature, China’s grain production in
the future needs to consider the rigid constraints of resources and
the environment and take the road of coordinated development
of environmental protection and grain production in order to
achieve the high-quality development goal of China’s grain
industry.

Based on the above-mentioned practical problems, in order to
fill the gap of existing research, this paper incorporates
environmental indicators such as grain carbon sinks, grain
production carbon emissions, and non-point source pollution
into the grain production efficiency evaluation system. The global
super-efficiency SBM model is adopted to analyze the spatial and
temporal evolution of the environmental efficiency of grain
production and the source of inefficiency in the main grain
production area from 2004 to 2019. The Moran’s I index is
also used to investigate the spatial agglomeration and diffusion
effects of the environmental efficiency of grain production in the
main grain production area. On this basis, a spatial Durbin model
is constructed to explore the spatial spillover effects of China’s
grain production environmental efficiency. It aims to provide
some reference for the ecological transformation of China’s grain
production and promote the high-quality development of grain
production. In comparison with the existing studies, the possible
marginal contributions of this paper are as follows:

1) It has incorporated environmental factors (especially grain
carbon sinks) into the grain production efficiency analysis
framework and conducted effective calculations, which has a
certain corrective effect on grain production efficiency and
helps to understand the true performance of grain production
efficiency in various provinces.

2) It has constructed the global super-efficiency SBM model that
takes undesired output into consideration. Super-efficiency
SBM model is superior to other models as it can① effectively
solve the radial and perspective problems; ② fully consider
the problem of undesired output; and ③ solve the ranking
problem when the efficiency value of the decision unit is 1.
Additionally, given that the factor endowments of the main

grain production areas are basically stable, and the input-
output factors and development objectives are similar between
periods, it is possible to compare the efficiency of the same
sample across periods. Therefore, the study has constructed
the global super-efficiency SBM model based on the Global
Malmquist-Luenberger proposed by Pastor and Lovell (2005).
The SBMmodel uses the input and output data of all decision
units in the whole sample period to construct the best
production Frontier as a unified benchmark, and each
decision unit is compared with the best production
Frontier to obtain efficiency values, thus solving the
problem of inter-period comparability of DEA models and
the problem of linearity without feasible solutions due to too
many input and output variables.

3) It has examined and identified the source of inefficiency in the
environmental efficiency of grain production. At the national
and inter provincial levels, it finds a realistic basis for
improving the potential sources, enriches the relevant
research on China’s grain production efficiency, and
provides a decision-making reference for deeply
implementing the concept of green development and
promoting the high-quality development of grain production.

4) It has analyzed the spillover effects of external environmental
influences such as the level of education, the level of
technological development, the labor transfer and the
disaster rate on the environmental efficiency of grain
production in China to further explore the improvement
path of grain production environmental efficiency in China.

2 LITERATURE REVIEW

At present, scholars have conducted abundant studies on grain
production efficiency, the perspectives of which mainly focused
on the measurement of grain production efficiency, influencing
factors and spatial effect studies.

2.1 Calculation of Grain Production
Efficiency
The measurement of grain production efficiency mainly includes
two aspects: first, the research on the measurement method of
grain production efficiency; and second, the selection of
indicators for grain production efficiency evaluation. In terms
of measurement methods, there are mainly ratio method, life
cycle method, ecological footprint method, energy analysis
method, stochastic Frontier method and data envelopment
analysis method (Wilson et al., 1998; Sachdeva et al., 2011).
Among them, the parametric method represented by the
stochastic Frontier method and the non-parametric method
represented by the data envelopment analysis method are
most widely used. Compared with SFA, the DEA method
ignores the influence of random errors, leaving out the need
to set the functional form of the production boundary in advance
(Battese and Coelli, 1995). With the advantages of simultaneous
treatment of multiple input-output elements and non-parametric
processing of effective boundaries, the DEA has become the most
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used method for efficiency evaluation and is widely used in
energy, transportation, finance and other fields (Xian et al.,
2018; Wang et al., 2020; Sun et al., 2021a). Some scholars have
also applied the method to the measurement of grain production
efficiency, for example, Dolgikh (2019) and Pishgar-Komleh et al.
(2020) measured the grain production efficiency in Poland and
Ukraine respectively by using the DEAmethod. In the selection of
evaluation indicators, some early scholars took traditional
production factors such as land, intermediate factors and labor
as input factors (Lin, 1992; Wen, 1993), and most scholars took
production factors such as land, water resources, labor, pesticides
and chemical fertilizers as input factors (Benedetti et al., 2019;
Zhang et al., 2021). In the selection of output factor indicators,
scholars generally choose the total grain output as the output
index (Yao and Xuan, 2019), while some use the total agricultural
output value per unit of cultivated land (Armagan et al., 2010;
Kumbhakar et al., 2014) or agricultural added value
(Gebregziabher et al., 2012).

2.2 Influencing Factors of Grain Production
Efficiency
As a key guarantee of national food security and socio-economic
sustainability, food grain production efficiency is influenced by
many factors (Maxime et al., 2006). Existing studies tend to
incorporate external environmental factors that can impact grain
production efficiency into the research framework and explore
effective ways to improve grain production efficiency based on
varying research scales, research perspectives and focuses (Picazo-
Tadeo et al., 2011). Among these external factors, the urbanization
level, the level of openness to the outside world, the rate of disasters,
and the non-rural employment opportunities all have a significant
bearing on grain production (Liu et al., 2020; Zou et al., 2020).

2.3 Space Effects of Grain Production
Efficiency
Early literature mainly described or compared the results of grain
production efficiency in different regions (Vlontzos et al., 2014).With
the deepening of the research, various spatial analysis methods such
as Gini coefficient and Theil index were widely used to investigate the
temporal and spatial pattern, regional gap, distribution dynamic
evolution trend of efficiency (Pang et al., 2016). In recent years,
with the development of spatial econometrics and geosciences, more
and more scholars begin to use spatial econometric methods to
analyze production efficiency by combining data points with their
corresponding spatial locations (Wang et al., 2019; Sun et al., 2021b).
This method has extended the traditional regression model from the
spatial dimension and compensates for the limitations of instability
and spatial correlation of traditional spatial data. For example, Cao
et al. (2019) used Exploratory Spatial Data Analysis (ESDA) to
analyze the evolutionary characteristics of land use efficiency in
China. Yuan et al. (2019) adopted ESDA to analyze the spatial
correlation of green total factor productivity in the urban cluster
on the Shandong Peninsula.

Through the review of the previous literature, it can be found
that the existing literature has conducted detailed research on

grain production efficiency, but there is still room for further
improvement.

1) Previous research has important theoretical value for guiding
the development of China’s grain production, butmost scholars
have not considered the impact of environmental factors on the
efficiency of grain production. In recent years, although a few
scholars have taken environmental factors into consideration
when studying the efficiency of grain production, they only
considered undesired output (such as chemical oxygen
demand, total nitrogen and total phosphorus) without
attaching importance to carbon sink output resulted from
the positive externalities of grain production (Bai et al.,
2019). However, ignoring the environmental factors of grain
production (especially grain carbon sinks) will be detrimental to
the accuracy of grain production efficiency assessment.

2) Most of the existing literature adopts the traditional DEA
methods to measure the environmental efficiency of grain
production, which cannot take account of the effects of
“slack variables” on the efficiency value, nor does it consider
the change in technical efficiency when the desired output
increases and the undesired output decreases, and thus could
lead to biased efficiency value. In recent years, although a few
scholars have considered using the SBM model to measure
grain production efficiency, most of them have not solved the
ranking problem when the efficiency value of the decision unit
is one in the SBM model. In addition, the DEA method
measures relative efficiency, which usually treats the frontiers
constructed in each period as independent of each other. As a
result, the efficiency values obtained in different periods are not
comparable because the frontiers are not at the same level.
Beyond that, the construction of frontiers with current
decision-making units (DMUs) is likely to violate the rule of
thumb due to the large number of input-output variables,
resulting in overestimation of efficiency.

3) Most scholars have not included the breaking down of
inefficient sources of grain production efficiency and the
direction of improvement into the research content, ignored
the inbuilt driving factors of grain production efficiency
improvement, which is not conducive to the research on the
potential of China’s grain production efficiency improvement.

4) Although existing studies have provided an important reference
value for the spatial perspective of grain production efficiency,
most of them have only focused on the analysis of the spatial
and temporal divergence of grain production efficiency and the
verification of the existence of spatial spillover effects. There are
fewer analyses of the spatial spillover effects of various
influencing factors on grain production efficiency.

3 MODEL CONSTRUCTION AND DATA
DESCRIPTION

3.1 Research Model and Estimation Method
3.1.1 The Global Super-Efficiency SBM Model
Considering the current situation of the grain production process,
this paper constructs a global super-efficiency SBM model that
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takes the undesired output into account. The grain eco-economic
system has DMUs (this paper takes the provinces of the main
grain production areas as decision-making units), of which there
are m kinds of inputs, s1 kinds of expected outputs, and s2 kinds of
undesired outputs. For the kth DMUk, its input, expected output,
and undesired output vectors are denoted as xT

jk, y
g,T
jk and yb,T

jk
respectively, and they meet the following conditions: xj ∈ Rm

+ ,
yg,tj ∈ Rs1 ,t+ and yb,t

j ∈ Rs2 ,t+ . Under the assumption of constant
return to scale (CRS), the constructed production possibility set
(PPS) is shown in Eq. 1; the global super-efficiency SBM model
considering undesired output is shown in Eq. 2.

PPS � x
−
y
−g
x
−b( )|x−T≥ ∑T

t�1
∑L

j�1,j≠k
λtjx

t
j;
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≤ ∑T

t�1
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λtjy
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j ; y
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(2)

where λtj is the weight vector. x
−T
i , y−g,T

r and y−b,T
q are the optimal

solutions of the evaluated DMUk in the global super-efficiency
SBM model.

In order to incorporate slack variables into Eq. 2, x−Ti , y−g,T
r

and y−b,T
q can be further expressed by Eq. 3.

x−T
i � xT

ik + s−i ;y
−g.T
r � yg,T

rk − s+r ;y
−b,T
q � yb,T

qk + s−q (3)

where s−i ,s+r , and s−q are the slack variables of input, expected
output and undesired output respectively.

Further, the efficiency calculation formula of each input-output
element can be decomposed. Based on (Cooper et al., 2007) the
inefficiency decomposition idea, the inefficiency of each input and
output element is completely decomposed. The efficiency
decomposition formula and inefficiency decomposition formula
of each input-output element are expressed by Eqs 4, 5 respectively.

ei � xT
ik − s−i
xT
ik

, er � yg,T
rk

yg,T
rk + s+r

, eq �
yb,T
qk − s−q
yb,T
qk

(4)

iei � 1
2m

s−i
xT
ik

, ier � 1
2 s1 + s2( )

s+r
yg,T
rk

, ieq � 1
2 s1 + s2( )

s−q
yb,T
qk

(5)

The three equations from left to right in Eqs 4, 5 represent the
efficiency decomposition formula and the inefficiency
decomposition formula of input elements, expected output
elements, and undesired output elements. The efficiency
decomposition formula obtains the efficiency level of each
element, and the inefficiency decomposition formula obtains
the decomposition of the total inefficiency, reflecting the

potential of each element to improve the efficiency of grain
production.

3.1.2 Spatial Durbin Model
Space panel model can be divided into space lag model (SAR),
space error model (SEM) and spatial durbin model (SDM).
Among them, the spatial Dubin model is a general form of
spatial lag model and spatial error model, thus it possesses
both advantages of spatial autocorrelation and spatial
interaction effects. This article examines the effect of each
explanatory variable on the environmental efficiency of grain
production and the spatial spillover. The basic model is as follows:

Yit � ρ∑N
j�1

WijYjt + βXit +∑N
j�1

θWijXjt + μi + ϕt + εit (6)

where Yit denotes the environmental efficiency of grain
production in region i in year t; W is a spatial weight matrix
of orderN ×N;WijYjt denotes the interaction effect of Yjt on Yit in
regions adjacent to i; Xit denotes each explanatory variable, i.e.
factors affecting the environmental efficiency of grain production,
in region i in year t;WijXjt denotes the interaction effect of Xjt on
Xit in regions adjacent to i; β is the explanatory elasticity
coefficient of the variable; θ is the elasticity coefficient of the
spatially lagged term of the explanatory variable; μi denotes
individual fixed effects; ϕt denotes time fixed effects; and εit is
a random error term. To ensure the robustness of the research
conclusions, this paper also includes the spacial contiguity
weights matrix (Wl), distance-based spatial weight matrix
(Wg) and economic distance spatial weights matrix (We) in
the research framework.

3.2 Index Selection
3.2.1 Definition of Input Variables
In this paper, land, irrigation, fertiliser, pesticide, agricultural film
and agricultural machinery inputs are selected as input variables
for grain production. Among them, the land input is expressed by
the area planted with grain1; the irrigation input is expressed by
the effective irrigated area of each province; the labor input is
expressed by the number of grain laborers in each province; the
fertilizer input is expressed by the annual amount of chemical
fertilizer used by each province (including nitrogen, phosphate,
potash, and compound fertilizers); pesticide input is expressed by
the annual total pesticide input of each province; agricultural film
input is expressed by the total agricultural film input of each
province which is obtained by adding plastic film and film; and
the input of agricultural machinery is expressed by the total
power of agricultural machinery in each province.

3.2.2 Definition of Output Variables
1) The desirable output of grain production mainly includes

grain production output and grain ecological output, with the

1Due to data availability limitations in the food carbon sequestration rate
measurement section, the food sown area in this paper is mainly obtained by
summing the area of four crops: rice, wheat, maize, beans and potatoes.
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grain production output being expressed by the total grain
output of each province and the grain ecological output being
expressed by the grain carbon sinks in each province, that is,
the amount of grain carbon absorbed by photosynthesis of
grain crops2. Its calculation formula can be expressed as:

C � ∑k
i

Ci � ∑k
i

ci × Yi × 1 − r( )/HIi (7)

where C is the carbon sum of grain crops; Ci is the carbon sink of a
certain grain crop;K is the number of grain crops; ci is the amount
of carbon that can be absorbed by photosynthesis; Yi is the yield; r
is the water content, and HIi is the economic coefficient of grain
crops.

2) Undesired output of grain production includes carbon
emissions and non-point source pollution.

① Carbon emissions from grain production. According to the
actual production of grain crops, this paper mainly calculates the
carbon emissions from grain production in term of both
agricultural materials and soil: the former is the carbon
emissions from agricultural materials input. The carbon
emissions of agricultural materials are mainly from directly or
indirectly the input of agricultural materials such as fertilizers,
pesticides, and agricultural films, and the electricity consumption
of irrigation activities. The latter is N2O emissions from the soil.
In the process of planting grain crops, the damage of N2O to the
soil surface can easily lead to the emission of large amounts of
greenhouse gases. It should be noted that, in order to facilitate
analysis, when carbon emissions are being calculated, the
standard carbon equivalent is replaced uniformly3. The
formula for calculating the total carbon emissions from grain
production is as follows:

E � ∑Ei � ∑ Ti × δi( ) (8)

where E is the total carbon emission from grain production; Ei is
the carbon emission of various carbon sources; Ti is the amount of
each carbon emission source; and δi is the carbon emission
coefficient of each carbon emission source.

② Grain non-point source pollution. Grain non-point source
pollution is represented by a comprehensive index of the loss of
fertilizer nitrogen, the loss of fertilizer phosphorus, the amount of
ineffective use of pesticides, and the residual amount of
agricultural film. Among them, chemical fertilizer nitrogen loss
is estimated by multiplying nitrogen loss coefficient by the sum of
compound fertilizer nitrogen content and nitrogen fertilizer
usage; chemical fertilizer phosphorus loss is estimated by

multiplying the sum of compound fertilizer phosphorus
content and phosphate fertilizer usage by phosphorus loss
coefficient; the amount of ineffective use of pesticides is
reversely estimated by subtracting the amount of effective use
of pesticides; the residual amount of agricultural film is estimated
bymultiplying the amount of agricultural film used by the residue
coefficient.

In addition, in order to further explore the spatial spillover
effect of the environmental efficiency of grain production, this
paper selects the environmental efficiency of grain production
as the core explanatory variable, and the level of education, the
level of financial support for agriculture, the loss of
agricultural labor, the governance of the ecological
environment, the level of urbanization, and the rate of
disaster as the explanatory variables. Among them, the
level of education (EDU) is expressed by the average years
of education received by rural residents; the level of financial
support for agriculture (FS) is expressed by the proportion of
local financial expenditure on agriculture, forestry and water
affairs in the overall budget of local finance; the loss of
agricultural labor force (ALT) is expressed by the
proportion of the labor force engaged in the primary sector
in the total labor force engaged in the three major industries;
the ecological environment control (EPC) is expressed by the
proportion of environmental pollution control investment in
GDP; the urbanization level (UR) is expressed by the ratio of
the urban population to the permanent population; the
disaster rate (DR) is expressed by the proportion of the
area affected by the crops in the total sown area of crops.
The descriptive statistics of each variable are shown in
Table 1.

3.3 Data Sources
The input-output indicator data of this study is mainly
derived from the “China Statistical Yearbook”, “China
Grain Yearbook”, “China Rural Statistical Yearbook”, and
have been compiled to compose panel data of 13 provinces
in the major grain production areas from 2004 to 2019.
Considering the limitations of the statistical data in the
statistical yearbooks, this study constructs a weight
coefficient to separate the agricultural input elements to
obtain more accurate input data for grain production
(Coelli et al., 2003). In addition, to control the quantity of
input-output indicators, this study uses the entropy method to
integrate the four types of indicators of grain non-point
source pollution accounting into one pollution index.

TABLE 1 | Descriptive analysis results.

Variable Obs Mean Std.Dev Min Max

EDU 208 7.532 0.475 6.197 8.35
FS 208 0.096 0.027 0.047 0.19
ALT 208 0.416 0.093 0.177 0.631
EPC 208 1.188 0.520 0.400 3.16
UR 208 0.474 0.097 0.246 0.677
DR 208 0.245 0.148 0.016 0.689

2Due to the availability of data, the calculation of grain carbon sinks in the current
study only considers the carbon uptake during the entire life cycle of major
grain crops.
3According to the IPCC Fourth Assessment Report (2007), 1 ton of CO2 contains
0.272 tons of C; the greenhouse effect caused by 1 ton of CH4 is equivalent to the
greenhouse effect of 25 tons of CO2 (about 6.818 tons C); The greenhouse effect
caused by tons of N2O is equivalent to the greenhouse effect of 298 tons of CO2

(about 81.272 tons of C).
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4 EMPIRICAL RESULTS AND ANALYSIS

4.1 Measures of Environmental Efficiency in
Grain Production and Sources of
Inefficiency
4.1.1 Comparative Analysis of Efficiency of Grain
Production With Different Treatment Methods
To reveal the influence of environmental factors on the efficiency
of grain production, and comprehensively reflect the actual
performance of the grain production environment efficiency in
the major grain production areas, three different treatments was
adopted to measure the efficiency value.

1) The first treatment method is the grain production efficiency
taking no account of environmental factors;

2) The second is the grain production efficiency taking account
of the only pollution factors of grain production environment;

3) The third is to simultaneously consider take account of both
the grain production efficiency of grain ecological output and
environmental pollution factors of grain production
(hereinafter the environmental efficiency of grain
production).

The three treatment methods are mainly used for the
comparative analysis of the environmental efficiency of grain
production. This study analyzes the environmental production
efficiency of grain production in major grain production areas
while considering the pollution factors of grain production
environment and the ecological output of grain production.
The MAXDEA5.0 software was used to measure the grain
production efficiency of major grain production areas from
2004 to 2019 adopting the three treatment methods
respectively, and to draw its annual trend chart (Figure 1).

As shown in Figure 1, the trends of the development stages are
similar while adopting three different treatments. Except for 2004
and 2013, the grain production efficiency values taking no

account of environmental factors were significantly higher
than that in the other two treatments. The result indicated
that the environmental factors impact the efficiency of grain
production. This difference reflects both the degree of
environmental pollution caused by the current mode of grain
production, and to some extent reflects the magnitude of the
environmental reaction to grain production and the cost of
environmental governance. The greater the difference between
them, the weaker the sustainability of grain production.
Therefore, it is easy to misjudge the actual development
capacity of grain production by measuring the efficiency of
grain production without considering environmental pollution
factors. This is likely to lead to misjudgment by policy makers.
Grain production efficiency taking account of only
environmental pollution factors is slightly lower than that of
grain production environment. This may be due to the fact that
the environmental efficiency of grain production considering
ecological output is more approximate to the realistic situation
of grain production. However, the positive externality of grain
production is neglected when only considering environmental
pollution is being considered. This will underestimate China’s
grain production efficiency. Therefore, the introduction of grain
ecological output factors has a certain corrective effect on grain
production efficiency, which helps us to understand the actual
performance of grain production efficiency in each province.

4.1.2 Analysis of Time Series Evolution Characteristics
From 2004 to 2019, the average environmental efficiency of grain
production was 0.820 (Figure 1). This result indicates that if the
current input and output levels are maintained while eliminating
efficiency losses, the efficiency value can be increased by 18%. It
also shows that resource consumption and environmental
pollution have caused greater efficiency losses in China’s grain
production process. China’s grain production, which has not
achieved coordinated development with the resources and the
environment. At the same time, it shows that there is still much
room for improvement in terms of China’s grain production

FIGURE 1 | Comparative analysis and trend of grain production efficiency in major grain production areas from 2004 to 2019.
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methods. To achieve sustainable development of the grain
industry, more efforts are needed.

Based on the trend of the mean change in the efficiency of
grain production environment, the overall environmental
efficiency of China’s grain production fluctuated with a
downward trend, from 0.961 in 2004 to 0.771 in 2019, and
experienced three stages. Efficiency value witnessed a volatile
period of decline from 2004 to 2009, with the environmental
efficiency of grain production decreasing from 0.961 to 0.631 and
hitting the bottom in 2009. Meanwhile, environmental efficiency
increased in 2007, which might be due to the positive impact of
the grain production subsidy policy and the agricultural tax pilot
reform that was launched at that time in China. This policy has
greatly stimulated the enthusiasm of farmers for production.
However, there was a downward trend, indicating that the
improvement of grain production efficiency in 2007 was only
temporary, and the agricultural tax pilot reform had only
temporarily promoted the improvement of production
efficiency. There was a M-shaped turn, during which time, the
efficiency value increased from 0.631 to 0.695 yet the average
efficiency hitting a bottom in 2011 and 2014 due to a lack of
production factors. The environmental efficiency in grain
production peaked in 2010 and 2013, with efficiency values
reaching 0.931 and 1.008, respectively. This was due to the
promulgation of the agricultural tax exemption policy, which
had increased the enthusiasm of farmers for growing grain.
Therefore, the environmental efficiency value has been greatly
improved in 2010 and natural disasters may be the main cause of
the decline in environmental efficiency. In 2014, with the
improvement of the technology and the expansion of the
planting scale, the environmental efficiency value increased

and reached a peak. From 2015 to 2019, another period of
fluctuation, it increased from 0.758 to 0.771, and peaked in
2015. However, as shown in Figure 1, the efficiency value
dropped sharply in 2019. The possible reason is that the
floods and locust outbreaks in 2019 caused drop in grain
production. At the same time, the structural reform of the
agricultural supply side has changed the model of grain
production from being previously “production-oriented” to
“quality and benefit-oriented.” This might have resulted in a
reduction in the area of grain in the year and a significant decline
in grain production in 2019 compared to 2018.

4.1.3 Spatial Distribution Characteristics
According to the results of the environmental efficiency of grain
production in China’s major grain production areas from 2004 to
2019, the natural breaks were used to divide the average efficiency
into four grades (Figure 2). For the spatial distribution
characteristics of the environmental efficiency, the deeper the
color, the higher the environmental efficiency.

As shown in Figure 2, the environmental efficiency of grain
production in provinces of Jilin, Inner Mongolia, and
Heilongjiang is highest. The abundant land resources and
large-scale operation are important reasons for the high
efficiency of the grain production environment in this region.
The environmental efficiency values of provinces of Sichuan,
Jiangxi, Hubei, Hunan are merely above the average. These
provinces have good ecological resources and grain production
activities there are supported by more reliable resource elements.
However, carbon emissions in the grain production process are
high, and reducing carbon emissions is the focus of these
provinces to improve the efficiency of the grain production

FIGURE 2 | Environmental efficiency of grain production in 13 provinces in China’s major grain production areas.
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environment. The environmental efficiency levels in provinces of
Liaoning, Shandong, Jiangsu, Henan, Hebei, and Anhui are
relatively low. Among them, Hebei and Anhui have the lowest
environmental efficiency. Most of these provinces are areas where
agricultural machinery and fertilizers, pesticides, and agricultural
film inputs are high. These regions have achieved higher grain
output depending thanks to the high input of production factors,
but they cannot achieve the highest levels of environmental
efficiency given the environmental pollution, which makes it
difficult for grain production to develop sustainably.

4.1.4 Breakdown of Sources of Inefficiency and
Directions for Improvement
Table 2 and Table 3 report the decomposition and improvement
directions of inefficient sources of grain production environment
in each province of the main grain production areas. It shows that
the environmental efficiency values of the three provinces of
Inner Mongolia, Jilin and Heilongjiang are greater than 1, and the
DEA is effective without efficiency improvement.

From the perspective of the production process, the total grain
output of each province, has zero redundancy, yet the input
factors and other output variables have certain redundancy. This
indicates that China’s environmental efficiency loss is not resulted
from insufficient grain production, but mainly the following two
aspects: production factor input and undesired output. Excessive
consumption of input elements and excessive emission of
environmental pollutants are the main reasons for the low
environmental efficiency of China’s grain production at this stage.

From a national perspective, the main influential factors of
the environmental efficiency loss of grain production in major
grain production areas are carbon emissions, non-point
source pollution of grain production, and labor input in
order. Among them, carbon emissions account for the
highest proportion of the environmental efficiency loss of
China’s grain production. This shows the excessive carbon
emissions in China’s grain production process are excessive.
This may be due to the input of large amount of high-carbon
production materials such as pesticides, fertilizers, and
agricultural machinery in China’s grain production process
currently. It leads to a continuous increase in carbon
emissions from grain production and energy. Thus, China’s
grain production is facing tremendous pressure to reduce
carbon emissions. Non-point source pollution in the
process of grain production is the second most influential
factor in the loss of environmental efficiency of grain
production. This shows that China’s grain production has
serious non-point source pollution. The consumption of
pesticides throughout the country is increasing at a rate of
10% each year. Problems such as excessive pesticide residues
and water and soil pollution are very prominent. As China has
a large amount of surplus labor in rural areas, labor input is
the third most influential factor in the loss of environmental
efficiency of grain production. However, it is worth noting
that although China’s main grain production areas have a
relatively high redundancy rate of labor for growing grain, the
human capital stock is low, and the aging problem is

TABLE 2 | Input redundancy rates for environmental efficiency in grain production.

Provience Land Labour Fertilizer Pesticides Film Machinery Irrigation

Anhui −22.12% −57.45% −31.60% −48.01% −23.54% −47.65% −38.14%
Hebei −21.25% −55.40% −28.81% −37.07% −43.70% −67.73% −50.11%
Henan −16.92% −64.68% −33.74% −21.55% −16.30% −51.23% −23.94%
Hubei −16.31% −52.57% −29.66% −54.96% −4.17% −17.35% −18.41%
Hunan −5.06% −44.53% −8.56% −37.65% −16.27% −29.39% −8.89%
Jiangsu −8.42% −30.72% −26.73% −33.03% −25.44% −27.32% −41.55%
Jiangxi −9.81% −26.72% −1.19% −54.79% −14.37% −23.16% −16.56%
Liaoning −7.63% −37.55% −7.25% −42.69% −64.80% −31.99% −21.87%
Shandong −9.50% −58.79% −28.99% −53.35% −69.30% −64.19% −34.82%
Sichuan −26.46% −60.90% −5.28% −8.87% −45.93% −7.22% −6.90%
National −14.35% −48.93% −20.18% −39.20% −32.38% −36.72% −26.12%

TABLE 3 | Output redundancy rates for environmental efficiency in grain production.

Provience Total production (%) Carbon sequestration (%) Carbon emissions Surface pollution

Anhui 0.00 26.86 −72.95% −37.67%
Hebei 0.00 14.91 −28.06% −57.38%
Henan 0.00 16.85 −24.90% −65.67%
Hubei 0.00 33.32 −83.48% −78.14%
Hunan 0.00 29.83 −78.44% −44.00%
Jiangsu 0.00 30.76 −82.76% −72.44%
Jiangxi 0.00 32.06 −55.53% −27.75%
Liaoning 0.00 17.60 −28.18% −52.61%
Shandong 0.00 16.18 −23.74% −68.91%
Sichuan 0.00 49.82 −82.48% −47.95%
National 0.00 26.82 −56.05% −55.25%
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prominent. The aging rate has been higher than the national
average in the past 11 years, and the gap is widening.

From an inter-provincial perspective, the reasons for the loss
of environmental efficiency of grain production vary from
province to province. The main influential factor of the
environmental efficiency loss of grain production in Anhui,
Sichuan, Hubei, Hunan, Jiangsu, Jiangxi and other provinces is
carbon emission, which shows that these provinces have not
effectively controlled carbon emissions and there is huge room for
improvement. The main influential factor of the environmental
efficiency loss of grain production in provinces of Liaoning and
Shandong is the input of agricultural film, which shows that there
is still a large redundancy in the use of agricultural film in the two
provinces. The input of machinery in Hebei has a greater impact
on the environmental efficiency loss of grain production in the
region. This may be due to the implementation of agricultural
machinery subsidy policies such as agricultural machinery
purchase subsidies. The province’s machinery ownership has
increased year by year, resulting in machinery redundancy and
declining efficiency. The main influential factor for the loss of
environmental efficiency in Henan province is non-point source
pollution, which might be resulted from lack of scientific
protective development, and necessary agricultural technology
expertise among farmers, and could lead to improper fertilization
and drug use, and even serious non-point source pollution.

4.2 Analysis of Spatial Spillovers and Impact
Factors for Environmental Efficiency of
Grain Production
4.2.1 Spatial Correlation Analysis
(1) Global Spatial Autocorrelation Analysis
Using Geoda software based on Queen’s first-order spatial weight
matrix, Monte Carlo simulation 999 tests were used to calculate
the global Moran’s I, Z-statistic test value, and significance level of
grain production environmental efficiency in China’s major grain
production areas. The test results are reported in Table 4.

From Table 4, we can observe that the environmental
efficiency of grain production in China’s major grain
production areas in 2004 and 2013 was negative and did not
pass the significance test. This indicates that the correlation
between environmental efficiency level and adjacent areas is
low. It also presents a random distribution state. Moran’s I for
2005, 2010, 2012, and 2018 were positive and of small magnitude,
and none of them passed the significance test, indicating that

environmental efficiency was spatially randomized over the
4 years. Moran’s I was positive in 2006–2009, 2014–2017, 2011
and 2019, and showed significant positive spatial correlation
according to the 5% significance test, meaning that there was
spatial dependence. This demonstrates that the spatial
distribution of grain production environmental efficiency levels
shows obvious cluster characteristics.

(2) Local Spatial Autocorrelation Analysis
Local spatial autocorrelation analysis can make up for the
shortcomings of global spatial autocorrelation that cannot
clearly give spatially clustered locations with similar attribute
regions. Moran’s I scatter plot and a LISA spatial agglomeration
map can be used to evaluate the heterogeneity of environmental
efficiency in different regions in the spatial range. To reflect the
spatial differentiation characteristics of 13 provinces in China’s
major grain production areas, Moran’s I scatter plots for 2004,
2009, 2014 and 2019 were drawn using GeoDa software, based on
the environmental efficiency values obtained above. Moran’s I
scatter plot distributes the environmental efficiency values of the
aforementioned provinces in four quadrants, reflecting the spatial
correlation between provinces and their neighboring provinces.
The first quadrant is high-high value cluster (H-H), the second
low-high value cluster (L-H), the third low-low value cluster
(L-L), and the fourth high-low value cluster (H-L). Figure 3
shows Moran’s I scatter plots for grain production environmental
efficiency in 2004, 2009, 2014, and 2019. The number of
provinces in H-H clusters and L-L clusters were 5, 13, 12, and
eight in 2004, 2009, 2014, and 2019, respectively. Numbers
increased rapidly and then gradually decreased, indicating that
the environmental production efficiency of grain production H-H
clusters and L-L clusters increased first and then went down. The
concentration of L-H clusters fluctuated, and H-L clusters fell first
and then gradually increased. By comparison, we found:

① H-H clusters were identified in Heilongjiang, Jilin, and
Inner Mongolia. The reason is that all three provinces are in the
northeast of China. These provinces have good resource
endowment, few natural disasters such as floods and pests,
and are sparsely populated, which is conducive to the large-
scale mechanization of grain production. Therefore, the
environmental efficiency of these areas is relatively high, which
has a diffusion effect on the surrounding areas.

② L-H clusters were identified in Anhui, Liaoning, Hebei,
Hubei, and other areas adjacent to the H-H clusters. The possible
reason is that Liaoning Province is adjacent to Inner Mongolia

TABLE 4 | The Moran’s I of China’s grain production environmental efficiency between 2004 and 2019.

Year 2004 2005 2006 2007 2008 2009 2010 2011

Moarn’s I −0.101 0.160 0.575 0.400 0.435 0.550 0.114 0.442
Z-value −0.043 1.353 3.292 2.427 2.663 3.523 1.060 2.676
p-value 0.452 0.095 0.004 0.016 0.016 0.003 0.139 0.013

Year 2012 2013 2014 2015 2016 2017 2018 2019

Moarn’s I 0.057 −0.124 0.516 0.356 0.345 0.276 0.136 0.321
Z-value 0.712 −0.248 3.080 2.211 2.214 1.834 1.309 2.047
p-value 0.229 0.467 0.006 0.25 0.027 0.055 0.099 0.29
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and Jilin, which has a positive impact on production technology,
environmental protection investment, and environmental
protection policies. Anhui and Hebei are in L-L clusters and
L-H clusters, respectively. Their efficiency value fluctuate
significantly, which may be resulted from the fact that the
selection of grain production modes in the two areas is
influenced by their neighboring provinces.

③ L-L clusters account for a high proportion in the major
grain production areas, and Anhui, Shandong, Henan, and
Jiangsu are in this cluster area in 2009, 2014, and 2019. The
provinces of the cluster area have a certain downward trend from
2014 to 2019, which may be due to the positive radiation effects of
the provinces, especially from those with high efficiency in grain
production.

④ The distribution of H-L clusters is relatively scattered,
covering seven regions in the initial stage of research to four
regions at the end of the study. Among them, Hunan, Jiangxi, and
Sichuan changed from L-L clusters in 2009 and 2014 to H-L

clusters in 2019. This may be because the three provinces
increased their investment in grain production technology and
environmental management throughout the study period,
reducing carbon emissions and non-point source pollution in
grain production, thereby improving the environmental
efficiency of grain production. However, the surrounding
environment with relatively low environmental efficiency has a
good geographical advantage. In the future, due to the spillover of
policies, technologies, and factors in high-efficiency areas, the
efficiency of the grain environment will be greatly improved.

The Moran’s I scatter plot reflects the spatial dependence and
heterogeneity of the provinces in the major grain production
areas. However, the salient status of each province is not given.
Therefore, this study draws a LISA spatial cluster map (Figure 4)
to reflect the degree of correlation between the provinces and the
environmental efficiency of their neighboring provinces.

According to the analysis results of the LISA aggregation
map, 13 provinces in the major grain-production areas did

FIGURE 3 | Moran’s I scatter plot of environmental efficiency of grain production in 2004, 2009, 2014 and 2019.
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not pass the significance test in 4 years. However, the spatial
agglomeration of grain production environmental efficiency
in various provinces in the region is becoming increasingly
obvious, and more provinces are showing significant
relationships. The transformation of spatial cluster type in
some provinces may be directly related to the environmental
efficiency of grain production in each province in the same
year. In this study, Heilongjiang Province was always in
the H-H clusters, while Jilin Province, which was not
insignificant in 2004, was in the H-H clusters in other years.
It indicates that the two provinces have good resource
endowment, advanced technology, proper environmental
protection measures, high environmental efficiency and
environmental efficiency in surrounding provinces, and high
concentration of resources and technology. Moreover, it has
played a leading role in the surrounding areas and has a strong
positive radiation effect. Shandong and Henan provinces were
in H-L clusters in 2004, but converted to L-L clusters in 2009,
2014, and 2019. This indicates that the two provinces had higher
levels of efficiency during the initial study period, but were later
assimilated by the lower environmental efficiency levels of
neighboring provinces and were in L-L clusters. Jiangsu and
Anhui provinces have been in L-L clusters during the study
period. This indicates that the environmental efficiency of the
two provinces and the environmental efficiency of the
surrounding areas were very low, and there was no timely

response to the ecological development of China’s grain
production.

4.2.2 Regression Analysis of Spatial Durbin Model
Through spatial autocorrelation analysis, it is found that there is a
certain spatial correlation among China’s grain production
environment in terms of the efficiency. In order to further
explore the spatial effect and influential factors for that case,
the study uses MATLAB R2015b to estimate the spatial
econometric model from the perspective of robustness. The
study has also used three different spatial weight matrices to
estimate the model. The regression results are shown in Table 5.
After the comparison of the estimation results under the
application of three spatial weight matrices, it is found that
the signs and significance test results of each variable are
consistent, indicating that the regression results are robust
enough. The R2 of the model under spatial weight matrices
are 0.782, 0.714, and 0.770, respectively, indicating that the
model has a convincing explanatory. In the specific coefficient
analysis below, this article will analyze the regression results of
spatial contiguity weights matrix case that has the highest degree
of fit.

Before estimating the space spillover effect (robust) LM test
should be used to select the models between space lag or space
error. The results are shown in Table 5. The test value of LM-err
is 6.724, which is significant at the 1% level; the R-LM-err value is

FIGURE 4 | LISA clusters map of China’s grain production environmental efficiency in 2004, 2009, 2014 and 2019.
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36.457, which is significant at the 1% level; the LM-lag value is
19.431, which indicates that the 5% significance test is passed; the
value of R-LM-lag is 49.163, which also satisfies the 5%
significance level test. Therefore, it can be concluded that the
spatial error model is more applicable than the spatial lag model.
The Hausman test results show that the statistic passes the chi-
square test at a 1% significance level, so a fixed-effect model is
more reasonable to apply. The statistics of Wald test and LR test
are both significant at the level of 1%, indicating that the spatial
Durbin model cannot be simplified to the SAR model or the SEM
model. The ρ value is 0.122, and it is significant at the level of 1%,
which once again proves that there is a significant spatial

correlation of the environmental efficiency of grain
production. This correlation effect is more obvious under the
geographical weight, which means that the geographical
distribution of environmental efficiency of grain production
exerts an aggregation effect.

This paper breaks down the effects of various influential
factors on the environmental efficiency of grain production to
calculate the direct and indirect effects. The results are shown in
Table 6. Among them, the direct effect, indirect effect and total
effect of education level all show significant positive effects. It
indicates that the improvement of farmers’ education level can
not only improve the environmental efficiency of grain

TABLE 5 | Estimation results of SDM.

Variable SDM(Wl) SDM(Wg) SDM(We)

Coefficient z-Statistic Coefficient z-Statistic Coefficient z-Statistic

EDU 0.018** 2.092 0.014 1.503 0.015* 1.661
FS 0.200 1.474 0.177 1.305 0.166 1.278
ALT -0.553 −1.167 −0.820* -1.803 -1.023** −2.326
EPC 0.061 1.591 0.069 1.588 0.077* 1.858
UR 0.157 0.213 1.506 1.564 1.589*** 1.652
DR −0.295** −2.198 −0.278** −2.137 −0.277** −2.170
W×EDU 0.031** 2.012 0.068* 1.829 0.080** 2.007
W×FS 1.197** 2.48 2.519** 2.033 2.903** 2.372
W×ALT -2.116*** −3.772 -4.568*** −2.705 -4.402*** −2.846
W×EPC 0.120 1.450 0.412* 1.755 0.524** 2.381
W×UR 2.779** 2.064 1.666 0.570 1.737 0.627
W×DR −0.059 −0.315 −0.509 −1.242 −0.653 −1.581
λ\ρ 0.122*** 3.537 0.603*** 3.388 0.581*** 3.292
R2 0.782 0.714 0.771
log-likelihood 111.370 77.304 111.591
LM-lag test 19.431** 21.308** 25.921**
R-LM-lag test 49.163** 9.787** 10.577*
LM-err-test 6.724*** 15.989*** 19.763***
R-LM-err-test 36.457*** 4.467*** 4.419***
Wald-lag test 21.112*** 12.685*** 3.460**
LR-lag test 21.492*** 12.196*** 12.122***
Wald-err test 21.060*** 12.379*** 8.233**
LR-err test 19.947*** 11.785*** 8.297**
Hausman test 42.221*** 49.147*** 46.555***

Note: ***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 6 | Spatial spillover effect of environmental efficiency of Grain Production.

Variable SDM(Wl) SDM(Wg) SDM(We)

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

Direct
Effect

Indirect
Effect

Total
Effect

EDU 0.019** 0.036* 0.055** 0.005* 0.039 0.044 0.005* 0.036 0.041
(2.192) (2.073) (2.278) (1.953) (0.752) (0.757) (1.854) (0.696) (0.711)

FS 0.267* 3.104* 3.371** 0.346* 2.555* 2.901* 0.156* 1.888* 2.045*
(1.937) (2.094) (2.363) (1.945) (2.089) (2.041) (1.918) (1.975) (1.874)

ALT −0.470* 2.281*** 1.811* −1.073** 2.188*** 1.116*** −1.140** 1.854 0.714
(−1.957) (−3.618) (−2.059) (−2.187) (−3.856) (−3.402) (−2.337) (−0.759) (−0.271)

EPC 0.067 0.143 0.210 −0.025 −0.280 −0.305 −0.023 −0.217 −0.239
(−1.669) (−1.476) (−1.708) (−0.638) (−1.305) (−1.309) (−0.582) (−1.084) (−1.093)

UR 0.299** −0.100 0.399** 0.337** −0.368* 0.031 0.338** −0.373 0.035
(−2.239) (−0.518) (−2.263) (−2.595) (−1.969) (−0.059) (−2.674) (−0.695) (−0.067)

DR −0.251* −1.348** −1.599** −0.007* −0.910** −0.903** −0.012* −0.904* −0.892**
(−1.829) (−2.449) (−2.753) (−2.054) (−2.325) (−2.256) (−1.807) (−1.932) (−2.310)

Note: The values in brackets below the coefficients are the corresponding t-values; ***p < 0.01, **p < 0.05, *p < 0.1.
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production in the region, but also increase the environmental
efficiency of grain production in other regions through spatial
spillover effects. This may be because the improvement of
education level means the improvement of the quality of
farmers. In the process of grain production, they tend to
choose more ecologically and environmentally friendly
production methods, reduce grain production pollution, and
improve grain production environmental efficiency. The direct
effect, indirect effect and total effect of the level of fiscal support to
agriculture all show significant positive effects. This shows that
financial support for agriculture can not only improve the
environmental efficiency of grain production in the region, but
also effectively promote the environmental efficiency of grain
production in the neighboring areas. The direct effect of labor
transfer is significantly negative, but the indirect effect presents a
more significant positive effect. It indicates that the transfer of
rural labor is not conducive to the improvement of the
environmental efficiency of grain production in the region, but
it is conducive to improving the environmental efficiency of grain
production in the neighboring areas. The indirect spillover effect
is greater than the direct spillover effect in the region.

The direct effect, indirect effect and total effect of ecological
environment governance are negative but not significant,
indicating that the current ecological environment governance
has an insignificant effect on improving the environmental
efficiency of grain production. This may be because the
current investment in environmental governance is mainly
concentrated in industry, while the investment in agricultural
production environmental governance is relatively low.
Therefore, the effect of improving the environmental efficiency
of grain production is not obvious. The direct and total effects of
the urbanization level are both significantly positive, and the
indirect effects are negative but not significant. This shows that
the increase in the urbanization rate has effectively promoted the
growth of the local grain production environment efficiency, but
the spillover effect on the surrounding areas is not obvious. This
may be because the development of urbanization has created
many favorable conditions for improving the environmental
efficiency of grain production by promoting the advancement
of agricultural science and technology, accelerating the
development of modern agriculture, and attracting and
promoting capital investment in agriculture. The direct effect,
indirect effect and total effect of the disaster rate all show
significant negative effects. It means that an increase in the
disaster rate will reduce grain production, which is not
conducive to the improvement of the environmental efficiency
of grain production. At the same time, the farmland of
neighboring provinces is often connected. When the grain
production in one region suffers from natural disasters, grain
production in neighboring regions will be affected to a certain
extent.

5 CONCLUSION

This paper incorporates the environmental factors in the grain
production process into the grain production efficiency

evaluation system and employs the undesired global super-
efficiency SBM model to calculate and analyze the temporal
and spatial characteristics of grain production environmental
efficiency, sources of inefficiency, and spatial spillover in major
grain production areas from 2004 to 2019. The main conclusions
are as follows:

1) Except for 2004 and 2013, the grain production efficiency
values that take no account of environmental factors
(environmental pollution and grain carbon sinks) were
significantly higher than those that take environmental
factors into consideration. There was a certain corrective
effect on the efficiency of grain production in China.

2) From 2004 to 2019, the average environmental efficiency of grain
production in China’s main grain production areas was 0.820,
showing generally fluctuations with a downward trend, and the
level of development was generally low. The main influential
factors of the environmental efficiency loss of grain production in
major grain production areas were carbon emissions, non-point
source pollution of grain production, and labor input. In
provinces with inefficient grain production environments,
there were widespread problems of redundant element inputs
and serious environmental pollution in grain production.

3) The environmental efficiency of grain production in various
provinces shows more and more obvious spatial
differentiation characteristics in spatial distribution.
Liaoning, Shandong, Jiangsu, Henan, Hebei, Anhui and
other provinces have low levels of grain environmental
efficiency and suffer serious environmental efficiency losses.
In addition, the environmental efficiency level of grain
production shows obvious cluster characteristics. Among
them, the Northeast region and the Huang-Huai-Hai
region shows high-high aggregation and low-low
aggregation respectively.

4) The environmental efficiency of grain production has a
significant positive spillover effect. In terms of direct
effects, the level of education, the level of financial support
for agriculture, and the rate of urbanization all have positive
effects on the environmental efficiency of grain production in
the region. On the contrary, the transfer of labor and the rate
of disasters have a significant negative impact. From the
perspective of spillover effects, the level of education, the
level of financial support for agriculture, and the transfer of
labor are all conducive to the improvement of the
environmental efficiency of grain production in the
neighboring areas, while the disaster rate has a negative
impact on the environmental efficiency of grain production
in the neighboring areas.

Based on the above conclusions, the following suggestions for
improving the environmental efficiency of grain production are
proposed:

1) In view of the overall low environmental efficiency of grain
production in China, there is still large room for improvement
in the prevention and control of pollution and the discovery of
ecological value in the process of grain production. In order to
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maintain the sustainable development of grain production, it is
necessary to actively promote the reduction of chemical fertilizers
and pesticides, control the carbon emissions of grain planting,
highlight the ecological function of grain planting, and take the
path of coordinated development of resources, environment and
grain production while ensuring grain production.

2) In the process of grain production, the natural and resource
endowment of the local area must be fully considered. The
emphasis should be laid on supporting provinces where the
environmental efficiency of grain production is lower than
that of the surrounding areas. The decline in the sustainability
of grain production caused by low efficiency and serious
ecological damage should be addressed.

3) The scope and intensity of the positive spillover including
education level, financial support for agriculture, labor transfer
should be expanded and deepened, while the negative spillover
effects of grain disasters deserve equal attention. The relevant
policies, measures and technologies of green grain production in
neighboring areas should also be highlighted. A multilateral or
bilateral regular exchange mechanism can be established to
strengthen the exchange of technology and policy experience
among the provinces of the main grain production areas and
guide the proper flow, transfer and communication of policy
experience, technology, talent and other elements.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors contributed to the study conception and design.
Material preparation, data collection and analysis were
performed by HX, BM, and QG. The first draft of the
manuscript was written by HX and all authors commented on
previous versions of the manuscript. All authors read and
approved the final manuscript.

FUNDING

This study was supported in part by grants from the Ministry
of education of Humanities and Social Science project (Grant
No. 21YJC790149), Qingdao social science planning and
research project in 2021 (QDSKL2101031), Social Science
Planning Research Project of Shandong “Research on the
Stagnation and Breakthrough Path of Relative Poverty
Management in Shandong Province after 2020” (Grant No.
20CDCJ21), “The key project of plan in research and
development of Shandong “Research on the protection and
utilization of marine fishery germplasm resources in
Shandong Province” (Grant No. 2020RZE29007), The
Natural Science Foundation of Shandong “Research on the
Long-term Path of Poverty Alleviation in Agricultural
Industry from the Perspective of High-Quality De
velopment” (Grant No. ZR2020QG045), The Fundamental
Research Funds for the Central Universities (Grant
No.202013011), The China Postdoctoral Science
Foundation (Grant No. 2019M652486).

REFERENCES

Armagan, G., Ozden, A., and Bekcioglu, S. (2010). Efficiency and Total Factor
Productivity of Crop Production at Nuts1 Level in turkey: Malmquist index
Approach. Qual. Quant 44, 573–581. doi:10.1007/s11135-008-9216-5

Bai, X., Salim, R., and Bloch, H. (2019). Environmental Efficiency of Apple
Production in china: A Translog Stochastic Frontier Analysis. Agric. Resour.
Econom. Rev. 48, 199–220. doi:10.1017/age.2018.25

Battese, G. E., and Coelli, T. J. (1995). A Model for Technical Inefficiency Effects in
a Stochastic Frontier Production Function for Panel Data. Empirical Econ. 20,
325–332. doi:10.1007/bf01205442

Benedetti, I., Branca, G., and Zucaro, R. (2019). Evaluating Input Use Efficiency in
Agriculture through a Stochastic Frontier Production: An Application on a
Case Study in Apulia (italy). J. Clean. Prod. 236, 117609. doi:10.1016/
j.jclepro.2019.117609

Cao, X., Liu, Y., Li, T., and Liao, W. (2019). Analysis of Spatial Pattern Evolution
and Influencing Factors of Regional Land Use Efficiency in china Based on
Esda-Gwr. Scientific Rep. 9, 1–11. doi:10.1038/s41598-018-36368-2

Coelli, T., Rahman, S., and Thirtle, C. (2003). A Stochastic Frontier Approach to
Total Factor Productivity Measurement in Bangladesh Crop Agriculture, 1961-
92. J. Int. Dev. 15, 321–333. doi:10.1002/jid.975

Cooper, W. W., Seiford, L. M., and Tone, K. (2007). A Comprehensive Text with
Models, Applications, References and Dea Solver Software. Data Envelopment
Anal.

Dolgikh, Y. (2019). Evaluation and Analysis of Dynamics of Change of Efficiency of
Grain Production in ukraine by Dea Method. Agric. Res. Econ. 5 (3), 47–62.

Gebregziabher, G., Namara, R. E., and Holden, S. (2012). Technical Efficiency of
Irrigated and Rain-Fed Smallholder Agriculture in Tigray, ethiopia: A

Comparative Stochastic Frontier Production Function Analysis. Q. J. Int.
Agric. 51, 203–226.

Kumbhakar, S. C., Lien, G., and Hardaker, J. B. (2014). Technical Efficiency in
Competing Panel Data Models: a Study of Norwegian Grain Farming. J. Prod.
Anal. 41, 321–337. doi:10.1007/s11123-012-0303-1

Liao, X., and Shi, X. (2018). Public Appeal, Environmental Regulation and green
Investment: Evidence from china. Energy Policy 119, 554–562. doi:10.1016/
j.enpol.2018.05.020

Lin, J. Y. (1992). Rural Reforms andAgricultural Growth in china.Am. Econ. Rev., 34–51.
Liu, Y., Zou, L., and Wang, Y. (2020). Spatial-temporal Characteristics and

Influencing Factors of Agricultural Eco-Efficiency in china in Recent
40 Years. Land Use Policy 97, 104794. doi:10.1016/j.landusepol.2020.104794

Maxime, D., Marcotte, M., and Arcand, Y. (2006). Development of Eco-Efficiency
Indicators for the canadian Food and Beverage Industry. J. Clean. Prod. 14,
636–648. doi:10.1016/j.jclepro.2005.07.015

Pang, J., Chen, X., Zhang, Z., and Li, H. (2016). Measuring Eco-Efficiency of
Agriculture in china. Sustainability 8, 398. doi:10.3390/su8040398

Pastor, J. T., and Lovell, C. A. K. (2005). A Global Malmquist Productivity index.
Econ. Lett. 88, 266–271. doi:10.1016/j.econlet.2005.02.013

Picazo-Tadeo, A. J., Gómez-Limón, J. A., and Reig-Martínez, E. (2011). Assessing
Farming Eco-Efficiency: a Data Envelopment Analysis Approach. J. Environ.
Manag. 92, 1154–1164. doi:10.1016/j.jenvman.2010.11.025

Pishgar-Komleh, S. H., Zylowski, T., Rozakis, S., and Kozyra, J. (2020). Efficiency
under Different Methods for Incorporating Undesirable Outputs in an
LCA+DEA Framework: A Case Study of winter Wheat Production in
Poland. J. Environ. Manag. 260, 110138. doi:10.1016/j.jenvman.2020.110138

Sachdeva, J., Sharma, J., and Chahal, S. (2011). Technical Efficiency in Crop
Production and Dairy Farming in punjab: A Zone-wise Analysis1. Productivity
52, 177. doi:10.3109/10428194.2011.574756

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 77434314

Xu et al. Environmental Efficiency of Grain Production

https://doi.org/10.1007/s11135-008-9216-5
https://doi.org/10.1017/age.2018.25
https://doi.org/10.1007/bf01205442
https://doi.org/10.1016/j.jclepro.2019.117609
https://doi.org/10.1016/j.jclepro.2019.117609
https://doi.org/10.1038/s41598-018-36368-2
https://doi.org/10.1002/jid.975
https://doi.org/10.1007/s11123-012-0303-1
https://doi.org/10.1016/j.enpol.2018.05.020
https://doi.org/10.1016/j.enpol.2018.05.020
https://doi.org/10.1016/j.landusepol.2020.104794
https://doi.org/10.1016/j.jclepro.2005.07.015
https://doi.org/10.3390/su8040398
https://doi.org/10.1016/j.econlet.2005.02.013
https://doi.org/10.1016/j.jenvman.2010.11.025
https://doi.org/10.1016/j.jenvman.2020.110138
https://doi.org/10.3109/10428194.2011.574756
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Shi, X., Yu, J., and Cheong, T. S. (2020). Convergence and Distribution Dynamics
of Energy Consumption Among China’s Households. Energy Policy 142,
111496. doi:10.1016/j.enpol.2020.111496

Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L.,
Lassaletta, L., et al. (2018). Options for Keeping the Food System within
Environmental Limits. Nature 562, 519–525. doi:10.1038/s41586-018-
0594-0

Sun, H., Edziah, B. K., Kporsu, A. K., Sarkodie, S. A., and Taghizadeh-Hesary, F.
(2021a). Energy Efficiency: The Role of Technological Innovation and
Knowledge Spillover. Technol. Forecast. Soc. Change 167, 120659.
doi:10.1016/j.techfore.2021.120659

Sun, H., Edziah, B. K., Sun, C., and Kporsu, A. K. (2021b). Institutional Quality and
its Spatial Spillover Effects on Energy Efficiency. Socio-Economic Plann. Sci.,
101023. doi:10.1016/j.seps.2021.101023

Vlontzos, G., Niavis, S., and Manos, B. (2014). A Dea Approach for
Estimating the Agricultural Energy and Environmental Efficiency of Eu
Countries. Renew. Sustain. Energ. Rev. 40, 91–96. doi:10.1016/
j.rser.2014.07.153

Wang, J., Wang, K., Shi, X., and Wei, Y.-M. (2019). Spatial Heterogeneity and
Driving Forces of Environmental Productivity Growth in china: Would it Help
to Switch Pollutant Discharge Fees to Environmental Taxes. J. Clean. Prod. 223,
36–44. doi:10.1016/j.jclepro.2019.03.045

Wang, K., Xian, Y., Yang, K., Shi, X., Wei, Y.-M., and Huang, Z. (2020). The
Marginal Abatement Cost Curve and Optimized Abatement Trajectory of Co 2
Emissions from china’s Petroleum Industry. Reg. Environ. Change 20, 1–13.
doi:10.1007/s10113-020-01709-3

Wen, G. J. (1993). Total Factor Productivity Change in China’s Farming Sector:
1952-1989. Econ. Dev. Cult. Change 42, 1–41. doi:10.1086/452063

Wilson, P., Hadley, D., Ramsden, S., and Kaltsas, I. (1998). Measuring and
Explaining Technical Efficiency in uk Potato Production. J. Agric. Econ. 49,
294–305. doi:10.1111/j.1477-9552.1998.tb01273.x

Xian, Y., Wang, K., Shi, X., Zhang, C., Wei, Y.-M., and Huang, Z. (2018). Carbon
Emissions Intensity Reduction Target for China’s Power Industry: An Efficiency and

Productivity Perspective. J. Clean. Prod. 197, 1022–1034. doi:10.1016/
j.jclepro.2018.06.272

Yao, Z., and Xuan, P. (2019). “The Influence Degree of Minimum purchase
price Policy on Grain Production Efficiency,” in IOP Conference Series:
Earth and Environmental Science (Xian: IOP Publishing), 032106.
doi:10.1088/1755-1315/252/3/032106IOP Conf. Ser. Earth Environ.
Sci.252.

Yuan, W., Li, J., Meng, L., Qin, X., and Qi, X. (2019). Measuring the Area green
Efficiency and the Influencing Factors in Urban Agglomeration. J. Clean. Prod.
241, 118092. doi:10.1016/j.jclepro.2019.118092

Zhang, Q., Zhang, F., Wu, G., and Mai, Q. (2021). Spatial Spillover Effects of Grain
Production Efficiency in china: Measurement and Scope. J. Clean. Prod. 278,
121062. doi:10.1016/j.jclepro.2020.121062

Zou, L., Liu, Y., Wang, Y., and Hu, X. (2020). Assessment and Analysis of
Agricultural Non-point Source Pollution Loads in China: 1978-2017.
J. Environ. Manag. 263, 110400. doi:10.1016/j.jenvman.2020.110400

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Xu, Ma and Gao. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 77434315

Xu et al. Environmental Efficiency of Grain Production

https://doi.org/10.1016/j.enpol.2020.111496
https://doi.org/10.1038/s41586-018-0594-0
https://doi.org/10.1038/s41586-018-0594-0
https://doi.org/10.1016/j.techfore.2021.120659
https://doi.org/10.1016/j.seps.2021.101023
https://doi.org/10.1016/j.rser.2014.07.153
https://doi.org/10.1016/j.rser.2014.07.153
https://doi.org/10.1016/j.jclepro.2019.03.045
https://doi.org/10.1007/s10113-020-01709-3
https://doi.org/10.1086/452063
https://doi.org/10.1111/j.1477-9552.1998.tb01273.x
https://doi.org/10.1016/j.jclepro.2018.06.272
https://doi.org/10.1016/j.jclepro.2018.06.272
https://doi.org/10.1088/1755-1315/252/3/032106
https://doi.org/10.1016/j.jclepro.2019.118092
https://doi.org/10.1016/j.jclepro.2020.121062
https://doi.org/10.1016/j.jenvman.2020.110400
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Assessing the Environmental Efficiency of Grain Production and Their Spatial Effects: Case Study of Major Grain Production  ...
	1 Introduction
	2 Literature Review
	2.1 Calculation of Grain Production Efficiency
	2.2 Influencing Factors of Grain Production Efficiency
	2.3 Space Effects of Grain Production Efficiency

	3 Model Construction and Data Description
	3.1 Research Model and Estimation Method
	3.1.1 The Global Super-Efficiency SBM Model
	3.1.2 Spatial Durbin Model

	3.2 Index Selection
	3.2.1 Definition of Input Variables
	3.2.2 Definition of Output Variables

	3.3 Data Sources

	4 Empirical Results and Analysis
	4.1 Measures of Environmental Efficiency in Grain Production and Sources of Inefficiency
	4.1.1 Comparative Analysis of Efficiency of Grain Production With Different Treatment Methods
	4.1.2 Analysis of Time Series Evolution Characteristics
	4.1.3 Spatial Distribution Characteristics
	4.1.4 Breakdown of Sources of Inefficiency and Directions for Improvement

	4.2 Analysis of Spatial Spillovers and Impact Factors for Environmental Efficiency of Grain Production
	4.2.1 Spatial Correlation Analysis
	(1) Global Spatial Autocorrelation Analysis
	(2) Local Spatial Autocorrelation Analysis
	4.2.2 Regression Analysis of Spatial Durbin Model


	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


