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Stock estimates are critical to quantifying carbon and nitrogen sequestration, quantifying
greenhouse gas emissions, and understanding key biogeochemical processes (i.e., soil
carbon and nutrient cycling). Many studies have assessed soil organic matter and nutrients
in different ecosystems. However, the spatial distribution of carbon and nitrogen and the
key influencing factors in arid desert steppe remain unclear. Here, we investigated the soil
organic carbon (SOC) and soil total nitrogen (STN) to a depth of 100 cm at 126 sites in a
desert steppe in northwestern China. SOC and STN contents decreased with increasing
depth; the highest average SOC and STN contents were 12.70 and 0.65 g kg−1 in the
surface 5 cm, and the lowest were from 80 to 100 cm (4.49 and 0.16 g kg−1, respectively).
SOC density (SOCD) and STN density (STND) to a depth of 100 cm averaged 8.94 and
0.45 kg m−2, respectively. The top 1 m of the soils stored approximately 1,041 TgSOC and
52 Tg STN in the study area. Geostatistical analysis showed strong and moderate spatial
autocorrelation for SOCD in different soil layers, but the autocorrelation for STND gradually
weakened with increasing depth. SOCD and STND decreased from southwest to
northeast in the study area, along an elevation gradient. Both were significantly
positively correlated with topographic variables, precipitation, and the normalized-
difference vegetation index, but negatively correlated with temperature and aridity.
More than 40% of the SOCD and STND spatial variation was explained by elevation,
which was the dominant factor. The data and high-resolution maps from this study will
support future soil carbon and nitrogen analyses.

Keywords: spatial pattern, soil organic carbon, soil total nitrogen, geostatistics, environmental variables, desert
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1 INTRODUCTION

The most recent report of the Intergovernmental Panel on Climate Change (Cubasch et al., 2013)
confirmed that the global climate is warming. The emission of greenhouse gases (CO2, CH4, NOx, and
chlorofluorocarbons) and other anthropogenic driving factors have become the main cause of climate
warming since the early 20th century, and the magnitude of the increase of the global average surface
temperature during the 21st century and beyond will depend on the cumulative emission of CO2.
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The soil carbon pool is the largest and most active carbon pool
in terrestrial ecosystems and is an important source of
atmospheric greenhouse gases. The global soil organic carbon
(SOC) pool is about 1,550 Pg, which is twice the atmospheric
carbon pool and three times the biological carbon pool (Lal,
2004). Thus, slight changes in the SOC pool will significantly
affect the atmospheric carbon content; for example, a change of
only 10% of the SOC pool is equivalent to 30 years of CO2 releases
caused by human activities (Kirschbaum, 2000). In addition, a
slight increase in the rate of soil carbon oxidation caused by an
increase in temperature will increase the atmospheric CO2

concentration (Davidson and Janssens, 2006).
The rate of SOC accumulation depends strongly on the net

primary productivity of plants, which in most ecosystems is
mainly limited by nitrogen (N) (Jobbágy and Jackson, 2000).
Therefore, as major components of the global carbon and
nitrogen cycles, SOC and soil total nitrogen (STN) interact to
affect the atmospheric concentration of greenhouse gases and
global climate change, and understanding their amounts and how
those amounts are changing has become a hot topic in global
climate change research (Batjes, 1996; Reeves, 1997; Bronson
et al., 2004; Liu et al., 2012; Stockmann et al., 2013; Lehmann and
Kleber, 2015; Wang et al., 2019). Accurately quantifying SOC and
STN storage and its spatial distribution have great significance for
the carbon and nitrogen sink capacity of the world’s soils and for
research on global carbon and nitrogen cycles (Minasny et al.,
2013, 2017; Adhikari et al., 2014).

Accurate measurement of the spatial pattern of SOC and STN
storage can provide a scientific basis for sustainable soil
utilization and management (Zhang et al., 2012). Since soil
sampling sites are finite and sparsely distributed, any
quantitative description of soil properties relies on prediction
models (Piccini et al., 2014). One simple method is to allocate the
average SOC and STN stocks to each map unit of a given soil type
(Bohn, 1982; Berg and Reich, 1993; Batjes, 1996; Arrouays et al.,
2001), life zone (Post et al., 1982), or vegetation or ecosystem type
(Jobbágy and Jackson, 2000; Bernoux et al., 2002). However, the
use of constant values within each map unit ignores the large
spatial heterogeneity of SOC and STN within and between map
units (Adhikari et al., 2014; Yang et al., 2016). Spatial
interpolation provides a more effective method to map the
spatial pattern of soil properties by extrapolating from discrete
sample data (Schloeder et al., 2001). Spatial heterogeneity has
been most often quantified using geostatistical methods, as the
approach is relatively objective and provides robust mapping
capabilities (Armstrong and Dowd, 1997).

Most landscape-scale assessments of SOC have focused on
grasslands (Wang et al., 2009; Kamarudin et al., 2019),
agricultural landscapes (Lacoste et al., 2014; Piccini et al.,
2014), and sandy land (Zuo et al., 2010; Li et al., 2018). Many
factors affect the spatial variability of SOC, such as hydrothermal
conditions (e.g., temperature and precipitation; Post et al., 1982;
Wang S. et al., 2017; Wang et al., 2019), soil properties (e.g., soil
type, texture and moisture, Homann et al., 1995; Wang et al.,
2002; Zinn et al., 2005), topographic factors (e.g., elevation, slope
aspect, and slope; Tsui et al., 2004; Garten et al., 2006; Seibert
et al., 2007; Wiesmeier et al., 2014), and vegetation conditions

(e.g., vegetation types, cover, and productivity; Wang et al., 2000;
Fang et al., 2012; Yang et al., 2014; Xin et al., 2016).

Drylands, which are defined as sites with <500 mm mean
annual precipitation (Noy-Meir, 1973), are significant
components of the terrestrial ecosystem. They cover more
than one-third of the Earth’s land surface and account for
36% of the world’s carbon stocks (Campbell et al., 2008;
Pointing and Belnap, 2012). In addition, Koyama et al. (2019)
note that this land may play an increasingly important role in the
future as “these ecosystems can be more responsive to elevated
CO2 than others because net primary productivity is mostly
limited by water availability.” The main land cover type in
drylands is steppe, which represents an important global C
pool, amounting to 8% of the total reservoir (IPCC, 2001).
Zhao et al. (2018) reported that desert soils exhibit higher
atmospheric CO2 fixation capacity than meadow soils. Desert
steppe is widely distributed in northwestern China, where it
covers an area of about 6.56 × 107 ha (Chang et al., 2013).

The Hexi Corridor in northwestern China is a typical arid region,
where represents a desert steppe ecosystem. It occupies a transitional
zone between desert and oases or between desert and grassland
(Figure 1). This region has unique features, such as a high soil gravel
content, limited precipitation, low vegetation cover, and seriouswind
erosion, and the vegetation plays a prominent role in maintaining a
stable ecological environment and productivity (Wang et al., 2014).
The desert steppe vegetation in the Hexi Corridor is dominated by
small xerophytic shrubs or subshrubs with shallow roots (Wang
et al., 2013), which results in small biomass and low soil C and N
inputs. Compared with other typical steppes, the unique
characteristics of the Hexi Corridor’s desert steppe may lead to
high variation of SOC and STN storage, but few studies have focused
on this desert steppe. The desert steppe ecosystem in arid regions is
very fragile and vulnerable to natural and anthropogenic
disturbances, leading to an increase of atmospheric CO2.

Despite the ecological importance of this region, its soil C and
nutrient values and their distribution are poorly understood. To
improve our understanding of this region, we defined several
research questions: 1) What is the spatial heterogeneity of SOC
and STN and their density at a regional scale? 2) How do these
variables vary with soil depth? 3) What is the spatial pattern of
SOC and STN density and stocks in this area? 4) What factors
control the spatial heterogeneity of SOC and STN? Our specific
study objectives were to 1) quantify the spatial heterogeneity of
SOC and STN in the soils of the region’s desert steppe, 2) clarify
the spatial distribution and stocks of SOC and STN, and 3)
analyze the factors that control the spatial distribution of SOC
and STN. Our results enrich understanding of regional
biogeochemical processes (i.e., soil carbon and nutrient
cycling), and provide a valuable baseline for future research on
the long-term evolution of SOC and STN.

2 MATERIALS AND METHODS

2.1 Description of the Study Area
The study area is located in the middle part of the Hexi Corridor,
on the northern slope of the Qilian Mountains, in northwestern
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China (Figure 2). The region has a typical desert climate with cold
winters and hot, dry summers, and is classified as BWK in the
Koppen climatic classification (Yang et al., 2014). The regional
average annual air temperature ranges from 5 to 9°C (Wang et al.,
2014). The annual average precipitation varies from 50mm in the
southeast to 250 mm in the northwest, of which 70–80% falls from
June to August. The main soil types are Calcic-Orthic Aridosols
according to the Chinese Soil Taxonomy, which are equivalent to
the Aridosols and Entisols in the USDA soil taxonomy (GCST,
2001). The soil thickness ranges from 0.2 to 1.5 m, and most soils
contain a large amount of gravel (0.5–6.0 cm in diameter),
especially below a depth of 30 cm. Vegetation cover is low, and
ranges from 5 to 15%. The dominant plant species comprise small
shrubs and sub-shrubs, such as Asterothamnus alyssoides,
Artemisia capillaris, Achnatherum inebrians, Artemisia scoparia,
Bassia dasyphylla, Carex tristachya, Nitraria sphaerocarpa,
Reaumura soongorica, Salsola passerina, Sympegma regelii, and
Suaeda glauca (Yang et al., 2014).

2.2 Soil Sampling and Laboratory Analysis
In the desert steppes of the Hexi Corridor, we manually collected
soil samples at 126 sites from July to August 2019. First, we
established a 10m × 10m plot at each site, then collected the
soil samples randomly at 15 sampling points within each plot. The
samples were divided into depth ranges of 0–5, 5–10, 10–20, 20–40,
40–60, 60–80, and 80–100 cm. The samples were then bulked to
prepare a composite sample for each layer. However, due to the
large amount of gravel in the study area, the sampling depth for

some samples were less than 100 cm. We combined the samples
that we were able to obtain to produce one composite sample for
each depth range, yielding a total of 851 composite samples (rather
than 126 samples × 7 depths � 882 samples). In addition, we
collected three undisturbed 100 cm3 soil cores (replicates) at each
site at each depth to estimate the dry soil bulk density at that depth.

In the laboratory, the samples were air-dried and passed
through a 2 mm sieve to remove roots and other coarse
debris, and then ground to pass through a 0.25 mm mesh.
Due to a shortage of funds for our research, the SOC
concentrations were determined using the Walkley-Black
dichromate wet oxidation procedure (Nelson and Sommers,
1982) rather than by dry combustion. Since this wet oxidation
can typically oxidize about 90% of organic matter compared with
the dry combustion method, we multiplied the measured SOC
values by a correction coefficient of 1.1 (Kalembasa and
Jenkinson, 1973; Soon and Abboud, 1991; Wang S. et al.,
2017). The STN concentrations was determined using the
Kjeldahl procedure (Bremner, 1960). The 100 cm3 cores were
dried for 48 h at 105°C for bulk density measurement (Blake and
Hartge, 1986). The soil particle sizes were defined according to
the international soil particle size classification standard: clay
(<0.002 mm), silt (0.002–0.02 mm), fine sand (0.02–0.2 mm), and
coarse sand (0.2–2 mm). The contents of these size classes were
determined using a MS2000 laser particle size analyzer (Malvern
Instruments, Malvern, United Kingdom). The pH values of the
soil samples were determined using a glass electrode pHmeter (1:
2.5, soil: deionized water).

FIGURE 1 | Typical landscapes of the desert steppe in the Hexi Corridor, northwest China. Photo source: The authors’ personal photographs.
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2.3 Calculations of Soil Organic Carbon and
Soil Total Nitrogen Stocks
The soil organic carbon density (SOCD, in kg C m−2) and soil
total nitrogen density (STND in kg C m−2) to a depth of 100 cm
for an individual sample were calculated by the equations of
Batjes (1996):

SOCD � ∑
k

i�1
SOC × BDi ×Di × (1 − vf) (1)

STND � ∑
k

i�1
STN × BDi ×Di × (1 − vf) (2)

where k represents the soil layer, SOC and STN represent the SOC
and STN concentrations (g kg−1), Di is the thickness of soil layer i
(m), and vf is the volumetric fraction occupied by coarse
fragments >2 mm (%) (Cools and De Vos, 2010).

2.4 Environmental Variables
A suite of 10 environmental variables representing climate,
topography, and vegetation were collected to identify the
regional-scale factors that controlled the spatial pattern of SOC
and STN in the study area’s desert steppes. All environmental

variables were uniformly converted into raster data with a spatial
resolution of 500 m using version 10.3 of the ArcMap GIS
software (http://www.esri.com). We obtained data from the
Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (http://www.resdc.cn) for five
climatic variables: mean annual precipitation (MAP), mean
annual temperature (MAT), Thornthwaite’s moisture index
(TMI), aridity index (ARI, which equals evaporation/
precipitation), and cumulative annual temperature (CAT). The
climatic datasets originally had a cell size of 1,000 m and were
resampled to 500 m using a nearest-neighbor strategy. We also
chose four topographic variables: elevation, slope, ground
roughness, and profile curvature. These values were derived
from the Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM; https://www2.jpl.nasa.gov/srtm/). For
our final variable, we derived the monthly normalized-
difference vegetation index (NDVI) dataset at a 1 km spatial
resolution from the SPOT/VEGETATION NDVI satellite
remote sensing data, which is generated using the 10 days
maximum value composite method (Xu, 2018). The same
method was used to generate the NDVI data during the
growing season (April to September) in 2019.

FIGURE 2 | Locations of the study area and the 126 sampling sites, which are superimposed on a digital elevation model with 500 m resolution.
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2.5 Geostatistical and GIS Analyses
Geostatistics has proven to be an effective method to study the
spatial variability and patterns of soil properties (Wang, 1999).
The spatial variation of each regionalized geostatistical variable
is usually quantified using the semi-variogram γ(h), which can
be defined as half of the statistically expected squared difference
between paired data values z (x) and z (x + h) with a lag
distance h:

r(h) � 1
2
E[z(x) − z(x + h)]2 (3)

where E represents the statistical expectation, and z (x) and z
(x + h) represent the paired data values being compared over
a lag distance of h (Reese, 2001). We used four semi-
variogram models (linear, spherical, exponential, and
Gaussian) to describe the semi-variograms, and used three
eigenvalues (range, sill, and nugget) to describe these
models. To fit the best model, we calculated two indices
to assess the effectiveness of the predictive map, namely the
mean error (ME) and the root-mean-square standardized
error (RMSSE):

ME � ∑n
i�1[Ẑ(xi) − Z(xi)]

n
(4)

RMSSE � ∑n
i�1{[Ẑ(xi) − Z(xi)]/δ̂(xi)}2

n
(5)

where n represents the sample size, Ẑ(xi)and Z(xi)represent the
predicted and measured values of sample i at location x,
respectively, and δ̂(xi)represents the standard error of the
prediction. The geostatistical analyses were performed using
ArcMap.

2.6 Statistical Analysis
Kolmogorov-Smirnov test was used to examine the normality of
the SOC, STN, and BD data, and used Pearson’s correlation
coefficient (r) to relate the dependent variables SOC and STN
to the independent quantitative variables. We defined
significance at p < 0.05. Detecting multicollinearity is
important because while multicollinearity does not reduce the
explanatory power of the model, it does reduce the statistical
significance of the independent variables. The variance inflation
factor (VIF) and tolerance were two closely related statistics for
diagnosing collinearity in multiple regression, and the stepwise
regression was used to eliminate multicollinearity factors. The
above methods were all carried out in version 22.0 of the SPSS
software (https://www.ibm.com/analytics/spss-statistics-
software). We applied redundancy analysis (RDA), a
constrained ordination method developed by van den
Wollenberg (1977), to investigate the proportion of the
variability in SOC and STN that could be explained by the
environmental variables. We used version 5.0 of the Canoco
software (http://www.canoco5.com/) to perform this analysis.
The significance of the eigenvalues of the first canonical axis
and of all axes together were tested by means of 1,000 Monte-
Carlo permutations.

3 RESULTS

3.1 Descriptive Statistics
Table 1 summarizes the SOC and STN contents and the BD for the
samples. Both concentrations were highly variable, with SOC
ranging from 0.47 to 336.61 g kg−1 and STN ranging from 0.02
to 7.78 g kg−1 for the top 20 cm of the soil. SOC concentrations
ranged from 0.24 to 41.48 g kg−1 and STN concentrations ranged
from 0.01 to 2.72 g kg−1 in the deeper soil layers. The mean SOC
and STN concentrations generally decreased with increasing depth,
except that the SOC concentration in the 80–100 cm soil layer was
higher than that in the 60–80 cm soil layer. The SOC and STN data
were positively skewed at all soil depths. Compared with SOC and
STN, BD varied less among the depths, although it increased with
increasing soil depth, with mean values of 1.44 g cm−3 to a depth of
20 cm and 1.51 g cm−3 to a depth of 100 cm.

3.2 Geostatistical Analysis of Soil Organic
Carbon Density and Soil Total Nitrogen
Density
Table 2 shows the best-fit semi-variogram models for the seven soil
layers. The theoretical models efficiently revealed the spatial
variability of both SOCD and STND because the ME values were
all near 0 and the RMSSE values were all close to 1. The optimal
SOCD and STND models were Gaussian in most soil layers, except
for the layers from 5 to 10 cm and 10–20 cm for SOCD and
10–20 cm for STND. In the classification by Cambardella and
Karlen (1999), nugget to sill ratios <25%, 25–75% and >75%
represent strong, moderate, and weak spatial autocorrelation,
respectively. Most of the nugget to sill ratios for SOCD ranged
from 0.9 to 23.2%, which indicates strong spatial autocorrelation,
except for the SOCD from 5 to 10 cm and 20–40 cm (29.2 and 28.3%,
respectively), which indicates moderate spatial autocorrelation. The
values of the nugget to sill ratio for STND decreased from 25.3 to
10.3% in the top 20 cm of the soil, then increased from 22.9 to 79.2%
with increasing depth, indicating that the upper soil showed stronger
spatial autocorrelation than the deeper soil, with the spatial
autocorrelation gradually weakening with increasing depth.

3.3 Correlations With the Influencing
Factors
Figure 3 shows that SOC was significantly positively correlated
with STN at all depths in the soil profile. SOCD and STND both
showed significant positive correlations with the topographic
variables (i.e., elevation, slope, ground roughness, and
curvature) across the entire soil profile (p < 0.01), except for
nonsignificant correlations between SOCD and curvature at
depths of 0–5 cm and 80–100 cm and between STND at a
depth of 80–100 cm (Table 3). This suggests that SOC and STN
tend to accumulate on steep slopes at high elevations in the desert
steppes. For the climatic variables, SOCD and STND were
significantly positively correlated with MAP and TMI, but
significantly negatively correlated with ARI and air temperature
(bothMAT and CAT).NDVIwas significantly positively correlated
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with SOCD and STND in all soil layers. For the different grain size
grades, SOCD and STND were significantly negatively correlated
with the coarse sand content, but significantly positively correlated
with the silt content, whereas the correlations with the fine sand
content were not significant and the positive correlations with the
clay content were only significant at depths greater than 20 cm,
indicating that the coarse sand and silt contents in the desert soil
were more likely than the other particle sizes to determine the SOC
and STN concentrations. In addition, SOCD and STND were

negatively correlated with soil pH, and the correlations were
significant in the topsoil for SOCD, versus all depths for STND.

3.4 Spatial Aggregation of Soil Organic
Carbon Density and Soil Total Nitrogen
Density
The spatial pattern maps created by ordinary kriging showed that
SOCD and STND decreased from southwest to northeast in the

TABLE 1 | Descriptive statistics for the soil organic carbon (SOC) concentration (g kg−1), soil total nitrogen (STN) concentration (g kg−1), and bulk density (BD) (g cm−3)
across the 100 cm profile.a

Depth (cm) Parameters N Min. Max. Range Mean SD Ske. Kur.

0–5 SOC 126 0.71 336.61 335.90 12.70 31.58 8.89 90.00
5–10 SOC 126 0.47 156.45 155.98 10.28 18.35 4.98 33.06
10–20 SOC 126 0.70 62.03 61.33 7.98 10.44 2.98 9.84
20–40 SOC 125 0.47 40.54 40.07 6.18 7.11 2.78 8.43
40–60 SOC 121 0.47 31.61 31.14 5.14 5.81 3.01 9.99
60–80 SOC 115 0.24 25.13 24.89 4.27 4.34 2.93 10.04
80–100 SOC 111 0.24 41.48 41.24 4.49 5.39 4.01 21.40
0–5 STN 126 0.02 7.78 7.76 0.65 1.15 3.55 14.93
5–10 STN 126 0.02 5.58 5.56 0.57 1.03 3.19 10.56
10–20 STN 126 0.02 3.41 3.39 0.41 0.62 3.04 10.07
20–40 STN 125 0.01 2.72 2.71 0.31 0.43 3.06 11.09
40–60 STN 121 0.01 2.22 2.21 0.26 0.39 3.23 11.95
60–80 STN 115 0.01 1.57 1.56 0.20 0.28 2.81 9.47
80–100 STN 111 0.01 1.35 1.34 0.16 0.23 3.16 12.40
0–5 BD 126 0.73 1.95 1.22 1.44 0.26 −0.50 −0.25
5–10 BD 126 0.70 2.04 1.34 1.44 0.27 −0.52 −0.27
10–20 BD 126 0.60 1.99 1.39 1.45 0.27 −0.57 0.05
20–40 BD 125 0.82 1.93 1.11 1.46 0.24 −0.21 −0.32
40–60 BD 121 0.89 2.00 1.11 1.51 0.23 −0.22 −0.33
60–80 BD 115 0.87 2.00 1.13 1.51 0.24 −0.45 −0.36
80–100 BD 111 1.04 1.93 0.89 1.55 0.20 −0.33 −0.43

aN represents the number of soil samples; Min., minimum; Max., maximum; SD, standard deviation; Ske., skewness, Kur., Kurtosis.

TABLE 2 | Semi-variogram model parameters for the soil organic carbon density (SOCD) and soil total nitrogen density (STND) to a depth of 100 cm.a

Variable Depth
(cm)

Model Nugget Sill Nugget/sill
ratio (%)

Range
(km)

ME RMSSE

SOCD 0–5 Gaussian 0.023 2.579 0.90 12.86 0.004 0.944
5–10 Spherical 0.218 0.745 29.22 287.19 −0.005 1.052
10–20 Exponential 0.060 1.182 5.11 296.27 −0.007 1.011
20–40 Gaussian 0.760 2.684 28.32 181.77 −0.017 1.160
40–60 Gaussian 0.478 2.386 20.04 223.54 −0.007 1.273
60–80 Gaussian 0.272 1.172 23.19 203.66 0.001 1.229
80–100 Gaussian 0.381 1.802 21.15 185.87 0.005 1.197
0–100 Gaussian 9.036 52.468 17.22 173.16 −0.053 1.089

STND 0–5 Gaussian 0.001 0.004 25.32 248.04 0.000 1.089
5–10 Gaussian 0.000 0.004 11.88 252.69 0.000 1.184
10–20 Spherical 0.000 0.005 10.32 296.27 0.000 1.038
20–40 Gaussian 0.003 0.011 22.87 208.33 −0.001 1.158
40–60 Gaussian 0.003 0.010 32.92 257.16 −0.001 1.259
60–80 Gaussian 0.002 0.005 33.00 208.80 −0.001 1.187
80–100 Gaussian 0.002 0.002 79.15 12.86 0.000 0.995
0–100 Gaussian 0.037 0.209 17.76 214.52 −0.004 1.166

aME and RMSSE represent the mean error and the root-mean-square standardized error, respectively.
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desert steppes of the Hexi Corridor (Figures 4, 5), suggesting a
gradient effect. The highest SOCD and STND values were mainly
located in the high-elevation areas of the Qilian Mountains in the
southwest. In contrast, the low values were found towards the
northeastern edge of the study area at lower elevations. According
to the zonal statistics, the total SOCD and STND to a depth of
100 cm averaged 8.94 and 0.45 kg m−2, respectively, and the soils
stored approximately 1,041 Tg SOC and 52 Tg STNwithin the top
1 m for the entire study area.

3.5 Effects of Environmental Factors on the
Spatial Variation of Soil Organic Carbon
Density and Soil Total Nitrogen Density
After stepwise regression analysis, five environmental variables
including Dem, NDVI, Slope, ARI and MAP were selected for
further analysis of their effects on the spatial variation of SOCD
and STND. The tolerance of these 5 variables were all greater than
0.1, and VIF were all less than 10, indicating that there is no
multicollinearity between five environmental variables (Hair
et al., 2009). Figure 6 shows the RDA ordination results for
SOCD and STND to a depth of 100 cm and the influencing
factors. The cumulative percentage of the variance of the
dependent variables (SOCD and STND) explained by the
influence factors totaled 51.2% for the first two axes. SOCD
and STND were both positively associated with topographic
factors (i.e., elevation and slope), as well as with NDVI, and
MAP. In contrast, SOCD and STND were both negatively
associated with ARI. Furthermore, we used a partial Monte
Carlo permutation test to evaluate the contributions of each
environmental factor to the variation of SOCD and STND
(Table 4). Elevation explained the largest proportion of the
variation in SOCD and STND (43.5%), and also had the

highest contribution rate (84.9%). The influences of NDVI and
slope were statistically significant, but much smaller (<5% of the
variation explained). The effects of the other influencing factors
were small and not statistically significant. This indicated that
elevation was the dominant environmental driver for the spatial
variation of SOCD and STND in the desert steppes of the Hexi
Corridor.

4 DISCUSSION

4.1 Spatial Distribution (Vertical and
Horizontal) of Soil Organic Carbon and Soil
Total Nitrogen
In this typical desert steppe area, SOC and STN decreased with
increasing depth in the soil. This trend was most likely caused by
the decomposition of plant residues, which were primarily
distributed on or near the soil surface (Sheikh et al., 2009).
Higher organic C and N contents were also found in topsoil
elsewhere in the world, such as in cropland and grassland
ecosystems in southeastern Germany (Wiesmeier et al., 2013),
a subalpine forested catchment on Mt. Taiyue, China (Wang T.
et al., 2017), in eastern Australia (Hobley et al., 2015), in the
eastern Swiss Alps (Zollinger et al., 2013), in the state of Bavaria in
southeastern Germany (Wiesmeier et al., 2014), in Piracicaba,
Brazil (Gmach et al., 2020), and in disturbed Carex tussock
wetland of Momoge National Natural Reserve, China (Qi,
et al., 2021). This suggests that the surface soil participates
most actively in C sequestration (Li et al., 2013).

In the present study, SOCD and STND to a depth of 100 cm
showed vertical spatial heterogeneity both as a function of depth
and along the elevation gradient. Strong and moderate spatial

FIGURE 3 | Scatterplots for the relationships between the soil organic carbon (SOC) and soil total nitrogen (STN) concentrations in the different soil layers. SOC
values 1 to 7 correspond to depths from 0 to 5 cm to 80–100 cm, respectively. All regressions were statistically significant (p < 0.05).
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dependence for SOCD and STND were found in most soil layers,
except for STND in the lowest layer (80–100 cm). Previous
research suggested moderate spatial dependence for SOC in
the surface and middle soil layers (the upper 40 cm) in
southern African savannas (Wang et al., 2009), subalpine
forested catchments on Mt. Taiyue in China (Wang T. et al.,
2017), and in a typical catchment on China’s Loess Plateau (Li
et al., 2013). The spatial autocorrelation for SOCD in our study
was relatively high (with a mean of 18.3% for the nugget/sill
ratio), that’s may be attributed to differences in topography and
geomorphology as well as differences in the size of the study area.
In addition, the upper soil layers showed stronger spatial
autocorrelation than the bottom layers, and the spatial
autocorrelation gradually weakened with increasing depth in
the soil. The surface soil is more likely to be disturbed by
extrinsic factors and human activities, which was consistent
with the results of a previous study (Wang T. et al., 2017).

4.2 Topography Effects on Spatial Variation
of Soil Organic Carbon Density and Soil
Total Nitrogen Density
Topography plays a prominent role in soil formation and
evolution, and affects the litter decomposition rate due its
effects on hydrothermal conditions, which in turn affects the
amount of soil nutrients (Adhikari et al., 2014; Li et al., 2015;
Martin et al., 2014). Therefore, there has generally been a close
relationship between soil properties and topographic variables
(Garten and Hanson, 2006; Seibert et al., 2007; Yang et al., 2016;
Wang S. et al., 2017a; Wang T. et al., 2017). Our study
demonstrated that SOCD and STND were significantly
positively correlated with the topographic variables
(i.e., elevation, slope, ground roughness, and curvature).
Among them, elevation was the dominant topographic factor
for the spatial patterns of both SOCD and STND, which agrees
with previous studies (Li et al., 2012; Yang et al., 2014; Tashi et al.,
2016; Wang T. et al., 2017). This could be because low
temperatures at high elevations will inhibit the decomposition
of soil organic matter and promote the accumulation of soil
organic matter (Bot and Benites, 2005; Leifeld et al., 2005).
However, some previous studies have shown no significant
correlation between SOCD and elevation in broad-leaved
temperate forests and subtropical coniferous forests (Sheikh
et al., 2009), wetlands (Li and Shao, 2014), dammed fields
(Zhao et al., 2017), and the agro-pastoral ecotone of northern
China (Wang et al., 2019). This inconsistent result may be due to
the narrow range of elevation, very different vegetation and
patterns of vegetation distribution along elevation gradients,
and a lower BD at higher elevations (Powers and Schlesinger,
2002; Sheikh et al., 2009). In addition, SOCD and STND had
significant positive correlations with slope in this study, which
agrees with previous research in Spain and China (Tsui et al.,
2004; Wang J. et al., 2012; Yang et al., 2016). In contrast, a
negative correlation between slope and SOC was found in
Netherlands (Hall, 1983). Slope influences the surface
transport of water and the products of decomposition, which
in turn leads to spatial variability of soil nutrients (Gonzalez andT
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Zak, 1994). In the present study, the significant positive effect of
slope on SOCD and STND could be explained by the higher soil
moisture on steeper slopes, since snowmelt in the Qilian
Mountains provides ample water in our study area, and
abundant soil moisture promotes vegetation growth in areas
with steep slopes.

4.3 Effects of Climate Variables on the
Spatial Variation of Soil Organic Carbon
Density and Soil Total Nitrogen Density
The air temperature and precipitation can both change soil
nutrient inputs by affecting vegetation growth, and control
the C outputs through microbial decomposition of soil

FIGURE 4 | Spatial pattern of soil organic carbon density (SOCD) for the different soil layers in the desert steppe area of the Hexi Corridor, in northwestern China.
Ranges of SOCD were calculated using the natural breaks method.
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organic matter (Post et al., 1982). Therefore, temperature
and precipitation are critical climatic variables that affect the
spatial distribution of SOC and STN on a regional scale
(Follett et al., 2012; Saiz et al., 2012). In the present
study, CAT and MAP had significant negative and positive
effects, respectively, on both SOCD and STND. Notably,
there was a significant positive correlation between

elevation and MAP (r � 0.65, p < 0.01), but a significant
negative correlation between elevation and MAT (r � 0.89,
p < 0.01). These correlations support our conclusion that
elevation controls soil nutrients more strongly than
temperature and precipitation in our study area, which
agrees with the results of Wang Z. et al. (2012) and Wang
S. et al. (2017).

FIGURE 5 | Spatial pattern of soil total nitrogen density (STND) for the different soil layers in the desert steppe area of the Hexi Corridor, in northwestern China.
Ranges of SOCD were calculated using the natural breaks method.
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4.4 Vegetation Effects on Spatial Variation
of Soil Organic Carbon Density and Soil
Total Nitrogen Density
NDVI is a good indicator of vegetation cover and an effective indicator
for monitoring changes in vegetation. A higher NDVI means better
vegetation cover and higher canopy density, which is conducive to the
deposition of litter, thereby promoting the accumulation of SOC (Xin
et al., 2016). Thus,NDVI is amajor factor that affects the SOC and STN
contents (Jobbágy and Jackson, 2000;Wang et al., 2000). Furthermore,
NDVI has a high ability to predict SOC and STN contents because it
reflects vegetation productivity and biomass (Bronson et al., 2004; Liu

et al., 2012; Wang et al., 2013). In the present study, we also found a
significant positive correlation between NDVI and both SOCD and
STND. These findings suggest that remote sensing technology can
potentially be used to predict SOC and STN at a regional scale in our
study area.

4.5 Effects of Soil Particle Size on the Spatial
Variation of Soil Organic Carbon Density
and Soil Total Nitrogen Density
Many previous studies have confirmed that fine-textured (clay)
soils have higher SOC and STN contents than coarse-textured

FIGURE 6 | Redundancy analysis ordination diagram for soil organic carbon density (SOCD) and soil total nitrogen density (STND) to a depth of 100 cm and the
associated influence factors. Abbreviations: ARI, the aridity index (evaporation/precipitation); CAT, cumulative annual temperature; DEM, elevation; MAT, mean annual
temperature, NDVI, the normalized-difference vegetation index; MAP, mean annual precipitation; TMI, Thornthwaite’s moisture index.

TABLE 4 | The proportions of the variation explained (explanation rate) and contribution of the influencing factors to variations of soil organic carbon density (SOCD) and soil
total nitrogen density (STND) to a depth of 100 cm in the redundancy analysis.

Factors Explanation (%) Contribution (%) Pseudo-F p Tolerance VIF

Dem 43.50 84.90 95.40 0.002 0.34 2.94
NDVI 3.30 6.50 7.60 0.008 0.27 3.66
Slope 2.50 4.80 5.90 0.028 0.47 2.13
ARI 0.50 1.00 1.30 0.266 0.34 2.94
MAP 1.40 2.80 3.50 0.064 0.16 6.29

Abbreviations: elevation (DEM), the normalized-difference vegetation index (NDVI), the aridity index (ARI, evaporation/precipitation), mean annual precipitation (MAP), and the variance
inflation factor (VIF).
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(sand) soils (Jobbágy and Jackson, 2000; Tan et al., 2004;
Meersmans et al., 2008, 2009). In the present study, the silt
content was significantly positively correlated with SOCD and
STND at all depths, but significantly negatively correlated with
the coarse sand content, which was consistent with previous
studies (Zinn et al., 2005; Li and Shao, 2014; Wang et al., 2019).
This result is likely to be mainly due to the strong agglomeration
of fine soil particles, which provides physical protection for soil
organic matter (Baritz et al., 2010). Although the near-surface
clay content was not significantly correlated with SOCD or STND,
there were significant positive correlations for both variables at
depths below 20 cm. This may be because of the very low clay
contents in the top 20 cm of the soil. In addition, increased water
retention by the finer particles promotes plant growth and
thereby provides more inputs of soil organic matter. On the
other hand, this water-retention can inhibit the decomposition of
soil organic matter by soil microbes in an anaerobic environment.

5 CONCLUSION

We explored the spatial distribution (vertical and horizontal)
of SOCD and STND across a large area of typical desert steppe
in northern China. SOCD and STND decreased from southwest
to northeast in the study area, which was consistent with the
gradient of elevation (i.e., with higher elevations in the
southwest). Elevation was the dominant environmental
factor that influenced the spatial variation of SOCD and
STND. SOC and STN tend to accumulate on steep slopes
and high elevations in the desert steppes of the Hexi
Corridor. The coarse sand and silt contents in the study
area’s desert soils were more likely to determine SOC and
STN. SOCD and STND were negatively correlated with soil pH,
and SOC and STN of topsoil were therefore susceptible to the
effects of pH in the desert steppe soils. NDVI was significantly

positively correlated with both SOCD and STND, it is a feasible
measure to increase soil carbon and nitrogen storage through
vegetation restoration. In addition, remote sensing technology
can potentially be used to predict SOC and STN at a regional
scale in typical desert steppe. These results improve our
understanding of the spatial distribution of soil C and N
and the key driving factors responsible for this distribution.
As a result, they will support efforts to predict soil C and
nutrient accumulation in the desert steppes of the Hexi
Corridor.
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