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Microplastics (MPs) and tetracycline (TC) are severe emerging pollutants in the aquatic
environment. But there is a lack of research to investigate the interactive effects of MPs
and TC in vivo. This study used Jian carp (Cyprinus carpio var. Jian) as the model organism to
explore the bioaccumulation and biochemical status when exposed toMPs and TC, alone and
combined. The accumulation of TC and MPs in intestine, variation of enzyme activities in
intestine, and expression of immune-related genes inmusclewere evaluated.Our results found
the bioaccumulation of MPs was not affected by TC, but the presence of MPs would change
the content of TC within 48 h. The superoxide dismutase (SOD) and lactate dehydrogenase
(LDH) activity showed that TC-MP combined exposure could reduce oxidative damage to Jian
carps compared to MP exposure alone. The integrated biomarker response (IBR) index
showed that SOD activity was sensitive to TC-MP exposure. In addition, co-exposure to MPs
and TC could alleviate the overexpression of interleukin 1 beta (IL-1β), interleukin 10 (IL-10),
transforming growth factor beta (TGF-β), and toll like receptor 2 (TLR-2) induced by TC in
muscles. TLR-2 gene has the potential to be the candidate gene reflecting the injury of TC
exposure. In conclusion, it is inferred that co-exposure may reduce the toxicity of individual
exposure in the living organisms. This study provides essential information for the risk
assessment of pollution with MPs and TC, individually and combined, as well as a
foundation to investigate the interactive effects of MPs and antibiotics on aquatic ecosystems.
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INTRODUCTION

Modern life seems to be inextricably linked to the use of plastics. Plastics have become an
indispensable solution to meet the ever-changing needs of society. Global production nearly
reached 370 million tons (Mts) in 2019 at an average annual rate of 3.1% (Plastics Europe, 2020).
However, the extensive use of plastics has given rise to millions of plastic wastes being discarded
into the environment (Cózar et al., 2014; Jambeck et al., 2015). Plastic pollution has been an
urgent challenge nowadays, which cause severe damage to various ecosystems, both directly and
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indirectly, especially as the main source of microplastics in
aquatic ecosystems and organisms (de Sa et al., 2018; Fu and
Wang, 2019; Jacob et al., 2020; Zhou et al., 2021). Microplastics
(MPs), originating from both primary and secondary sources,
are tiny plastic particles of less than 5 mm in size (Thompson
et al., 2004; Cole et al., 2011). They are not only ubiquitously
distributed in marine and freshwater ecosystems (Beaumont
et al., 2019; Sarijan et al., 2021), atmosphere (Zhang et al.,
2020a; Chen et al., 2020), and soil (He et al., 2018; Wang et al.,
2020) but also found in the most remote habitats (Morgana
et al., 2018). For example, 1,190 synthetic polymers <5 mm
from sea ice cores and 125 synthetic polymers from surface
water samples were detected in the Arctic Central Basin
(Kanhai et al., 2020). In China, MPs are pervasive in
surveyed freshwater environments, and the detected MPs
mainly show smaller size (<1 mm), fibers, and transparency
in freshwater ecosystems (Fu and Wang, 2019). Wright et al.
(2020) found that the atmospheric deposition rates of MPs in
atmosphere in central London were 771 ± 167 particles/m2/d,
and fibers were the overwhelming majority (Wright et al.,
2020). To sum up, MP pollution is drawing attention on a
global scale.

MPs may be ingested by various organisms because of their
small size and/or similar food shape, including fish (Jovanovic,
2017), shellfish (Ding et al., 2020), birds (Carlin et al., 2020), and
mammals (Hernandez-Gonzalez et al., 2018). Adverse effects
caused by MP ingestion on organisms have been extensively
demonstrated. For example, the activities of SOD and catalase
(CAT) in zebrafish were significantly increased by polystyrene
MP exposure, indicating that oxidative stress could be caused by
MPs (Lu et al., 2016). Further, if exposed to MPs at
environmentally relevant concentrations, marine medaka
(Oryzias melastigma) could delay gonad maturation, decrease
fecundity, and negatively regulate female HPG axis in female
fish (Wang et al., 2019). What is more, MPs can absorb many
other pollutants, potentially altering their environmental fate
and ecological impact, and producing multiple forms of toxicity
after being ingested (Barboza et al., 2018; Trevisan et al., 2019;
Zhou et al., 2020). Many studies have reported that owing to
their strong hydrophobicity and large specific surface area, MPs
can adsorb heavy metals (Brennecke et al., 2016; Mao et al.,
2020), polycyclic aromatic hydrocarbons (PAHs) (Kleinteich
et al., 2018; José and Jordao, 2020), polychlorinated biphenyls
(PCBs) (Llorca et al., 2020), pharmaceutically active compounds
(PHACs) (Li et al., 2018), and so on. For example, the existence
of MPs could influence the metabolism of roxithromycin (ROX)
in red tilapia (Oreochromis niloticus), but co-exposure mitigated
oxidative damage in fish livers (Zhang et al., 2019). Trevisan
et al. (2019) indicated that nanoplastics promoted the sorption
of PAHs from the exposure medium, increased the
agglomeration rate of nanoplastics, and decreased the
bioavailability and bioaccumulation of PAHs. Although
research on combined MPs and other contaminants is in
progress, reports about the interactive effects between MPs
and pharmaceutically active compounds (PhACs) is still
insufficient, due to the diversity of biological types and the
lack of standard dose of pollutants.

Tetracycline (TC) is one of the major categories in PhACs. As
an ionizable and polar antibiotic, TC plays an important role
preventing and treating diseases in livestock farming, although
most of it cannot be absorbed by livestock, thus draining into the
environment (Fu et al., 2021; Scaria et al., 2021). Our research
team previously found that the contents of tetracyclines were
significantly higher than that of sulfonamides in Guangdong
coastal areas, ranging from 0.26 to 81.54 ng/L (Xu et al.,
2019). Recent studies confirmed that MPs could adsorb TC on
the surface mainly through an ion exchange mechanism (Zhao
et al., 2021), owing to the surface properties of MPs and chemical
characteristics of the aqueous solution (Wan et al., 2019; Yu et al.,
2020). The depletion of the bees’ gut microbiota using TC
dramatically increased the lethality of MPs (Wang et al.,
2021). MPs compound with TC caused gastric cancer cell
damage under 24 h exposure (Yan et al., 2020). Oral exposure
to MPs and TC resulted in significant bioaccumulation of TC in
Enchytraeus crypticus, increased the anti-resistance gene (ARG)
diversity and abundances, and significantly perturbed the balance
of microbiome (Ma et al., 2020). However, the potential
toxicological impact and ecological risk of the combination of
MPs and TC, especially on vertebrates, still need further study to
be understood.

The present study aims to evaluate interactive effects of MPs
and TC on bioaccumulation and biochemical status in fish. In this
study, the common freshwater carp (Cyprinus carpio var. Jian)
was used as the model organism. Jian carp is the first artificially
bred aquatic species in China and has been an important
economic fish species cultured nationwide (Gu et al., 2015).
The effects of fluorescent polystyrene microplastics (PS-MPs;
average diameter: 5 μm; concentration: 700 μg/L) and TC
(concentration: 1 μg/L) were investigated. Selected materials
and concentrations were based on the results of our previous
experiment (unpublished data). The accumulations of TC and
MPs in intestine, variation of enzyme activities in intestine, and
expression of immune-related genes in muscle were evaluated.
Our results provide important information for the risk
assessment of pollution caused by MPs and PHACs on fish, as
well as form a foundation to investigate the interactive impacts of
MPs and antibiotics on aquatic ecosystems.

MATERIALS AND METHODS

Chemicals
The green fluorescent polystyrene microspheres (PS-MPs;
inspire: 488 nm, launch: 518 nm) with the average size of 5 μm
were bought from Da’E Scientific Co., Ltd. (Tianjin, China).
Fluorosphere dyes were contained in PS-MPs, rather than
adhere to the surface. Accordingly, the dyes of the potential
effects on experimental were negligible (Zhang et al., 2019). PS-
MPs were stored in the dark at 4°C and treated with ultrasound
before application. Tetracycline (TC; analytical grade; purity
>98%) was bought from Heowns Biochemical Technology Co.,
Ltd. (Tianjin, China) and stored in the dark at 4°C. The chemical
stock solution was prepared in ultrapure water with
concentration of 0.389 mg/ml.
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Animals and Exposure Test
Healthy Jian carp were bought from an aquafarm (Shunde,
Guangdong, China) and acclimated in 50 L glass aquariums in
College of Marine science, South China Agricultural University
for 2 weeks. Fishes were fed twice per day with 3–6% commercial
feeds of their body weight until 3 days before the start of the test.
During the experiment, MPs and TC were added according to the
experiment design in corresponding tanks. We set up the
following four experimental groups: the control group
(dechlorinated circulating water), TC exposure group (1 μg/L),
TC-MP exposure group (700 μg/L PS-MPs + 1 μg/L TC), and MP
exposure group (700 μg/L). The selected concentrations were
suitable for the detection of the variation of physiological and
biochemical indexes in fish and the minimum value for
instrument. In addition, our research team previously
investigated the contents of tetracyclines and MPs in the field
(Xu et al., 2019; Zhang et al., 2020b). The chosen concentrations
were based on our field investigation results and laboratory
simulation verification (Zhang et al., 2021). Aeration was set
in each experimental group to prevent the uneven distribution of
MPs and TC. After being starved, 120 carps (3.57 ± 0.25 cm in
body length, 0.96 ± 0.25 g in wet weight) were randomly placed in
four 50 L glass tanks containing 30 L test solutions (temperature
25.0 ± 2.0°C; pH 7.5 ± 0.3; dissolved oxygen >6.0 mg/L). During
the test, water was not changed.

After 48 and 96 h exposure, four fishes were taken from each
group and rinsed to remove surficial body particles. Three
replicates were performed for each treatment group. The
weight and length of sampled fish were measured and
recorded, then the fishes were sacrificed to recover the
intestine, liver, and muscle. The above processes were carried
out while the fish were anesthetized, and animal welfare was
considered. The sampled tissues of Jian carp were stored at –80°C
for further studies. The enteric samples were used for enzyme
activity assay and bioaccumulation measurements of MPs and
TC. The sarcous samples were used for the detection of
quantitative polymerase chain reaction (qPCR). Due to the
light weight of the liver, hepatic samples were synthesized to
detect the content of TC in each group.

Determination of PS-MP Concentration
The concentration of PS-MPs in intestinal samples was analyzed
according to Van Cauwenberghe and Janssen (2014) and Van
Cauwenberghe et al. (2015) with some slight modifications. To be
specific, intestine samples were weighted and digested in 1 ml
KOH (10%, v: v) at 60°C for 24 h. After complete digestion, 10 μl
digestion solution was added in the hemocytometer XB-K-25
(Shanghai Qiujing Biochemical Reagent Instrument Co., Ltd.)
and the number of MPs was counted under a polarizing
microscope (Model Eclipse E200; Nikon, Inc., Japan) equipped
with the MShot Image Analysis System 1.1.4. MP concentration
was expressed as the number of MPs per gram of intestinal wet
weight (particles/g).

Determination of TC Concentration
On the basis of Ding et al. (2016), a slight modification was made
to improve the method of sample preparation and extraction.

Specifically, each intestine and liver sample was homogenized
with 1.5 ml methanol in the high-throughput tissue grinder
(Shanghai Jingxin Industrial Development Co., Ltd.) at 4°C.
After centrifuging at 4,000 rpm for 15 min at 4°C, the
supernatant was transferred to a clean centrifuge tube for
analysis of TC concentration using an ultra-high-performance
liquid chromatography-tandem mass spectrometer (UPLC/MS/
MS, Uplc1290-6470A, Agilent, United States). The TC
concentration was expressed as ng/g in wet weight.

Biochemical Analyses
In the application of biomarkers, glutathione (GSH) content,
SOD, and LDH enzyme activity in the intestine were applied to
evaluate oxidative damage at the protein level. The enteric
samples in each treatment group were homogenized with ice-
cold 0.9% saline solution (1 g: 9 ml) with a high-throughput tissue
grinder (Shanghai Jingxin Industrial Development Co., Ltd.).
After centrifuging at 3,000 g for 10 min at 4°C, the supernate
was transferred to the clean centrifuge tube for the analysis of
biomarkers by using microplate test kits following the
manufacturer’s instructions (Nanjing Jiancheng Bioengineering
Institute, China). All the above indexes were detected by a
microplate reader (Synergy™ HTX Multi-Mode Microplate
Reader, Biotek, VT., United States) and analyzed by the Gen5
software (Gen5 CH5 3.03., Biotek, VT., United States). Three
replicates were performed.

Target Gene Expression Analysis
The expression levels of genes related to IL-1β, IL-10, TGF-β, and
TLR-2 in muscle were applied to evaluate immune stress at the
gene level. The experimental methods of RNA extraction and
cDNA synthesis are presented in Supplementary Text S1. The
cDNA was stored at −80°C until further analysis. The expression
levels of the genes were quantified via RT-PCR assay. Details of
the RT-PCR materials and program are presented in
Supplementary Text S2. With 18s as the internal standard
gene, the selected gene was amplified with specific primers.
Specific primer sequences are listed in Table 1 (Meng et al., 2021).

Statistical Analysis
All data were quantified as mean ± standard deviation (SD). The
statistical significance between the control group and the

TABLE 1 | List of gene primers used for qPCR.

Fish Genes Sequence,
forward/reverse (5–39)

Jian carp 18S F: CTGAGAAACGGCTACCATTC
R: GCCTCGAAAGAGACCTGTATTG

IL-1β F: GAGTGAACTGCACCAAACAAC
R: GTCGGCACTGTCAGAGTAAAT

IL-10 F: CTCCGTTCTGCATACAGAGAAA
R: TCATGACGTGACAGCCATAAG

TGF-β F: ACGTTTCCAGATGGTTCAGAG
R: GCCACTTTCTTTGTTTGGGAATA

TLR-2 F: GTGCTCCTGTGAGTTTGTATCT
R: TGGAGTGTCGCACACATAATAG
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experimental group was analyzed by one-way ANOVA with
Tukey’s post-hoc test using the SPSS 17.0 (SPSS Inc.,
United States). Differences were considered significant at p <
0.05 and highly significant at p < 0.01. IBR was the integration of
all measured biomarker responses into one general “stress index”
(Beliaeff and Burgeot, 2002). The specific method of IBR
calculation (Broeg and Lehtonen, 2006) can be found in
Supplementary Text S3. The relative gene expression heat
map was produced by GraphPad Prism 8 (GraphPad Software,
San Diego, CA, United States) software.

RESULTS AND DISCUSSION

Bioaccumulation of PS-MPs
During the exposure period, no acute toxicity, such as mortality or
abnormalities of the treated fish, was observed. Besides, no MPs
were observed in fish intestines of control group or TC exposure
group. The average concentration of MPs in water was about 106

particles/L. In the intestine of Jian carp, the average concentration
of MPs in TC-MP exposure group in 48 and 96 h was 2.29×104 ±
5.86×103 and 5.93×104 ± 2.88×103 particles/g, respectively. The
concentration inMP exposure group was 2.51×104 ± 4.82×103 and
4.55×104 ± 8.92×103 particles/g in 48 and 96 h, respectively
(Figure 1A). The concentration of MPs in the treatment groups
exposed for 96 h was approximately 2–3 times higher than that of
the treatment groups exposed for 48 h (p < 0.05). The above results
indicated that MPs in intestine gradually increased with time at
both groups with MPs, and TC had barely effect on the
accumulation of MPs. MPs are synthetic hydrophobic polymer
with high molecular weight, which are difficult to be metabolized
or degraded by organisms (Rist et al., 2017). MPs easily accumulate
in the gastrointestinal tract of organisms, and the accumulation
increases over time until an equilibrium state is reached (Zhang
et al., 2019). Huang et al. (2021) also found that the accumulation
pattern of MPs in fish did not vary with the presence of antibiotic.
The accumulation of MPs in the intestine is most likely related to
their physical properties (e.g., size and shape, difficulty in
degradation, etc.) (Hirt and Body-Malapel, 2020; Huang et al.,
2021).

Bioaccumulation of TC
The accumulation of TC in intestine and liver of Jian Carp was
detected at two exposure times (48 and 96 h). The average
concentrations of TC in the intestines were 206.00 ± 54.44,
21.37 ± 7.56, 30.50 ± 3.65, and 16.91 ± 7.99 ng/g,
corresponding to TC-48 h, TC-96 h, TC + MPs-48 h, and TC
+MPs-96 h treatments, respectively (Figure 1B). The presence of
MPs extremely reduced the enteric accumulation of TC in the
short-term (p < 0.01). It is reported that the absorption of TC in
fish is mainly through gill adsorption and oral administration
(Zhang et al., 2019). The basic structure of TC consists of a
hydronaphthacene nucleus containing four hexacyclic fused
rings, which facilitates the passage of TC through biological
membranes into the organism (Dong et al., 2012). Xu et al.
(2020) reported that drug absorption occurs mainly in the foregut
and midgut, but may also occur to some extent in the hindgut.
Normally, TC is attached to the intestine for transmembrane
transport, but the presence of MPs may alter the distribution of
TC in vivo. MPs have adsorption properties for antibiotics due to
the presence of porous polymer, spherical protrusions and
micropores on the surface, and internal cross-section (Hirt
and Body-Malapel, 2020). The establishment of hydrogen
bonds and adsorption of MPs may be related to the fact that
TC have multipolar functional groups, such as ketone, hydroxyl,
and amino groups (Shen et al., 2018). Feng et al. (2020) revealed
that the surface charge of MPs that adsorb TC affected the toxicity
of TC to cells. In brief, MPs can act as carriers of TC into fish and
may change the fate and toxicological effect of TC.

We also analyzed the concentration of TC in fish liver based on
limited samples with tiny weight. The concentration of TC in liver
of Jian carp was 41.85, 97.02, 29.63, and 20.61 ng/g,
corresponding to TC-48 h, TC-96 h, TC + MPs-48 h, and TC
+MPs-96 h treatments, respectively (Supplementary Figure S1).
According to the results of TC concentrations between intestine
and liver, we assume that TC in intestine might be transferred to
the liver in some way (such as intestinal absorption and
penetration) after 48 h exposure. Liver is an important storage
organ, and its main function in fish is detoxification. The
accumulation of TC facilitates detoxification through some
defense mechanisms (Nunes et al., 2015). We found that the

FIGURE 1 | Bar graph presentation of PS-MP concentration (A) and TC concentration (B) variation in intestines of Jian carp treated with various exposure
treatments of Control, TC + MP group, and MP group during 48 and 96 h exposure. The values represent mean ± SD of three independent experiments. Different
lowercase letters indicate statistically significant difference between treatments (p < 0.05).
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distribution of TC in vivo was influenced by the presence of MPs
within 48 h. During the same exposure time, TC exposure group
showed high concentration of TC in the intestine, while TC +MP
exposure group showed high concentration of TC in the liver.
MPs acted as adsorption carriers and reduced the
bioaccumulation of chemical contaminants (Tourinho et al.,
2019). We speculated that MPs transported TC to other
tissues in the metabolic manner. However, our results only
indicated the presence or absence of MPs, corresponding to a
high accumulation of TC in the intestine or liver in the short term,
and whether there is a substance transfer mechanism between
them still needs to be investigated in depth.

Antioxidant Responses
It is well known that SOD is considered as the first-line defense
against oxidative stress, which contributes to the conversion of
reactive oxygen species (ROS) to harmless metabolites (Xie et al.,
2016; Neamat-Allah et al., 2019). LDH, which is essential for
cellular respiration, is released into the blood by damaged or
diseased tissues. Gholamhosseini et al. (2020) found that when
exposed to infection or stressed conditions, lower LDH activity

might be beneficial to fish. The generation of endogenous
antioxidants like SOD and GSH is recognized to neutralize
toxic free radicals, as to maintain redox hemostasis and
normal cell function (Abdel Mageid et al., 2019; Abdel-Daim
et al., 2019). The rising level of GSH is possibly the primary mean
of preventing generation of lipid hydroperoxide (Carmo et al.,
2019).

SOD and LDH activities, as well as GSH content in the
intestines of Jian carp in each group are presented in
Figure 2. After 96 h of exposure, the MP group showed
significant upregulation in SOD and LDH activity (p < 0.05),
indicating that MPs could induce enteric oxidative stress in Jian
carp. In contrast to the MP exposure group, the TC-MP and TC
exposure groups showed no significant variations. Multiple
evidence suggested that imbalance between ROS production
and antioxidant defense would lead to oxidative damages,
which related to the poisoning of aquatic organisms (Kaya
et al., 2015; Giordo et al., 2020). Yonar (2012) found that
oxytetracycline could lead to a significant reduction of SOD
activity in a rainbow trout study. Nunes et al. (2015) showed
that TC caused different toxic phenomena, including oxidative
stress and neurotoxicity. Although antibiotics might cause
oxidative stress by reducing the antioxidant capacity, our
results did not find significant oxidative stress indicators in
TC exposure group. It implies that TC is not the main factor
causing oxidative stress in 96 h. Combined with the results above
and Figure 1, we speculated that the presence of MPs alone
caused oxidative stress in aquatic organisms. Our results revealed
that the combination of TC and MPs alleviated the oxidative
stress in the intestine of Jian carp and protected the fish from
oxidative damage to some extent. A potential explanation is that
TC could be adsorbed by MPs and then weaken the toxicological
effects of MPs. Zhang et al. (2019) also revealed that after 14 d of
exposure in red tilapia, co-exposure to MPs and ROX mitigated
oxidative damage in fish livers. Therefore, the studied compounds
might have a synergic effect in vivo.

The IBR index scores the response of multiple biomarkers
and summarizes them into a single value for assessing the
toxicological impact of contaminants. Huang et al. (2021)
compared the contamination stress of red tilapia by the
interaction of selected pharmaceuticals with MPs using the
IBR index. It is recognized that the IBR index serves as a
straightforward and valid tool, which clearly describes the
health status of the organism. In this study, IBR was used
to visually compare the stress among various treatments of Jian
carps by integrating the multi-biomarker responses (SOD,
LDH, and GSH) for 96 h of exposure (Figure 3A). The IBR
values of SOD in TC-MP combined exposure group were
higher than those of MP exposure group, indicating that
SOD activity was more sensitive to the co-exposure. All the
studied biomarkers of fish were significantly altered due to
exposure to MPs, but SOD activity was the most fluctuant
biomarker in TC-MP group. The estimated value of SOD
remained high level throughout the study, which was a
feedback to cope with oxidative stress exerted by MPs
efficiently. In summary, seeking for the sensitive biomarker
of pollutants should be further studied, and the effort will help

FIGURE 2 | Biochemical responses in intestines of Jian carp exposure
for 96 h to TC and MPs. Key: (A) SOD activity; (B) LDH activity; (C)GSH level.
The values represent mean ± SD of three independent experiments. Different
lowercase letters indicate statistically significant difference between
treatments (p < 0.05).
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to estimate the interaction between MPs and other PhACs on
aquatic organisms.

Immune-Related Gene Expression
Cytokines are considered to be an important regulator in the fish
immune system (Zou and Secombes, 2016). The regulation of
inflammatory response is the integration of stimulating and
inhibiting signaling pathways in the immune system, which is
a complex response to a variety of stimuli like pathogens and/or
tissue damage (Yang et al., 2014). Therefore, the expression level
of IL-1β, IL-10, TGF-β, and TLR-2 can reflect the inflammation of
the organisms. In this study, sarcous mRNA expression profiles of

the above genes in Jian carp after exposure of 96 h are shown in
Figure 4. The relative expression levels of all detected genes only
in TC exposure group were significantly upregulated (p < 0.01),
while genes in TC-MP exposure group and MP exposure group
were not.

The indicators of antibiotic toxicity are morphological and
genetic changes. Studies on the genotoxicity caused by
antibiotics in fish are generally concerned with the
transcriptional regulation of antioxidant enzymes in muscle
(Yang et al., 2020). Based on the changes of these indexes in
fish tissues induced by antibiotics, it is speculated that
antibiotics inhibit the survival, development, and hatchery
rate of fish mainly by disrupting the intracellular redox
balance and inducing oxidative stress. For example,
oxytetracycline regulated the expression of IL-1β and TNF-α
in the intestinal tract and liver of Nile tilapia (Limbu et al.,
2018). Yu et al. (2019) revealed that chlortetracycline (CTC) or
oxytetracycline (OTC) significantly impaired the antioxidant
capacity in zebrafish larvae. Our study found that TC induced
upregulation of immune-related genes after 96 h exposure in the
muscle of Jian carp. Interestingly, the presence of MPs reduced
such stress to some extent, possibly by changing the migration,
accumulation, and metabolism of TC in fish. We speculated that
5 μm PS-MPs might adhere TC and prevent it from functioning
in muscles. Zhang et al. (2019) also found that the presence of
MPs affected metabolism of ROX in tilapia according to the
variability of cytochrome P450 (CYP) enzyme activities in fish
livers.

The heat map visually displayed the sensitive degree of relative
expression of the target genes (Figure 3B). Results showed that
TLR-2 gene had the potential to be the candidate gene reflecting
the injury of TC exposure. TLR-2, as a pattern recognition
receptor (PRRS), directly involves in the recognition of specific
pathogen-associated molecular patterns (PAMPs) and activates
proinflammatory cytokines in fish, which is important in
initiating immune immobilization (Noor-Ul et al., 2020).
Laboratory studies into the mechanism of combined antibiotic
and MP exposure in fish are still in the early stages. More
researches are needed to meet the challenge in future
environmental toxicity studies.

FIGURE 3 | (A): Integrated biomarker response (IBR) of selected biomarkers in different treatments after exposure for 96 h; (B): Heat map presentation of the
relative expression of immune-related genes in muscle of Jian carp exposure for 96 h.

FIGURE 4 | Bar graph presentation of relative expression of immune-
related genes (A) IL-1β, (B) IL-10, (C) TGF-β, and (D) TLR-2 in muscle of Jian
carp after exposure for 96 h. Values are expressed as mean ± SD from
triplicate groups. Different lowercase letters indicate statistically
significant difference between treatments (p < 0.05).
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CONCLUSION

This study investigated the interactive effects of microplastics and
tetracycline on the bioaccumulation and biochemical status in Jian
carp. Results revealed that accumulation of MPs was not affected by
TC, but the presence of MPs changed the content of TC in vivo
within 48 h. Exposure to MPs alone increased SOD and LDH
activity in intestine of fish, while co-exposure to TC-MPs
mitigated the oxidative damage. The upregulation of IL-1β, IL-10,
TGF-β, and TLR-2 induced by TC in muscles was alleviated in the
presence ofMPs.We speculated that 5 μmPS-MPsmight adhere TC
and prevent it from functioning in muscles. Overall, this study
suggests that the fate and impact of TC andMPs are affected by each
other in vivo. Co-exposure may have the synergic effect in Jian carp.
Adsorption and desorption rates between TC and MPs need to be
focused in the future study. MP physical properties (e.g., size, shape,
materials, concentration, exposure time, etc.) and fish feature should
be clarified clearly. More studies about biological interaction of MPs
and antibiotics are needed to perfect the evidence.
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