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A large body of evidence suggests that the physical and chemical characteristics of the
sediment in lakes that have undergone eutrophication have been significantly altered.
However, the effects of alterations in sediments on submersed macrophytes remain
unknown. In this study, we present the results of an outdoor experiment that examined
how the growth and anchorage of the widespread submersed macrophyte Myriophyllum
spicatum L. responded to the enrichment of organic matter in the sediments and whether
water depth affects these responses. We found that low levels of enrichment with organic
matter (≤7%) enhanced the growth of M. spicatum. In contrast, high levels of enrichment
with organic matter (from 12 to 18%) slightly inhibited its growth. Although the anchorage
force ofM. spicatum slightly decreased with an increase in the content of organic matter in
the sediment, it was much higher than the hydraulic drag force on plants at a relatively high
current velocity, indicating that the plants were unlikely to be uprooted in these sediments.
The water depth did not alter the responses of growth and anchorage of M. spicatum to
enrichment with organic matter. Our results suggest thatM. spicatum could be a potential
species to restore eutrophic lakes, since it can grow well and anchor stably in sediments
with relatively high organic matter and manage low light stress.

Keywords: eutrophicaion, submersed macrophyte, organic matter enrichment, sediment phosphorous, lake
restoration

INTRODUCTION

Submersed macrophytes are highly important for stabilizing the function and structure of freshwater
ecosystems, particularly in shallow lakes (Hilt et al., 2017; Lurig et al., 2021). A high coverage and
diversity of submersed macrophytes can provide positive feedback for the provision of clear water
and enhance the biodiversity of shallow lakes (Scheffer et al., 1993; Law et al., 2019). Recent evidence
points toward a progressive loss of submersed macrophytes during the process of lake eutrophication
(Sand-Jensen et al., 2000; Zhang et al., 2017). This deterioration has primarily been attributed to an
increase in the attenuation of light by phytoplankton and epiphytes following nutrient enrichment in
the water column (Phillips et al., 2016). A large body of evidence suggests that the physical and
chemical characteristics of the sediment had also been substantially altered as the lakes eutrophied
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(Van Der Molen et al., 1998; Sand-Jensen et al., 2005; Hobaek
et al., 2012), whichmay have a strong influence on the growth and
community structure of submersed macrophytes (Barko et al.,
1991; Raun et al., 2010; Bornette and Puijalon, 2011; Xie et al.,
2013; Li et al., 2015). However, the effects of alteration of
sediments on submersed macrophytes are still largely unknown.

One significant change in sediment with eutrophication is that
the content of organic matter increased as a result of the turnover
of the thriving macrophytes and sedimentation of organic particles
from the production of phytoplankton (Sand-Jensen and Møller,
2014). Previous studies found that submersed macrophytes benefit
from the enrichment of organic matter at low levels in the
sediment, since the decomposition of organic matter can
increase the concentration of nutrients in pore water (Silveira
and Thomaz, 2015). However, at high levels, submersed
macrophytes may suffer anaerobic and phytotoxic effects
induced by organic matter (Wu et al., 2009; Pulido et al., 2011).
In addition, an increase in the organic matter in sediment can
reduce the strength of submersed macrophytes to anchor, and thus
enhance their risk of uprooting (Sand-Jensen and Møller, 2014).

The depth of water has a profound impact on the growth of
submersed macrophytes and their allocation and morphology (Fu
et al., 2012; He et al., 2019). Previous studies found that water depth
can alter the responses of submersed macrophytes to other
stressors (Xiao et al., 2007; Xu et al., 2016). For example, Xu
et al. (2016) reported that the water depth, substrate type, and wave
exposure had extremely significant joint influences on the growth
and morphology of Vallisneria natans. The negative influence of
high water levels on submersedmacrophytes may be aggravated by
decreased belowground growth under high water levels, exposure
to high waves, and high nutrient conditions (Xu et al., 2016).
However, whether the water depth affects the responses of the
growth and anchorage of submersed macrophytes to sediment
enriched in organic matter remains unclear.

In this study, we aimed to investigate how the submersed
macrophyte growth and anchorage responded to the enrichment
of organic matter in the sediment and whether water depth affects
these responses. To answer these questions, we conducted an
outdoor experiment in which we evaluated the response of the
widespread submergedmacrophyteMyriophyllum spicatum L. to the
individual and combined effects of water depth and enrichment of
organic matter in the sediment. We hypothesized the following: 1)
Low levels of enrichment in organic matter in the sediment would
enhance the growth of the plant, while high levels of organic matter
would inhibit the plant growth. 2) The anchorage force would
decrease with an increase in the content of organic matter in the
sediment. 3) The negative effects of high content of organic matter
on the plant would be stronger in deep water than shallow ones,
since the plant may allocate more resources to the elongation of
shoots at deeper sites.

MATERIALS AND METHODS

Plant Species
M. spicatum is a rooted submersed aquatic plant that forms
canopies. It has spread from its native Eurasia to become an

invasive plant worldwide (Aiken et al., 1979). This species occurs
at a wide range of water and sediment conditions (Sondergaard
et al., 2010; Su et al., 2019), and the plant strongly
morphologically and physiologically responds to changing
environmental conditions, such as variations in temperature,
light, nutrients, and dissolved inorganic carbon availability
(Strand and Weisner, 2001; Wang et al., 2008; Hussner and
Jahns, 2015; Hussner and Heidbuchel, 2021).

Experiment Establishment
A two-by-five factorial design experiment was conducted with two
levels of water depth and five levels of the addition of organic matter
to the sediment. Each treatment included seven replicates. The
experiment was performed using a concrete pond (length 6m ×
width 4m × depth 1.6 m) located outdoors at the Biological Gardens
of Nanchang University (Nanchang, China) (28°39′ N, 115°48′ E)
and filled with tap water. No further water was added after the
beginning of the experiment (except for precipitation). Sediment was
collected from Poyang Lake, air-dried, and mixed. The contents of
total nitrogen (TN), total phosphorus (TP), and organic matter in
the sediment were 0.54 ± 0.02 g kg−1g, 0.25 ± 0.01 g kg−1, and 0.81 ±
0.01% dry weight (dw), respectively. A gradient of 4, 8, 12, and 16%
dry weight treatments of organic matter were produced by adding
commercial peat soil (Compo, Germany) to the lake sediment. Lake
sediment without the addition of organic matter was used as control.
Three sediment samples were taken randomly from each gradient to
analyze the actual initial organic matter and contents of TN and TP.
Three healthy and clean apices of M. spicatum (15 cm in length)
were planted in each pot (diameter � 15 cm, height � 10 cm) filled
with 8 cm of sediment. Ten plant apices of similar sizes were
randomly selected to determine their initial dry weight. Half of
the pots were placed at 0.8 mwater depth on a steel frame submersed
in the pond water. The other pots were placed on the bottom of the
pond (without sediment). The pots just covered 5% area of the pond,
and the volume of the sediment was only 0.25% of the water; thus,
the dissolved organic matter release from the sediment would not
strongly influence the plant performance.

Monitoring
Three sites were established to monitor the water parameters in
the pond. Two of the sites were next to the middle of the long
sides, while one was beside the middle of the short side. The
concentration of phytoplankton chlorophyll a (chl-a) and water
temperature in the pond were measured weekly using a BBE algae
analyzer (AlgeaTorch, Moldaenke, Germany). Dissolved oxygen,
pH, and conductivity were measured weekly at 10 cm below the
water surface using a multiparameter water quality instrument
(HI9829, Hanna, Italy). Photosynthetically active radiation
(PAR) was measured weekly at intervals of 0.5 m water depth
from the subsurface to 1 m of the water column using a Li-COR
UWQ-9525 sensor coupled with a Li-1500 data logger (LI-COR,
Lincoln, NE, United States). The attenuation coefficient of light
(K) in the water column was calculated based on the PAR at
different depths as described by Duarte et al. (1986). Water
samples were collected from the pond biweekly to analyze the
levels of TN, TP, ammonium nitrogen (NH4

+-N), and nitrate
nitrogen (NO3

−-N). Samples filtered through Whatman GF/C
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glass fiber filters were used to determine the amount of NH4
+-N

using Nessler’s reagent colorimetric method and NO3
−-N using

ultraviolet spectrophotometric methods (State Environmental
Protection Administration of China, 2002). TP and TN were
analyzed from unfiltered water using the ammonium molybdate
spectrophotometric method after digestion with K2S2O8 solution
and the ultraviolet spectrophotometric method after digestion
with K2S2O8 and the addition of HCl (State Environmental
Protection Administration of China, 2002), respectively.

Plant Harvest and Anchorage Force
Measurement
The experiment ended when some of the plants at 0.8 m deep
reached the water surface. The duration of the experiment was
fromAugust 25, 2019, to October 9, 2019, a period of 45 days. The
plant height and anchorage force were measured immediately
when the pots were removed from the pond. The anchorage force
was measured by wrapping a cotton rope around the stem just
above the sediment, connecting it via a metal string to a digital
force gauge and gradually increasing the pull until the plant was
dislodged (Sand-Jensen and Møller, 2014). The maximum pull
registered by digital force gauge was registered as the anchorage
strength. A few measurements were discarded where the plant
broke. The plant shoots and roots of each pot were collected and
then dried at 60°C for 48 h for dry weight measurements. The
plant relative growth rate (RGR) was calculated as follows:

RGR � ln(Wt/W0)/t,
where W0 is the initial dry weight ofM. spicatum (g), Wt is the

dry weight (including shoots and roots) ofM. spicatum at the end
of the experiment (g), and t is the duration of experiment (days).

Calculation of Hydraulic Forces
To evaluate whether the plant will be uprooted in lakes, we
calculated the hydraulic force (F) onM. spicatum as described by
Schutten and Davy (2000):

F � A×biomass×velocity1.5, where A is a species-specific factor
that incorporates the roughness that arises from shoot geometry
and surface characteristic. In this study, we used the species-
specific factor A � 2564 for M. spicatum delineated by Schutten
and Davy (2000) and the velocity � 0.6 m s−1 as described by
Schutten et al. (2005). This value of velocity was relatively high
compared with that in lakes under normal conditions (Schutten
et al., 2005; Qin et al., 2007), but it may occur in extreme
conditions, such as during a storm (Schutten et al., 2005).

Sediment and Plant Sample Analyses
The contents of TN, TP, and organic carbon (OC) of the sediment
taken at the beginning of the experiment were analyzed using
standard methods (Shi, 1994), i.e., the K2Cr2O7–H2SO4 oxidation
method for OC, the Kjeldahl acid-digestion method for TN, and
the molybdenum blue colorimetric method for TP. The total
organic matter of the sediment was determined by multiplying
OC with Van Bemmelen’s factor of 1.724. At the end of the
experiment, sediment samples were taken from each pot to
analyze the water content and dry density analysis as
described by Barko and Smart (1986). The contents of C, N,

and P of M. spicatum shoots were analyzed after being ground
into powder as described above.

Data Analyses
The relationship between TN, TP, water content along with the
density, and the content of organic matter in the sediment was
examined using linear regression analyses to assess the effects of
addition of organicmatter on the characteristics of the sediment. The
effects of water depth, enrichment in organic matter, and their
interaction on the sediment and plant parameters were tested using
two-way analyses of variance (ANOVAs). GAMs (generalized
additive models) were used to fit the relationship between the
content of organic matter and plant parameters at 0.8 and 1.6 m,
respectively. GAMs were also used to fit the relationship between
shoot N, shoot P, and the plant RGR. The GAMs were constructed
with the function “gam” in package “mgcv” using penalized
regression splines as the smoothing function, Gaussian error
distribution, and automatic calculation of smoothing parameters.
All the analyses were performed in R (R Core Team, 2020). The
results were considered to be significant at p < 0.05.

RESULTS

Water Characteristics in the Pond
The water conditions were suitable for the growth of submersed
macrophytes. There were low concentrations of water nutrients,
resulting in a low abundance of phytoplankton and high
transparency in the pond (Table 1). The warm temperatures
were beneficial to plant growth (Table 1). In addition, warm
temperatures can maintain high levels of decomposition of the
organic matter in the sediment, which is crucial to properly
evaluate the addition of organic matter on the growth of
submersed macrophytes.

Effects of the Addition of Organic Matter on
the Sediment Characteristics
Both the TN and TP of the sediment increased linearly as the
content of organic matter increased (Figures 1A,B; R2 � 0.992,
p < 0.001 for N and R2 � 0.973, p � 0.001 for P). The addition of
organic matter had strong effects on the water content of the
sediment (Table 2, p < 0.001) and sediment density (Table 2, p <
0.001). With the addition of organic matter, the mean water
content of sediment increased from 36 to 71% (Table 3,

TABLE 1 | Physical, chemical, and biological parameters of water in the pond
during the experiment.

Parameter Mean ± SD Parameter Mean ± SD

TN (mg L−1) 0.387 ± 0.226 Conductivity (μs cm−1) 167.97 ± 15.58
TP (mg L−1) 0.030 ± 0.012 DO (mg L−1) 10.28 ± 1.86
NH4

+-N (mg L−1) 0.073 ± 0.028 Temperature (°C) 29.21 ± 2.82
NO3

−-N (mg L−1) 0.281 ± 0.240 Chlorophyll-a (μg L−1) 3.58 ± 1.83
pH 9.48 ± 0.51 K 0.012 ± 0.002

TN, total nitrogen; TP, total phosphorous; DO, dissolved oxygen; K, light attenuation
coefficient.
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Figure 1C), whereas the mean sediment density decreased from
0.99 g cm−3 to 0.30 g cm−3 (Table 3, Figure 1D).

Effects of Water Depth and the Addition of
Organic Matter on Plant Growth
There was no interactive effect of water depth and organic matter
addition on the plant growth parameters with the exception of the

root biomass (Table 2; p � 0.947 for the relative growth rate, p �
0.584 for shoot biomass, p � 0.430 for plant height and p � 0.021 for
root biomass). The water depth had no effect on the plant RGR
(Table 2; p � 0.165) and shoot biomass (Table 2; p � 0.163), whereas
the effect on plant height was significantly positive with much taller
plants at a depth of 1.6 m compared with those at a depth of 0.8 m
(Table 2, Figure 2D; p < 0.001). The plant RGR increased in parallel
with the content of organic matter of the sediment from 0.81 to

FIGURE 1 |Relationship between the sediment organic matter and (A) sediment total nitrogen (N), (B) sediment total phosphorous (P), (C) sediment water content,
and (D) sediment density. The lines are predicted by linear models. The points of 1.6 m water depth were moved 0.6% to the right to avoid overlapping.

TABLE 2 | Results of two-way ANOVAs for water depth and the addition of organic matter on sediment and plant parameters.

Water depth (A) Organic matter (B) A×B

df F p df F p df F p

Sediment water content 1 68.4 <0.001 4 837 <0.001 4 51.6 <0.001
Sediment density 1 3.74 0.058 4 222 <0.001 4 38.2 <0.001
Relative growth rate 1 1.98 0.165 4 9.92 <0.001 4 0.18 0.947
Shoot biomass 1 2.01 0.163 4 8.27 <0.001 4 0.72 0.584
Root biomass 1 3.04 0.087 4 8.02 <0.001 4 3.16 0.021
Plant height 1 193 <0.001 4 9.99 <0.001 4 0.97 0.430
Shoot C 1 11.6 0.001 4 1.16 0.340 4 4.60 0.003
Shoot N 1 26.2 <0.001 4 2.63 0.045 4 0.58 0.675
Shoot P 1 13.6 0.001 4 228 <0.001 4 1.73 0.157
Shoot C:N 1 34.6 <0.001 4 3.38 0.016 4 1.73 0.158
Shoot C:P 1 26.7 <0.001 4 217 <0.001 4 0.31 0.871
Shoot N:P 1 0.00 0.985 4 260 <0.001 4 3.03 0.026
Anchorage force 1 0.05 0.828 4 1.37 0.256 4 0.45 0.770

C, carbon; N, nitrogen; P, phosphorous.
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7.29% and tended to slightly decrease when the content of organic
matter in the sediment was higher at both water depths (Table 3,
Figure 2A; p � 0.001 for 0.8 m and p � 0.043 for 1.6 m). The plant
shoot biomass responded similarly to the content of organic matter
in the sediment with that of plant RGR (Table 3, Figure 2B; p �
0.013 for 0.8 m and p � 0.015 for 1.6 m). The plant height increased
in parallel with that of organic matter in the sediment at the lower
end of the gradient at both water depths (Figure 2D, p � 0.008 for
0.8 m and p � 0.002 for 1.6 m). At higher levels of sediment organic
matter, the plant height was constant at a water depth of 1.6 m but
tended to decrease at a water depth of 0.8 m (Figure 2D, p � 0.008
for 0.8 m and p � 0.002 for 1.6 m).

Effects of Water Depth and the Addition of
Organic Matter on the Elemental Content of
Plant Shoots
There was no interactive effect between the water depth and the
addition of organic matter on the elemental content of the plant
shoots with the exception of the shoot C and shoot N:P ratio
(Table 2; p � 0.675 for shoot N, p � 0.157 for shoot P, p � 0.158 for
shoot C:N, p � 0.871 for shoot C:P, p � 0.003 for shoot C, and p �
0.026 for shoot N:P). The contents of shoot N and P of the plant
shoots were slightly higher at a water depth of 1.6 m than that at
0.8 m (Table 2, Figure 3 B, C; p < 0.001 for shoot N and p � 0.001
for shoot P). However, the shoot C, shoot C:N ratio, and shoot C:P
ratio were lower at a water depth of 1.6 m than that at 0.8 m
(Table 2, Figures 3A,D,E; p� 0.001 for shoot C, p < 0.001 for shoot

C:N, and p < 0.001 for shoot C:P). There was no significant effect of
water depth on the shoot N:P ratio (Table 2, p � 0.985). The
content of shoot C increased in parallel with an increase in the
content of organic matter at a water depth of 0.8 m, whereas it
showed an inverse trend at a water depth of 1.6 m (Table 3,
Figure 3A; p � 0.012 for 0.8 m and p � 0.050 for 1.6 m). The shoot
N content decreased with an increase in the sediment organic
content at a water depth of 0.8 m, while it remained unchanged at a
water depth of 1.6 m (Table 3, Figure 3B; p � 0.018 for 0.8 m and
p � 0.161 for 1.6 m). The content of shoot P rapidly increased in
parallel with that in the organic matter in the sediment up to 7.29%
but remained unchanged at greater values of organic matter at both
water depths (Table 3, Figure 3C; p < 0.001 for 0.8 m and p < 0.001
for 1.6 m). The shoot C:N ratio increased as the sediment organic
content increased at a water depth of 0.8 m, while it remained
constant at a water depth of 1.6 m (Table 3, Figure 3D; p � 0.003
for 0.8 m and p � 0.460 for 1.6 m). The shoot C:P and N:P ratios
decreased with an increase in the organic matter in the sediment
from 0.81 to 7.29%, but they remained unchanged at greater values
of organic content at both water depths (Table 3, Figures 3E,F, p <
0.001).

Relationship between the Shoot N, Shoot P,
and Plant Relative Growth Rate
The plant RGR decreased as the content of shoot N at a water
depth of 0.8 m, whereas there was no measurable significant
relationship between the plant RGR and the content of shoot

TABLE 3 | Relationship between the organic matter in sediments and plant traits and sediment parameters based on linear or generalized additive models.

Model Water depth N Df/edf F R2 p

Sediment N lm - 5 1 497 0.99 <0.001
Sediment P lm - 5 1 148 0.97 0.001
Sediment water content lm 0.8 32 1 156 0.83 <0.001

1.6 34 1 406 0.92 <0.001
Sediment density lm 0.8 32 1 133 0.81 <0.001

1.6 34 1 173 0.84 <0.001
Relative growth rate gam 0.8 31 3.35 6.93 0.44 0.001

1.6 33 2.30 3.69 0.21 0.043
Shoot biomass Gam 0.8 31 3.27 4.44 0.31 0.013

1.6 32 2.43 5.74 0.33 0.005
Root biomass Gam 0.8 29 3.35 7.18 0.47 0.001

1.6 33 1.48 3.77 0.19 0.026
Plant height Gam 0.8 33 2.56 4.72 0.30 0.008

1.6 33 3.57 5.93 0.38 0.002
Shoot C Gam 0.8 33 1.69 5.00 0.23 0.012

1.6 33 1 4.16 0.39 0.050
Shoot N Gam 0.8 31 1 6.32 0.15 0.018

1.6 29 1.78 1.92 0.11 0.161
Shoot P Gam 0.8 32 3.83 111 0.93 <0.001

1.6 32 3.95 132 0.94 <0.001
Shoot C:N Gam 0.8 32 1.27 9.97 0.29 0.003

1.6 28 1.63 0.83 0.03 0.46
Shoot C:P gam 0.8 32 3.69 87.4 0.92 <0.001

1.6 34 3.53 114 0.93 <0.001
Shoot N:P gam 0.8 32 3.78 150 0.95 <0.001

1.6 29 3.45 141 0.95 <0.001
Anchorage force lm 0.8 31 1 0.63 0.02 0.434

1.6 32 1 4.31 0.13 0.047

lm, linear model; gam, generalized additive model; C, carbon; N, nitrogen; P, phosphorous.
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N at a water depth of 1.6 m (Table 4, Figure 4A; p � 0.027 for
0.8 m and p � 0.237 for 1.6 m). The plant RGR increased when the
content of shoot P was as high as 4 mg g−1, while it remained
unchanged with a further increase in the content of P (Table 4,
Figure 4B; p � 0.007 for 0.8 m and p � 0.011 for 1.6 m).

Effects of Water Depth and the Addition of
OrganicMatter on thePlant AnchorageForce
Neither the water depth nor the addition of organic matter had an
effect on the plant anchorage force based on the two-way
ANOVA test (Table 2, p � 0.828 for water depth and p �
0.256 for organic matter addition), while the results of GAMs
suggested that the plant anchorage force decreased with the
content of organic matter in the sediment at a water depth of
1.6 m (Table 3, Figure 5A; p � 0.047). The plant anchorage force
was larger than the hydraulic forces in all the treatments. This
indicated that there was no risk of M. spicatum becoming
uprooted in these sediments when the current velocity was
below 0.6 m s−1 (Figure 5B).

DISCUSSION

Our findings revealed two important aspects with respect to how
the enrichment of organic matter in sediment affects the

submersed macrophytes. First, low levels of the enrichment of
organic matter in the sediment (≤7%) enhanced the growth ofM.
spicatum by increasing the supply of phosphorus, whereas high
levels of organic matter in the sediment inhibited its growth.
Second, although the anchorage forces of M. spicatum decreased
slightly as the amount of organic matter increased in the
sediment, they were much higher than the hydraulic drag
force on the plant at a relatively high current velocity.
Therefore, our results suggest that the risk of uprooting M.
spicatum is very low even in lakes that have high levels of
organic matter in their sediment. In contrast to our
hypothesis, the water depth did not alter the responses of
plant growth and root anchorage of M. spicatum to the
enrichment of organic matter.

Effects of the Addition of Organic Matter on
Plant Growth
The growth of M. spicatum benefited from the enrichment in low
levels of organic matter in the sediment. After a threshold of
organic matter was reached, the growth rate of M. spicatum
decreased. The optimum level of organic matter (≈7%) for the
growth of M. spicatum is consistent with that identified by Barko
and Smart (1986) and similar to that of Hydrilla verticillata
(Silveira and Thomaz, 2015). The mechanism behind the
enhancement of enrichment of organic matter on plant growth

FIGURE 2 | Relationship between sediment organic matter and (A) plant relative growth rate (RGR), (B) shoot biomass, (C) root biomass, and (D) plant height. The
lines are predicted by generalized additive models. The points of 1.6 m water depth were moved 0.6% to the right to avoid overlapping dw, dry weight.
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could be that the supply of phosphorus increased in parallel with
that of the organic matter in sediment. This is confirmed by the
results that the contents of shoot P in M. spicatum increased in
parallel with that in the content of organic matter (<7%), and the
growth rate of M. spicatum increased with the content of shoot P

(<4%). Richter and Gross (2013) also found that M. spicatum
grows poorly when the supply of phosphorus is low. However, the
positive effect of increased phosphorus supply was counteracted by
other stressors when the organic matter reached a high level. The
stressor was not likely to be the deficiency of nutrients in sediments

FIGURE 3 | Relationship between sediment organic matter and (A) shoot carbon (C), (B) shoot nitrogen (N), (C) shoot phosphorous (P), (D) shoot C:N ratio, (E) shoot
C:P ratio, and (F) shoot N:P ratio. The lines are predicted by generalized additivemodels. The points of 1.6 mwater depth weremoved 0.6% to the right to avoid overlapping.

TABLE 4 | Relationship between shoot nitrogen (N), phosphorous (P), and plant relative growth rate based on generalized additive models.

Predictor Water depth N Df/edf F R2 p

Relative growth rate N 0.8 30 1.18 4.37 0.17 0.027
1.6 28 1 1.46 0.02 0.237

P 0.8 31 2.04 5.60 0.31 0.007
1.6 31 2.11 4.58 0.29 0.011
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with a high content of organic matter as described by Barko et al.
(1991), since the shoot N and P of M. spicatum growing in
sediments with a high content of organic matter were
comparable to those growing in moderate ones. Instead, toxicity
or the anaerobic conditions induced by the high organic matter
may be responsible for the decrease in growth of M. spicatum
(Barko et al., 1991; Wu et al., 2009; Silveira and Thomaz, 2015).
However, we found that the growth rate ofM. spicatum was quite
high in our experiment even in the treatment with the highest
content of organic matter, indicating that M. spicatum has a high
tolerance to the enrichment of organic matter in the sediment. This
is consistent with the results of Lemoine et al. (2012), who found
thatM. spicatum can survive in anaerobic sediments and maintain
similar photosynthetic rates with those under aerobic conditions by
increasing their root porosity and radial loss of oxygen.

Effects of the Addition of Organic Matter on
Plant Anchorage
Anchorage in the sediment is crucial for the survival and growth
of submersed macrophytes in lakes (Schutten et al., 2005). The

enrichment in organic matter reduced the anchorage of roots of
submersed macrophytes by impairing root development and
reducing the cohesive strength of the sediment (Sand-Jensen
and Møller, 2014). In our study, the force of root anchorage
clearly showed a slight tendency to decrease with increasing
organic matter in the sediment as predicted at a water depth
of 1.6 m. The root anchorage force was primarily determined by
the size of plant root and the characteristics of the sediment
(Sand-Jensen and Møller, 2014). No significant reduction of the
root system in the sediment that contained a high content of
organic matter was observed in our experiment. Thus, the
reduction of anchorage force in the sediment that had a high
content of organic matter was primarily owing to falling mass
density and the falling cohesive binding between root surfaces
and the surrounding sediment (Sand-Jensen and Møller 2014).
Consistent with a previous study (Schutten et al., 2005), we
demonstrated that M. spicatum had a very low risk of
uprooting even in the sediment with the highest content of
organic matter (18%) in our experiment because the

FIGURE 4 | Relationship between (A) shoot nitrogen (N), (B) shoot
phosphorous (P), and the plant relative growth rate (RGR). The lines were
predicted by generalized additive models.

FIGURE 5 |Relationship between the sediment organic matter and plant
anchorage force (A). The lines are predicted by linear models. Anchorage
force minus hydraulic force (AF-HF) for the sediment with different organic
matter contents (B). The points of 1.6 m water depth were moved 0.6%
to the right to avoid overlapping.
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anchorage force of the plants was much higher than the hydraulic
force that the plant may be exposed in lakes (Schutten et al.,
2004).

Effects of Water Depth on the Response of
Plant Growth and Root Anchorage to
Enriched Organic Matter
Overall, the water depth did not alter the response of plant
growth and root anchorage to the enrichment of organic matter
in the sediment. M. spicatum elongated its shoots to avoid low
light stress and increased the contents of shoot N and P to
enhance the photosynthetic efficiency at high water depths,
which resulted in a similar biomass at the end of the
experiment. Similar responses to low light condition were
also identified in M. spicatum (Strand and Weisner, 2001)
and other canopy-forming species (He et al., 2018; He et al.,
2019). The canopy-forming species elongate their stems as a
major strategy to respond to low light conditions, which can
help these species to concentrate their leaves closer to the water
surface (He et al., 2019). Increased leaf chlorophylls at low light
conditions, which resulted in higher N and P contents in leaves
(He et al., 2018), could further enhance their ability to absorb
light (Strand and Weisner, 2001; Hussner and Heidbuchel,
2021). Interestingly, the plastic responses of M. spicatum to
low light stress did not weaken its ability to manage the stresses
induced by high organic matter in the sediment. Therefore, we
demonstrated that M. spicatum could maintain the ability to
assimilate and allocate the resources to both support growth and
resist the stress of enrichment of organic matter through
morphological and physiological adjustments in deep water.
The ability to tolerate high amounts of organic matter in the
sediment and effectively manage low light stress could be the
reason for the ability of this species to survive eutrophication in
lakes (Qiu and Wu, 1996; Cao et al., 2011).

In conclusion, our data showed that M. spicatum had a high
tolerance to the enrichment with organic matter and could

anchor without the risk of uprooting in sediments with a wide
range of organic matter content. In addition, M. spicatum can
effectively manage low light stress through morphological and
physiological adjustments. Thus, we suggest that M. spicatum
could be a potential species for the restoration of eutrophic lakes
since it can grow well and anchor stably in sediments with a
relatively high amount of organic matter and effectively manage
low light stress.
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