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The alcohol industry discharges large quantities of wastewater, which is hazardous and
has a considerable pollution potential. Cultivating microalgae in wastewater is an
alternative way of overcoming the current high cost of microalgae cultivation and an
environmentally friendly treatment method for industrial effluents. The study analyzed the
growth and biochemical composition of Chlorella vulgaris cultivated in membrane-treated
distillery wastewater (MTDW) and nutrients removal efficiency. The results showed
biomass productivity of 0.04 g L−1 d−1 for MTDW with the contents of content of
protein, carbohydrate, and lipid at 49.6 ± 1.4%, 26.1 ± 0.6%, and 10.4 ± 1.8%,
respectively. The removal efficiencies of TN, TP, and COD were 80, 94, and 72.24% in
MTDW, respectively. In addition, removal efficiencies of 100, 85.37, and 42.86% for Ca2+,
Mg2+, and Mo2− were achieved, respectively. The study added to our growing knowledge
on the cultivation of Chlorella with wastewater, suggesting that it was feasible to cultivate
Chlorellawith MTDW and represented an economical and environmentally friendly strategy
for microalgae biomass production and reuse of wastewater resources.
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INTRODUCTION

Industrial wastewater is one of the main sources of pollution of the water environment, and its
production has a serious negative impact on the ecosystem and human life. Therefore, the fight
against wastewater has become a major issue in terms of health, environment, and economy (Abdel-
Raouf et al., 2012). The quality and quantity of industrial wastewater vary according to the type of
industry. The metal processing industry emits chromium, nickel, zinc, cadmium, lead, iron, and
titanium compounds. The printing plant releases inks and dyes (Hanchang, 2009). Wastewater from
paper mills contains chloride organics and dioxins, as well as suspended solids and organic wastes
(Lindholm-Lehto et al., 2015). The petrochemical industry discharges a large number of phenols and
mineral oil (Éverton et al., 2018). The content of suspended solids and organic matter in wastewater
from food processing plants is very high (Qasim and Mane, 2013). In contrast, distilleries produce
large amounts of acidic, stubborn, and colored wastewater with high organic content (Sanjay and
Jamaluddin, 2018), which may lead to the destruction of the aquatic environment causing
eutrophication, affecting human health and recreational activities (Sanjay and Jamaluddin, 2018;
Stutter et al., 2018; Thoré et al., 2021). The alcohol industry discharges up to 0.3 billion m3 of high-
concentration wastewater each year in China (Guo et al., 2006), which has become the second largest
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source of organic pollution. Cassava alcohol wastewater is widely
produced in cassava-based bioethanol industries (Quan et al.,
2014). In general, about 12 tons of wastewater would be generated
to produce 1 ton of cassava ethanol (Lin et al., 2016). Industrial
wastewater with high organic and acidic substances many contain
as high as 40,000∼130,000 mg L−1 chemical oxygen demand
(COD) concentration (Gang et al., 2008).

The source of industrial wastewater comes with different
characteristics. Hence, the treatment of industrial wastewater
should be specifically designed for specific wastewater.
Recently, several technologies such as photocatalysis (Al-
Mamun et al., 2019), electrodialysis (Deng et al., 2020; Liu
et al., 2020), iron-oxides-doped granular activated carbon
catalyst (Deng et al., 2021), and Fe/C galvanic cells
strengthened A2O process (Fe/C-A2O) (Peng et al., 2020)
have been developed with significant effects for industrial
wastewater treatment. Presently, distilleries use a multi-stage
strategy in wastewater treatment, including pretreatment,
secondary treatment, and tertiary treatment. Pretreatment
reduces temperature of the wastewater as well as removes
suspended solids of large particles in the wastewater (Yang
and Wyman, 2007), while an anaerobic wastewater treatment
system removed most of the organic matter in the wastewater
(Sanjay and Jamaluddin, 2018). Finally, most of the N and P in
the wastewater is removed through advanced treatment such as
anaerobic and aerobic processes and membrane bioreactor
(MBR) (Noor et al., 2013). However, the wastewater after
membrane treatment still contains some amount of organic
matter, nutrients, and other substances, which may be harmful
to the environment. Conventional treatment methods are
extensively used, they are however characterized by excessive
use of chemicals, high operational and maintenance cost. These
methods also generate huge amounts of sludge, thereby making
conventional treatment methods environmentally and
economically unfavorable (Amenorfenyo et al., 2020).

The microalgae-based wastewater treatment is an
environmentally friendly wastewater treatment method, which
is often used to treat secondary or tertiary wastewater and is
considered one of the promising technologies for wastewater
treatment. As a kind of eukaryotic green microalgae with strong
photosynthesis ability, Chlorella is considered as one of the easily
cultivated microalgae that contains high-quality protein,
carotenoids, vitamins, and minerals, it has long been proposed
as a healthy food substitute for humans and animals (Liu et al.,
2013; Liu et al., 2014; Znad et al., 2018). The use of Chlorella for
wastewater treatment and nutrient recovery reduces cost of
wastewater treatment, and production of useful biomass
(Sánchez-Zurano et al., 2021). In recent years, cultivation of
microalgae especially Chlorella vulgaris in wastewater have
attracted more and more attention. According to previous
studies, Chlorella could remove organic contaminants, and
heavy metals from as urban wastewater (Tercero et al., 2014),
domestic wastewater (Aziz and Ng, 1992), textile wastewater
(Chu et al., 2009), and piggery wastewater (Ji et al., 2012).
However, little is known about cultivation of Chlorella in
membrane-treated distillery wastewater (MTDW) for nutrient
recovery and biomass production, and its feasibility.

In this study, we performed the biomass production of
Chlorella coupled with the treatment of MTDW, which seeks
to explore the nutrient removal efficiency, biomass production
and productivity, and biochemical content of C. vulgaris grown in
MTDW. The work sought to give useful information that will lead
to the understanding of the cost-effective method of wastewater
treatment and microalgae biomass production.

MATERIALS AND METHODS

Collection and Pre-Inoculation of
Microalgae
Freshwater algae C. vulgaris was acquired from the laboratory of
Ecology of Water Area and Aquaculture Environment of
Fisheries College, Guangdong Ocean University, South China.
The vegetative cells were grown photoautotrophically at 2000 lx
(white light). The 7-day-old algal cells were collected and
inoculated into 2 L Erlenmeyer flasks filled with 1 L of BG11
medium at an initial optical density of 0.2 (OD680) in FDFF
illuminated incubator 2000 lx (white light) and 25°C for 9 days.

Wastewater Collection and Analysis
The wastewater used in this study, MTDW was collected from
SDIC Guangdong Bio-Energy Co., Ltd., Zhanjiang, South
China. The wastewater sample was collected in a 5 L plastic
container that was thoroughly pre-washed with the wastewater
from the company. To reduce the decomposition of a
substrate, MTDW sample was stored at 4°C before the
wastewater characteristics analysis. Then wastewater was
pretreated by means of filtration using a glass microfiber
filter (934-AH, Whatman, United States) to remove
turbidity and large particles. The filtered sample was
autoclaved at 121°C for 30 min to eliminate bacteria and
other algal growth inhibitors.

Determination of Dry Weight and
Chlorophyll a
Microalgae biomass concentration were measured every 72 h.
Dry weight (DW) was determined by filtering a 10 ml samples of
the algal suspension through pre-weighed (m1) filters (47 mm,
1.2 μm,Whatman). Then drying the filters (105°C, overnight) to a
constant weight and weighing with microbalance (m2). The DW
(g L−1) was calculated with Eq. 1.

DW � (m2 −m1) × 103/10. (1)

Biomass productivity (g L−1 day−1) was calculated with Eq. 2.

Biomass productivity � (DWi − DW0)/(ti − t0), (2)

where DWi and DW0 represent the dry biomass (g L−1) at time ti
and t0 (day).

The pigment contents of the microalgae thus chlorophyll a
was analyzed after extraction in 95% ethanol (w/v). Briefly, 5 ml
of the suspensions were filtered and freeze-dried at −20°C for
12 h; the dried biomass was suspended in ethanol for 4 h in dark.
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The suspensions were later centrifuged at 5,000 rpm for 10 min
and the pigment contents of the supernatant were
spectrophotometrically measured at 665 and 649 nm. The Eq.
3 was used to calculate the pigment contents (Hartmut and Alan,
1983).

Chlorophyll a � (13.95 × A665) − (6.88 × A649). (3)

Carbohydrate, Protein and Lipid
Quantification
Protein extractions were determined according to the modified
method described in Barbarino and Lourenço (2005) and Ge et al.
(2018). As follows: weigh 30 mg powder of Chlorella, and then
add 8 ml of distillery water. After soaking for 12 h, centrifuge at
15,000 rpm (4°C) for 20 min to collect the supernatant. Then use
2.0 ml 0.1 N (or 2 M) NaOH to re-extract the concentrated
pellets. After centrifugation at 15,000 rpm (21°C) for 20 min,
the supernatant was collected and mixed with the previous
supernatant. 10 ml of the extract was taken to determine
protein concentration with the aid of Bio-Rad DC protein as-
say (Cat. 500-0111, Bio-Rad Laboratories, Hercules,
United States). Anthrone colorimetric approach was used to
assess carbohydrate and protein content of the supernatants
using a Hach model DR 2800 spectrophotometer, glucose, and
serum albumin were used as the standard for carbohydrate and
protein.

Ge and Champagne (2016) methods were used to assess
lipid content. Briefly, the microalgal suspension was
harvested via centrifugation (4°C, 5000 rpm, 10 min), the
bio-mass was washed twice with distillery water, and then
oven-dried overnight at 60°C. A 0.1 g dry biomass of Chlorella
was immersed in 3 ml of distillery water and vortexed at
3,000 rpm for 30 s, then placed in a water bath at 90°C for
20 min. Methanol/chloroform (extraction solution) of a
proportion of 1:2 v/v was added after it attained room
temperature. The lipids of sample were extracted overnight
at room temperature after which, 1 ml of distillery water was
added. The organic phase was collected by centrifugation
(20°C, 10 min) and transferred into a pre-weighted dish.
The chloroform was evaporated at 50°C, and then the
extracted lipids were subjected to gravimetric analysis.

Nutrients Concentration and Removal
Efficiency
All samples were filtered through filter paper (0.22 μm,
Whatman) and analyzed for nutrients, TN, TP, and COD.
Macro and Micronutrients were tested by Qingdao Sci-tech
Innovation Quality Testing Co., Ltd. (China). Total Nitrogen
(TN), Total phosphorus (TP), and COD were determined every
3 days starting from the day of inoculation. Persulfate digestion
method and acid-persulfate digestion method were used for
analyzing TN and TP, respectively. COD concentration was
measured with a multi-functional water quality analyzer
(LIANHUA, 5B-3B, China).

Nutrient removal efficiency (%) is calculated by the Eq. 4.

Nutrient removal efficiency � (C0 − C1)
C0

× 100%, (4)

where C0 is the nutrient concentration of the influent and C1 is
the nutrient concentration of the effluent.

FAMEs Test and GC Analysis
A 0.1 g wet sample of Chlorella was hydrolyzed and methylated
with 2 ml of 100% acetyl chloride in 20 ml of methanol solution at
90°C (Ge et al., 2018). Then, filter the sample with filter paper
(90 mm, Whatman) by washing it with 10 ml of methanol. Next,
use a rotary evaporator to evaporate the methanol, and then add
10 ml of hexane and vortex the sample for 5 min. Use a glass
pipette (Fisherbrand™ Pasteur) to remove the hexane layer and
evaporate the hexane, and then analyze the recovered FAME by
gas chromatography (GC). Helium was used as a carrier gas. The
temperature of the injector and detector is 260°C. The FAME
peaks in the samples were identified by comparing their retention
times with those of the standards (Supelco TM 37 component
FAME mix, Sigma-Aldrich).

RESULTS

Microalgae Growth
C. vulgaris was cultivated in MTDW and BG11 (control) under
30°C, 4,000 lx, 40% Vinoculation/Vmedia growth condition for
15 days to assess biomass and biomass productivity. The growth
curve of C. vulgaris was shown in Figure 1A. The algal biomass in
MTDW and control are 0.65 g L−1 and 0.26 g L−1 with biomass
productivity of 0.04 g L−1 d−1 (MTDW) and 0.02 g L−1 d−1 (control)
respectively, after 15 days. This result was totally higher than the
results obtained by Tan et al. (2018). The study showed maximum
Chl-a (see Figure 1B) content in both the MTDW and the control
with 6.48 ± 0.67 mg L−1 and 1.80 ± 0.65mg L−1 on day 14 and day 8
respectively. However, both media showed a decreasing trend in
Chl-a, with 5.73 ± 0.94 mg L−1 and 0.76 ± 0.16mg L−1 at the end of
the cultivation period. Both treatments showed totally different
growth patterns. The MTDW experienced a lag phase between
day 1 and 2, and the exponential growth phase was experienced in
day 3 and lasted for 14 days. The stationary phase set in toward the
end of the cultivation period as the nutrient concentration
diminished. The control showed steady growth throughout the
cultivation period. The lag phase lasted for a day whiles
exponential growth begun on the third day and lasted up to day 14.

Biochemical Composition of C. vulgaris
Cultivated in MTDW and BG11 Media
Table 1 depicts the biochemical composition ofC. vulgaris biomass
cultivated in MTDW and control (BG11) at the end of the
treatment. As the results showed, MTDW demonstrated 2-fold
higher protein content than the control. The MTDW recorded
49.6 ± 1.4% protein content compared to 22.4 ± 2.3% of the control
medium. And 26.1 ± 0.6% and 29.9 ± 1.1%, and 10.4 ± 1.8% and
16.2 ± 0.4% of carbohydrate and lipids for MTDW and the control
respectively. Compared with the control, the reason for the lower
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carbohydrate and lipid content in MTDW may be related to the
light intensity. This is in agreement with a similar result obtained
by Qiu et al. (2019). It is however clear that MTDW can promote
protein production in C. vulgaris than BG11 medium. This result
was slightly higher than that of Miao et al. (2016). It is documented
that higher nitrogen content induces algae growth that could lead
to accumulation of amino acid (Martínez et al., 2000). C. vulgaris
showed higher biomass growth in MTDW than BG11 which
translated into higher protein production.

The amino acid content and composition were analyzed in
MTDW and BG11 at the end of the cultivation. As shown in

Table 2, all tested amino acids in the MTDW group were higher
than those in the control group.

GC analysis of fatty acid composition C. vulgaris in both
MTDW and the control are shown in Table 3. The contents of
Myristic Acid, Palmitic Acid, Margaric Acid, Oleic Acid, Linoleic
Acid, Erucic Acid, and 11,14,17-Eicosatrienoic Acid in the MTDW
group were lower than those in the control group, and the contents
of Palmitoleic Acid, Stearic Acid, Arachidonic Acid, and
α-Linolenic Acid were higher than those in the control group.
Pentadecanoic Acid, γ-Linolenic Acid, Behenic Acid, Arachidonic
Acid, 13-16-Docosadienoic Acid, Lignoceric Acid, and 15-
Tetracosenoic Acid were similar in both MTDW and the control.

MTDW Treatment Using C. vulgaris
TN, TP, and COD Removal
The concentration of TN, TP, and COD were presented in
Figure 2. Nitrogen, is the main component of algal proteins
and enzymes catalyst, and are responsible for microalgae

FIGURE 1 | The dry weight (A) and Chl-a content (B) of C. vulgaris in the MTDW group and BG11 group.

TABLE 1 | Biochemical compositions of C. vulgaris cultivated in MTDW and
BG11.

Composition (%) MTDW Control

Protein 49.6 ± 1.4 22.4 ± 2.3
Carbohydrate 26.1 ± 0.6 29.9 ± 1.1
Lipid 10.4 ± 1.8 16.2 ± 0.4

TABLE 2 | Amino acids compositions and contents (g/100 g dry biomass) of C.
vulgaris cultivated in MTDW and BG11.

Amino acids MTDW BG11

Aspartate 3.30 2.535
Threonine 1.15 0.75
Serine 1.55 0.85
Glutamate 6.90 4.67
Glycine 3.16 2.31
Alanine 4.16 3.350
Valine 2.89 2.30
Isoleucine 2.12 1.40
Leucine 4.25 3.48
Tyrosine 1.29 0.50
Phenylalanine 2.14 1.35
Lysine 4.46 3.345
Histidine 1.04 0.61
Arginine 5.92 3.900
Proline 2.49 1.21

TABLE 3 | Fatty acid compositions and contents (g/100 g dry biomass) of C.
vulgaris cultivated in MTDW and BG11.

Fatty acid MTDW BG 11

Myristic Acid (14:0) 0.11 0.14
Pentadecanoic Acid (15:0) 0.001 0.001
Palmitic Acid (16:0) 0.139 0.312
Palmitoleic Acid (16:1) 0.012 0.03
Margaric Acid (17:0) 0.001 0.031
Oleic Acid (18:1) 0.43 0.80
Stearic Acid (18:0) 0.016 0.013
Linoleic Acid (18:2, ω-6) 0.137 0.169
Arachidonic Acid (20:0) 0.044 0.036
γ-Linolenic Acid (18:2) 0.003 0.003
α-Linolenic Acid (18:3) 0.249 0.218
Behenic Acid (22:0) 0.004 0.004
Erucic Acid 0.068 0.078
11,14,17-Eicosatrienoic Acid (20:5 ω-3) 0.043 0.053
Arachidonic Acid 0.002 0.002
13-16-Docosadienoic Acid (22:6, ω-3) 0.003 0.003
Lignoceric Acid 0.004 0.004
15-Tetracosenoic Acid 0.002 0.002
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growth, photosynthesis and metabolism (Kong et al., 2021). The
study showed 80% TN removal efficiency. However, the highest
removal rate was observed on the exponential growth phase. This
coincides with a study reported by Iasimone et al. (2018).

Phosphorus is another key element for microalgae growth
and other cellular activities (energy transfer and biosynthesis of
nucleic acids) (Kong et al., 2021). Affected by the utilization of
C. vulgaris, TP concentration decreased steadily within the first
12 days until stable on day 15. Affected by C. vulgaris, 94% TP
removal efficiency was recorded at the end of cultivation period.
Based on the results, phosphorus (TP) removal could directly be
affected by C. vulgaris growth due to culture conditions. Asian
and Kapdan (2006) reported 78% phosphate removal efficiency
for C. vulgaris cultivation at 7.7 mg L−1 initial concentration,
less than 30% removal efficiency at higher concentration, this is
clear that cultivation conditions of microalgae could affect
phosphorus removal efficiency.

COD concentration (Figure 2C) varied during the period of
measurement. There was a slide increase in concentration on day
6 and day 9. Again, the highest COD removal was recorded at the
exponential growth phase of C. vulgaris with 72.24% removal
efficiency. It was observed from the results that COD in MTWD
was effectively utilized by C. vulgaris.

Macro and Micronutrient Removal
As shown in Table 4, at the end of the cultivation period,
removal efficiency obtained for macronutrients ranged
between 3.92 and 100% compared to 15.56–42.86% for
micronutrients. Ca2+ reduced from the initial
concentration of 0.01 mg L−1 to 0.00 mg L−1 in MTDW
with a removal efficiency of 100%. The concentration of
Mg2+ reduced from 18.8 mg L−1 to 2.75 mg L−1, and the
removal efficiency reached 85.37%. The concentration of
Na+ and K+ decreased from 269 mg L−1 to
1,020 mg L−1–253 mg L−1 and 980 mg L−1, and the
corresponding removal efficiencies were 5.59 and 3.92%,
respectively. For micronutrients, Mo2- had the highest
removal efficiency of 42.86%, and the concentration
reduced from 0.07 mg L−1 to 0.04 mg L−1. Followed by
As3+, B−, and Pb2+, their concentrations were reduced
from 0.03 mg L−1, 0.30 mg L−1, and 0.03 mg L−1 to
0.02 mg L−1, 0.20 mg L−1, and 0.02 mg L−1, respectively, and
the corresponding removal efficiencies were all 33.3%. The
concentration of Cu2+ and Fe3+ in MTDW decreased from the
initial 0.18 mg L−1 and 1.80 mg L−1 to 0.13 mg L−1 and
1.52 mg L−1, and the removal efficiency reached 27.78 and
15.56%, which were lower than other micronutrients. In

FIGURE 2 | The changes in TN (A), TP (B), and COD (C) concentration of MTDW group.

TABLE 4 | Macro/micro nutrient concentrations and RE values in MTDW.

Nutrient Initial concentration (mg L−1) Final concentration (mg L−1) Removal efficiency (%)

Macro
Na+ 269 253 5.23
K+ 1,020 980 3.92
Ca2+ 0.01 0.00 100
Mg2+ 18.8 2.75 85.37

Micro
Fe3+ 1.8 1.52 15.56
Zn2+ nd nd
Mn2+ nd nd
As3+ 0.03 0.02 33.33
B− 0.3 0.2 33.33
Mo2− 0.07 0.04 42.86
Pb2+ 0.03 0.02 33.33
Cu2+ 0.18 0.13 27.78

nd: not detected.
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addition, Zn2+ and Mn2+ were not detected in this
experiment.

DISCUSSION

Microalgae is a single-cell bioreactor driven by sunlight that
converts carbon dioxide into potential proteins, lipids,
carbohydrates, and high-value biological compounds, in the
presence of a sufficient amount of nitrogen, phosphorous, and
some trace elements. By 2024, the overall market potential of
algae-based products expected to reach approximately USD
1.143 billion (Mehta et al., 2018). Meanwhile, the viable market
potential of microalgae in the phytoremediation of wastewater
and biofuels is currently increasing (Mustafa et al., 2021).
Wastewater treatment with microalgae has been considered an
environmentally sound bioremediation method and applied
for more than 60 years (Jing et al., 2007). Many microalgae can
grow effectively under wastewater conditions by utilizing the
rich inorganic nitrogen and phosphorus in wastewater, such as
Desmdesmus sp. (Benítez et al., 2018), Scenedesmus sp. (Han
et al., 2020), Acutodesmus dimorphus (Chokshi et al., 2016), C.
vulgaris (Lv et al., 2018; Mujtaba et al., 2018), and so on. Due to
its rich in protein and other nutrients, bio-safety, and the
feasibility of large-scale outdoor cultivation and maintenance,
Chlorella has become one of the most in-depth studies of
microalgae in biomass production and wastewater treatment
(Liu and Chen, 2014). Previous studies have shown that
Chlorella can grow and produce biomass in wastewater such
as urban wastewater (Tercero et al., 2014), domestic
wastewater (Aziz and Ng, 1992), textile wastewater (Chu
et al., 2009), piggery wastewater (Ji et al., 2012), etc. Our
study showed that cultivating Chlorella with MTDWwas also a
feasible strategy.

Although Chlorella is easily adaptable to different
wastewater media, the nutrients in the wastewater
significantly affect the growth of microalgae and the
production of biomass (Cai et al., 2013). When wastewater
is used as a nutrient source for wastewater-based microalgae
cultivation, carbon: nitrogen (C: N) and carbon: phosphorus
(C:P) ratios could be considered (Chiu et al., 2015). Lee and
Lee (2002) pointed out that Chlorella kessleri culture could
successfully remove high concentrations of nitrogen from
wastewater supplemented with glucose, indicating that
sufficient carbon source supply was beneficial to the
utilization of nitrogen and phosphorus. Chui et al. (2015)
suggested that the carbon limitation in wastewater could be
overcome by adding waste CO2, such as flue gas. In addition,
the typical N/P ratio for the optimal conditions for microalgal
biomass production is 8:1 (Chui et al., 2015). However, the N/P
ratio of MTDW is close to 5:2, which means that the nitrogen
source in the wastewater would be another limiting factor for
microalgae growth. According to Chiu et al. (2015), the
biomass productivity of Chlorella in different wastewater
ranged from 0.029 g L−1 d−1 to 0.64 g L−1 d−1. In contrast,
0.04 g L−1 d−1 biomass productivity of Chlorella cultured in
MTDW is not high, indicating that the use of MTDW to

cultivate Chlorella to produce biomass still has much room for
improvement.

Due to microalgae can use nutrients in wastewater to
promote their growth, microalgal are particularly useful for
reducing the concentration of inorganic nitrogen and
phosphorus of wastewater (Ahluwalia and Goyal, 2007).
Previous studies have shown that Chlorella has a very
significant removal effect on nitrogen, phosphorus, and COD
in different wastewater (Lam et al., 2017; Benítez et al., 2018; Lv
et al., 2018; Mujtaba et al., 2018). However, the nutrient
concentration of wastewater from different sources is
different, which has a direct impact on the removal of
nutrients. Kumar et al. (2019) reported that the nitrogen
removal efficiency of Chlorella in sewage wastewater (38%)
was lower than that of kitchen wastewater (67%), while the
removal efficiency of phosphorus (88%) is higher than that of
kitchen wastewater (75%). In this study, the removal rate of TP
inMTDW by Chlorella reached 94%, the removal rate of TN was
80%, and the removal rate of COD exceeded 70%. These results
indicate that Chlorella was very effective in MTDW treatment to
reduce the organic and inorganic nutrients released into natural
water, thereby preventing eutrophication problems.

Many studies have shown that utilizing microalgae could
effectively remove metal elements from wastewater
(Cabanelas et al., 2013; Cho et al., 2013; Zhu et al., 2013).
Some metal ions can be attached to the cell surface through
one or more surface complexation, ion exchange, and redox
(Sheng et al., 2004; Vinod et al., 2010). Biosorption also
involves cell metabolism and other processes, during which
metal ions enter the cell through metal transporters, and are
finally stored in vacuoles or organelles (Mehta and Gaur, 2005;
Flórez-Miranda et al., 2017). Chlorella has been reported to
remove many metals from wastewater, including Al, Ca, Cd,
Cu, Fe, Mg, Mn, Ni, Ur, and Zn (Sandau et al., 1996; Lau et al.,
1999; Chong et al., 2000; Mehta and Gaur, 2001; Mehta and
Gaur, 2005; Wang et al., 2009). Similar to previous studies’
conclusions, our study shown that Chlorella could effectively
remove Ca, Mg, Mo, Fe, As, B, Pb, and Cu in distillery
wastewater.

Cultivation of microalgae in large quantities is challenged
by the high cost of nutrients and freshwater. According to
(Kadir et al., 2018), the cultivation of microalgae in wastewater
is an alternative way of overcoming the current high cost of
microalgae cultivation. Slade and Bauen (2013) estimated
more than 50% reduction in production cost by cultivation
microalgae in wastewater as a nutrient, CO2 and freshwater
source. The composition of MTDW is stable and could be used
for Chlorella cultivation without complicated treatment,
which can effectively reduce the cost of Chlorella
cultivation. On the other hand, Chlorella can remove
nutrients, organic matter, and metals from MTDW. These
substances may lead to the destruction of the aquatic
environment causing eutrophication, affecting human
health and recreational activities (Stutter et al., 2018). In
addition, because biomass is rich in protein and fatty acids,
C. vulgaris could be cultivated in MTDW as a high-quality
protein source in aquaculture.
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CONCLUSION

The growth and biochemical composition of C. vulgaris
cultivated in MTDW and nutrients removal efficiency from
the wastewater were analyzed. After cultivated 15 days in
MTDW, 0.65 g L−1 algal biomass with biomass productivity
of 0.04 g L−1 d−1 were obtained. The protein content,
carbohydrate, and lipids reached 49.6 ± 1.4%, 26.1 ± 0.6%,
and 10.4 ± 1.8%, respectively. 94% of phosphorus and 80% of
nitrogen were removed from MTDW, and the removal
efficiency of COD reached 72.24%. In addition, there was
the highest removal efficiency of Ca2+ in MTDW with
recording a 100%. Followed by Mg2+, an 85.37% removal
efficiency was reached. The removal efficiency of other
nutrients Na+, K+, Fe3+, As3+, B−, Mo2-, and Cu2+ obtained
ranged 3.92–42.86%. This study proved that it was feasible to
cultivate Chlorella with MTDW and represented an economical
and environmentally friendly Chlorella cultivation strategy.
There appears to be a great potential for Chlorella in the

area of tertiary distillery wastewater treatment. The feasibility
of applying it to full-scale requires further research in culture
strategy to maximize biomass production and improve the
removal efficiency of nutrients in wastewater.
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