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The influence of climate change on the regional hydrological cycle has been an international
scientific issue that has attracted more attention in recent decades due to its huge effects
on drought and flood. It is essential to investigate the change of regional hydrological
characteristics in the context of global warming for developing flood mitigation and water
utilization strategies in the future. The purpose of this study is to carry out a comprehensive
analysis of changes in future runoff and flood for the upper Huai River basin by combining
future climate scenarios, hydrological model, and flood frequency analysis. The daily bias
correction (DBC) statistical downscaling method is used to downscale the global climate
model (GCM) outputs from the sixth phase of the Coupled Model Intercomparison Project
(CMIP6) and to generate future daily temperature and precipitation series. The Xinanjiang
(XAJ) hydrological model is driven to project changes in future seasonal runoff under
SSP245 and SSP585 scenarios for two future periods: 2050s (2031–2060) and 2080s
(2071–2100) based on model calibration and validation. Finally, the peaks over threshold
(POT) method and generalized Pareto (GP) distribution are combined to evaluate the
changes of flood frequency for the upper Huai River basin. The results show that 1) GCMs
project that there has been an insignificant increasing trend in future precipitation series,
while an obvious increasing trend is detected in future temperature series; 2) average
monthly runoffs in low-flow season have seen decreasing trends under SSP245 and
SSP585 scenarios during the 2050s, while there has been an obvious increasing trend of
averagemonthly runoff in high-flow season during the 2080s; 3) there is a decreasing trend
in design floods below the 50-year return period under two future scenarios during the
2050s, while there has been an significant increasing trend in design flood during the
2080s in most cases and the amplitude of increase becomes larger for a larger return
period. The study suggests that future flood will probably occur more frequently and an
urgent need to develop appropriate adaptation measures to increase social resilience to
warming climate over the upper Huai River basin.
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1 INTRODUCTION

Climate change associated with global warming, mainly owing to
the rise of greenhouse gas emissions in the atmosphere, has
caused an increase of the evapotranspiration over the land
surface, which in turn has accelerated the hydrological cycle
and altered the hydrological element (Arnell and Gosling,
2013; Schewe et al., 2014; Wang et al., 2017). Recently, several
studies have already suggested signs of adverse impacts on
availability of water resources due to global warming in
different regions around the world (Feyen et al., 2012; Yoon
et al., 2016; Byun et al., 2018; Gu et al., 2020). Moreover, there is
strengthened evidence that the global water cycle will continue to
intensify as global temperatures rise, with precipitation and
surface water flows projected to become more variable over
most land regions (IPCC, 2021). A warmer climate will
intensify very wet and very dry weather and climate events.
These extreme events are expected to trigger further, leading
to increasing weather-related hazards such as destructive flooding
or drought, which possibly pose tremendous societal, economic,
and environmental challenges around the world. Therefore, it is
of great necessity to enhance the understanding of future changes
in the hydrological responses and flood characteristics under the
context of climate change to provide support for appropriate
adaptation strategies and water resources management.

In recent years, the global climate models have been proven to
be the most versatile and effective tool for producing potential
climatic scenarios in the future by many studies, which have been
extensively applied in investigating the effects of climate change
on the hydrological cycle and water resource management
(Masood et al., 2015; Amin et al., 2017; Zhuan, et al., 2018).
However, the coarse grids of GCMs are generally unable to
acquire climate variability at the basin scale; the downscaling
techniques are developed to convert GCM outputs with coarse
resolution to a finer scale for generating daily series of climate
variables representing the future climatic scenarios. Compared to
dynamic downscaling techniques, statistical downscaling
methods are more widely used owing to their relatively good
performance and inexpensive computational expense (Shen et al.,
2018; Gu et al., 2020). Moreover, the bias correction approaches
are usually used considering their convenience and good ability in
identifying extreme climatic features among those statistical
downscaling methods (Ahmadalipour et al., 2018). Based on
the results of the aforementioned techniques, a hydrological
model can be used to project and evaluate future changes in
hydrological characteristics from global and regional perspectives
(Jung and Chang., 2011; Alkama et al., 2013; Li et al., 2015;
Winsemius et al., 2016; Glenn et al., 2017; Wang et al., 2020). For
example, Koirala et al. (2014) used runoff outputs from 11
AOGCMs from phase 5 of the Coupled Model
Intercomparison Project (CMIP5) to evaluate the changes in
global streamflow. They found that high flow had a rising
trend over northern high latitudes of Eurasia and North
America, Asia, and eastern Africa under emission scenario
RCP4.5 and RCP8.5, while mean and low flows were both
projected with a decreasing trend in Europe, Middle East,
southwestern United States, and Central America. Zheng et al.

(2018) projected the changes of future climate and runoff for the
south Asia region under the RCP8.5 scenario using 42 CMIP5
GCMs, three downscaling techniques, and an H08 model. Their
results indicated that the change in precipitation was the main
driving factor leading to the increase in future runoff throughout
most of the study region.

Moreover, flood is the most serious disaster related to climate,
and it is projected to become more frequent and intense as global
warming (IPCC., 2013; Du et al., 2019; IPCC, 2021). Due to the
characteristics of the basin and river networks, the Huai River
basin is the worst hit area threatened by frequent flood disasters
since ancient times, and the flood severity of this area ranks first
among the major rivers over China. Recently, the basin-wide
floods in 1991, 2003, and 2007 are acknowledged as the most
destructive events on record in the Huai River basin, which have
resulted in considerable losses with millions of emergency
relocation and billions of economy loss (Zhang and You,
2014). These associated socioeconomic damages in the Huai
River basin will be even more progressively intensified under
the background of climate change. Therefore, investigating the
changes in flood characteristics over the Huai River basin is of
great importance to formulate regional flood risk mitigation
measures for future climatic scenarios. The conventional
approach to calculate future design floods is using historical
data only by fitting probability distribution functions, while it
may not truly reflect the probable future scenario of extreme
events due to the climate change. To overcome these
shortcomings, climate models and projections are widely
employed. In the previous studies, they found that results of
the CMIP5 models have shown strong agreement on an array of
flood variations (Silva and Portela, 2018; Nam et al., 2019; Tabari,
2020). For instance, Nyaupane et al. (2018) employed the variable
infiltration capacity (VIC) model to analyze the change in flood
frequency under various future emission scenarios from CMIP5
data for the study basin. They found that there existed a rising
trend of the future streamflow in the study area, and the future
flood with a 100-year return period likely would be more than
2 times the present flood with a 100-year return period,
highlighting the likelihood of the intensification of the risk of
future flooding. Gao et al. (2020) used four GCMs drawn from
CMIP5 in conjunction with GR4J model to evaluate the variations
of future extreme floods in the context of climate change in the Qu
river basin of east China under RCP4.5 and RCP8.5 scenarios.
They applied the POTmethod and generalized Pareto distribution
and found that a rising tendency of design floods was projected at
most cases in the future climate scenarios for the study area.

Despite global climate models from CMIP5 projections
effectively providing some useful information on how climate
change will affect the future flood, it is necessary to re-evaluate the
status of these effects once new datasets and research approaches
become available (Cook et al., 2020). Hence, the release of the
latest and most advanced climate models from phase 6 of the
Coupled Model Intercomparison Project (CMIP6) provides a
new opportunity to obtain more credible understanding of
influences of climate change on hydrology and to review
conclusions from previous community modeling efforts. Thus,
the specific purposes of this study are to investigate variations in
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precipitation, runoff, and flood for the upper Huai River basin
under a series of 21st-century development and radiative forcing
scenarios informed by the CMIP6 models. The structure of this
article contains the following five sections: First, Section 2
introduces the detailed information of the study area and data.
Then the employed approaches are described in Section 3,
including the downscaling technique, hydrological model, and
the POT approach. Section 4 evaluates the potential influences of
climate change on future runoff and flood. Finally, the discussion
and conclusion are detailed in Sections 5, 6, respectively.

2 STUDY AREA AND DATA

2.1 Study Area
The Huai River basin is located between 30°55′N–38°20′
30+55′38+20′N and 111°55′E–120°45′E111+55′120+45′,
between the Yellow River and the Yangtze River (Figure 1). It
originates in Tongbai Mountain of Henan Province and flows
into the Yangtze River, flowing through four provinces
(i.e., Henan, Anhui, Shandong, and Jiangsu provinces). The
total area of the Huai River basin is 191,200 km2, and the
length of the main channel is 1,000 km. The Xixian basin is
located in the upper reaches of the Huai River, with a catchment
area of 10,191 km2, which is chosen for study in this study. The
Xixian basin is located in the transition zone of warm
temperature region and northern subtropical zone. The main
crops are rice and wheat in this area. The multi-year average air
temperature is 15.4°C. The long-term average annual rainfall is
1,028 mm (calculated by the data from 1980 to 2014). Rainfall for

the flood season (from June to September) is mainly affected by
monsoon, and more than half of the precipitation (∼60%) falls in
the flood season. Owing to the monsoon and windward mountain
terrain conditions, flood has become the most serious natural
hazard in the Huai River basin.

2.2 Data
In this study, the 1980–2014 daily precipitation and
temperature data are obtained from observational gridded
datasets, with a 0.25° horizontal resolution, which can be
downloaded from the website of the National Meteorological
Information Center of the China Meteorological
Administration (http://cdc.cma.gov.cn/). These observational
gridded datasets are interpolated from observations of nearly
2,400 quality-proven stations all over China (Xu et al., 2009).
Moreover, the Thiessen polygon method is used to calculate the
basin-averaged daily precipitation and temperature data by the
gridded datasets for the study basin. The 1980–2014 daily
runoff data of Xixian station are obtained from the
Hydrology Bureau of the Huai River basin.

To analyze the future climatic scenarios, four GCM outputs
(BCC-CSM2-MR, CanESM5, CESM2, and MRI-ESM2-0) from
the latest CMIP6 are chosen under two SSP-RCP scenarios
(i.e., SSP245 and SSP585). Meanwhile, we downloaded the
essential model outputs (daily precipitation and daily
temperature) for both the historical period (1980–2014) and
future period (2015–2100). The detailed information of the
chosen models is listed in Table 1. According to the latest
studies (O’Neill et al., 2013; Simpkins, 2017; Su, et al., 2021),
the state-of-the-art scenarios become more plausible as the

FIGURE 1 | Location, topography, and river network of the upper Huai River basin, and the distribution of meteorological grids and hydrological stations.

Frontiers in Environmental Science | www.frontiersin.org December 2021 | Volume 9 | Article 7595473

Bian et al. Projecting Hydrological Responses to Climate Change

http://cdc.cma.gov.cn/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


shared socioeconomic pathways (SSPs) work in harmony with
RCPs by shared policy assumptions. There are five SSP scenarios
that represent the possible future socioeconomic conditions and
describe various combinations of mitigation and adaptation
challenges, including SSP1: sustainability; SSP2: middle of the
road; SSP3: regional rivalry; SSP4: inequality; and SSP5: fossil fuel
development (Huang et al., 2019; Su et al., 2021). Among these
scenarios, SSP245 and SSP585 are selected for this study as the
updated versions of the RCP 4.5 and RCP8.5 scenarios from
CMIP5.

3 METHODOLOGIES

3.1 Methodology Framework
Figure 2 displays the methodology framework of this study,
including three major modules of climate scenario projection,
hydrological model, and impact assessment. The module of
scenario projection produces climatic scenarios during
historical and future periods. The hydrological model
module involves the calibration and validation of the XAJ
model and calculation of daily runoff simulation under
historical and future climatic scenarios. The impact
assessments module is applied to investigate the runoff
seasonality variations and to quantify the potential impacts
of climate change on future design flood.

3.2 Xinanjiang Hydrological Model
The XAJ model, a conceptual hydrological model, is developed by
Zhao (1992). The physical basis of this model is the theory that
runoff generation occurs until the saturated condition of soil
water is reached. The XAJ model involves 16 free parameters (see
Table 2) and has been extensively and successfully applied in
runoff simulation and flood forecasting for the humid and semi-
humid zones over China. The detail of the XAJ model can be
found in Zhang et al. (2012). The basin-average daily
precipitation and daily potential evapotranspiration (PET) data
are calculated as the inputs of this model, and then the discharge
at the basin outlet is the final output. The PET is calculated by the
Oudin temperature–based method (Oudin et al., 2005) in this
study. Although this method requires only average daily
temperature data as input, it has been proved to be an
alternative to other complex methods, such as the Penman
method, for the hydrological simulations (Oudin et al., 2005).
Specifically, the formulas for potential evapotranspiration are
presented as follows:

PET � Re

λρ

Ta + 5
100

if Ta + 5> 0

PET � 0 if Ta + 5≤ 0,
(1)

where PET refers to the potential evapotranspiration (mm day−1),
Re refers to extraterrestrial radiation (MJ m−2 day−1), depending

TABLE 1 | Detail information of four selected GCMs from CMIP6.

No. Model name Abbreviation Horizontal resolution Modeling center

1 BCC-CESM2-MR BCC ∼1.125° × 1.121° Beijing Climate Center, China
2 CanESM5 CanESM ∼2.8125° × 2.7906° Canadian Center for Climate Modeling and Analysis, Canada
3 CESM2 CESM ∼1.25° × 0.9424° National Center For Atmospheric Research, United States
4 MRI-ESM2-0 MRI ∼1.125° × 1.1215° Meteorological Research Institute, Japan

FIGURE 2 | Methodology framework of future climate change impacts on seasonal runoff pattern and flood characteristics in the Xixian basin.
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only on latitude and Julian day, λ refers to the latent hear flux (MJ
kg−1), ρ refers to the density of water (kg m−3), and Ta is mean
daily air temperature (°C).

Furthermore, we select the shuffled complex evolution
optimization algorithm (SCE-UA, Duan et al., 1992) to
calibrate the XAJ hydrological model. The Kling–Gupta
efficiency (KGE) is selected as the evaluation index in this
study, and the objective function is to maximize the KGE
value during calibration. The KGE value could be calculated as
follows (Gupta et al., 2009):

KGE � 1 −
������������������������
(r − 1)2 + (α − 1)2 + (β − 1)2√

, (2)

where r indicates Pearson’s linear correlation coefficient between
the observed and simulated streamflow, α is the ratio of standard
deviations of observed and simulated streamflow, and β is the
ratio of the mean value of observation and simulations. The value
of KGE ranges from −∞ to 1, with KGE � 1 indicating a perfect fit
between the observed and simulated series.

3.3 Daily Bias Correction Approach
The DBC approach is an empirical statistical downscaling
approach and has recently been used to correct the
systematical errors of raw GCM scenarios (Chen et al., 2013b).
The procedures of these methods are calculated as follows: First,
the precipitation occurrence of each GCM output is revised by a
determined threshold defined month by month from the
historical period, which can ensure that the corrected
historical precipitation has the same frequency as observations.
Then those thresholds are employed to correct the frequency of
rainy days for the future period. Furthermore, the daily
precipitation distribution of each month is revised by
multiplying (or adding) the quantile ratios (or differences)
between the observations and GCM simulations during the
historical period. Finally, those quantile ratios (or differences)
are applied to correct distribution of daily precipitation during
the future period. Definitely, these procedures can also be used for
temperature correction. The formulas can be expressed as follows:

Padj,d � PGCM,d × (Pobs,Q/PGCM,ref,Q)
Tadj,d � TGCM,d × (Tobs,Q/TGCM,ref,Q), (3)

where the subscript Q is a quantile for a month, the subscript d is
a specific day in the historical or future period, and the subscript
adj is the corrected variables.

3.4 Peak Over Threshold Method
In this study, the POT approach is employed to extract a number
of flood samples each year that are required to exceed the
threshold S determined by certain criteria. Compared to
annual maximum series method (AMS), this method has the
core advantage, allowing more reasonable events to be identified
as “floods” for extreme value analysis. Thus, the POTmethod can
not only overcome the shortcoming of short historical data but
also provide a more comprehensive description of the “flood”
process (Lang et al., 1999). Accordingly, this method has been
commonly employed in the estimation of extreme precipitation
and temperature and the frequency analysis of flood runoff, and
so on (Solari et al., 2017; Lee et al., 2019; Bian et al., 2020; Yang
et al., 2020). In this study, the POTmethod is conducted for flood
frequency analysis. The first key step is to ensure that the sampled
flood events satisfy the independence condition. Here, the criteria
evaluated by Silva et al. (2012) are employed, which indicates that
the successive two flood peaks can be accepted when they meet
the following formula:

D< 5 days + log(A)
Qmin <

3
4
min(Q1, Q2),

(4)

where D refers to the interval time between two flood peaks in
days, A denotes the basin area in km2, and Q1 and Q2 are the
magnitudes of two flood peaks in m3/s, respectively.

In addition, an appropriate threshold is required to determine
to guarantee that the frequency distribution of floods meets a
Poisson function, which is another key point here. The mean
number of over-threshold events per year μ should be more than

TABLE 2 | Parameters of XAJ model.

Rank Parameters Description Unit Range

1 KC Ratio of PET to the pan evaporation [0.6, 1.2]
2 WUM Tension water capacity of upper layer mm [5, 20]
3 WLM Tension water capacity of lower layer mm [60, 90]
4 C Deeper evapotranspiration coefficient [0.08, 0.18]
5 WM Areal mean tension water capacity mm [120, 220]
6 B Exponential of the distribution of tension water capacity [0.1, 0.4]
7 IMP Ratio of impervious area to the total area of the basin [0.01, 0.02]
8 SM Free water storage capacity mm [10, 50]
9 EX Exponential of distribution water capacity [1, 1.5]
10 KG Outflow coefficient of free water storage to the groundwater flow [0.2, 0.6]
11 KI Outflow coefficient of free water storage to the interflow [0.2, 0.6]
12 CS Recession constant of surface water storage [0.4, 0.7]
13 CI Recession constant of interflow storage [0.5, 0.9]
14 CG Recession constant of groundwater storage [0.99, 1]
15 KE Residence time of water h [0.5, 1.5]
16 XE Muskingum coefficient [0, 0.5]
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two times per year as recommended by Mediero et al. (2014).
Therefore, the mean annual number of flood events is set as μ � 3
under the independence assumption in this study. Last, the
extracted series of flood peaks are fitted with a generalized
Pareto (GP) distribution.

4 RESULTS

4.1 Bias Correction Performance of Global
Climate Models
The performances of GCMs are discrepant for different climate
variables among various climate regions; thus, there is no
common conclusion on how to select suitable GCMs in a
particular basin. Therefore, it is necessary to assess the

performances of the chosen models (i.e., BCC, CanESM,
CESM, and MRI models) in order to investigate the influences
of climate change on seasonal runoffs and floods in the Xixian
basin. The systematical errors of raw GCM outputs are tackled by
the DBC method. Afterward, 23 metrics (Table 3) are selected to
describe mean and extreme values of precipitation and
temperature series under climate change. The raw GCM
simulations have the same historical period 1980–2014 with
the observed data.

Figure 3 is a color-coded “portrait diagram” showing the
deviations of precipitation and temperature before and after DBC
method during the historical period. It is can be seen that raw
outputs of precipitation and temperature from four GCMs exhibit
obvious deviations. The raw precipitations of GCMs deviate from
observed precipitations by more than ±50% for most metrics,
whereas the deviations of temperature are generally above ±2°C.
However, the systematic biases of GCMs are significantly reduced
after the DBC. The biases of precipitation effectively reduce to
below 5% in most cases for the selected GCMs, and as for
temperature, the biases reduce to lower than 0.1°C. Overall,
the performances of bias correction for both precipitation and
temperature simulation of GCMs are satisfied for the research
requirement. Those results indicate that the DBC method is
reliable for reproducing future climate variables in the
study basin.

4.2 Projected Variations of Precipitation and
Air Temperature
The long-term changes of annual mean precipitation and
temperature over the upper Huai River basin are detected

TABLE 3 | List of evaluation metrics for precipitation and temperature.

No. Evaluation metrics (mean) No. Evaluation metrics (quantile)

1 Daily 14 0.1
2 January 15 0.2
3 February 16 0.3
4 March 17 0.4
5 April 18 0.5
6 May 19 0.6
7 June 20 0.7
8 July 21 0.8
9 August 22 0.9
10 September 23 0.99
11 October
12 November
13 December

FIGURE 3 |Portrait diagram of daily precipitation relative deviation (%) and temperature absolute deviation (°C) for the selectedGCMs before and after DBCmethod
in Xixian basin. The x-axis represents the 23 metrics, whereas the y-axis represents the GCMs.
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during the period of 1980–2100 for each GCM under two
different SSP–RCP scenarios (SSP245 and SSP585). Relative to
the change of precipitation over the baseline period, there is a
general rising trend during the future period, although the rising
rate varies with different GCM and SSP scenarios (Figure 4).
More specifically, BCC model projects the highest increasing rate
of annual mean precipitation with a rising rate up to 28 mm per
decade under SSP585 scenarios, while the minimum rising rate of
annual mean precipitation with 10.3 mm per decade is projected
by the MRI model. For SSP245 scenario, the increasing tendency
of precipitation is more insignificant than that under SSP585
scenario.

In the field of the long-term tendency of annual mean
temperature, Figure 5 shows that a significant increasing trend
in temperature is observed during the period 1980–2100, and
more significant increasing changing of temperature is observed
under SSP585 scenario compared to the SSP245. In detail, the
CanESM model releases the most pronounced warming signal,
which projects that the annual average temperature has a
significant rising rate of 0.37°C and 0.57°C per decade under
SSP245 and SSP585 scenarios, respectively. The MRI model
exhibits the most optimistic warming condition with an
increase of 0.23°C and 0.33°C per decade under the two
scenarios, respectively. The BCC and CESM models project
that annual average temperature has a significant increase with
a rate of 0.28 and 0.23°C per decade under SSP245, respectively,

and with a maximum rate of 0.37°C per decade under SSP585
scenarios.

4.3 Calibration and Validation Results of
Xinanjiang Model
In this study, XAJ model is adopted to simulate hydrological
processes in the Xixian basin. Initially, we used the basin-
averaged precipitation and temperature data during 1980–1999
to carry out the calibration of the XAJ model, and then the
optimum model parameters are obtained with the largest KGE
value. The 15-year period during 2000–2014 are used for model
validation. To further investigate the performance of the XAJ
model, the Nash–Sutcliffe efficiency coefficient (NSE) and relative
bias (PBIAS) criteria are also employed.

Table 4 presents the results of calibration and validation
periods for the Xixian basin. Furthermore, the comparisons
between observed and simulated runoffs in two periods at the
daily and monthly scale are presented in Figure 6, which suggest
that the XAJ model performs well in the study basin though with
overestimates or underestimates in the flood peaks in some cases.
From Table 4, it can be seen that the KGE values are 0.86 and
0.91, respectively, at the monthly scale, and 0.79 and 0.82 at the
daily scale for calibration and validation periods. In addition, the
NSEs are 0.88 and 0.86, respectively, at the monthly scale, and
0.74 and 0.71 at the daily scale, and the PBIAS of the calibration

FIGURE 4 | Trend results of annual mean precipitation for each GCM in the Xixian basin from 1980 to 2100.
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and validation are both lower than 10%. These results indicate
that the XAJ model can perform satisfactorily so that it can be
used to project hydrological scenarios in subsequent research.

4.4 Impacts of Climate Change on Runoff
Seasonal Pattern
To investigate the influence of climate change on monthly runoff
over the Xixian basin, the XAJ model is used to simulate runoffs
during the historical period (1980–2014) and two future periods:
2050s (2031–2060) and 2080s (2071–2100). Figure 7
demonstrates the monthly average runoff during the two
future periods for each GCM under SSP245 and SSP585
scenarios. Broadly speaking, the selected GCMs perform
similarly for change of monthly runoff under two scenarios,
but there still exist some differences. Under SSP245 scenario,
all GCMs project that runoffs of most months are generally

smaller than those in the baseline period over the 2050s, while
runoffs of high-flow season over the 2080s are larger than those in
the baseline period, reflected in May to September. Moreover, the
change patterns of seasonal runoffs under SSP585 scenario are
similar to those under SSP245 scenario during the two future
periods. These can be explained by the fact that precipitation
simulations in the 2050s are equal to or less than those in the
baseline period under SSP245 and SSP585 scenarios, while the
higher temperature is projected. Thus, the projected monthly
runoffs are smaller in the 2050s than those in the baseline period.
In contrast, the precipitation simulations in the 2080s are
obviously larger than those in the baseline period, which
results in higher monthly runoffs. In addition, compared with
SSP245, the monthly runoffs under SSP585 scenario are
obviously higher, especially for high-flow months.

Then, we further analyzed the variations of monthly runoff
between the baseline and the two future periods under SSP245
and SSP585 scenarios, as shown in Figure 8. There is a large
discrepancy between the changing trends of average monthly
runoffs in the two future periods. During the 2050s, the monthly
average runoffs in most months have seen decreasing trends for
each GCM under SSP245 and SSP585 scenarios, generally
occurring in the low-flow season such as January to April and
September to December. It can be seen that the monthly average
runoffs are lower than that in baseline period and have decreased
by about 10 and 8% under SSP245 and SSP585 scenario,
respectively. These indicate that there will be more serious

FIGURE 5 | Trend results of annual average air temperature for each GCM in the Xixian basin from 1980 to 2100.

TABLE 4 | Evaluation of the XAJ model performance at daily and monthly
time step.

Period KGE NSE PBIAS(%)

Daily Calibration (1980–1999) 0.79 0.74 1.4
Validation (2000–2014) 0.82 0.71 9.7

Monthly Calibration (1980–1999) 0.86 0.88 1.4
Validation (2000–2014) 0.91 0.86 9.7
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water shortage and higher risk of drought during the 2050s in the
upper Huai river basin. In addition, Figure 8 shows that there has
been an obvious increasing trend of monthly average runoff in the
high-flow season during the 2080s. In detail, compared to the
baseline period, the GCMs project that the monthly runoffs have
generally increased by about 29% from May to September under
the SSP245 scenario. Under the SSP585 scenario, the monthly
runoffs are projected to increase by approximately 39% fromMay
to September. These may be caused by increasing seasonal
precipitation in high-flow season under two future scenarios.
Thus, there will be higher flood risk in high-flow season during
the 2080s in the upper Huai river basin, especially under the
SSP585 scenario, which also are proved in subsequent analyses of
impacts of climate change on design floods.

4.5 Impacts of Climate Change on Design
Floods
In order to analyze the changes of flood frequency, the flood peaks
are extracted by the POT method in this study, which has been
certified to be more reasonable than the annual maximum
sampling approach (Mediero et al., 2014; Bian et al., 2020).
Moreover, the L-Moment approach (Hosking and Wallis,
1997) is used to estimate the parameters of GP distribution.
The design floods under SSP245 and SSP585 scenarios for each
GCM during the two future periods are demonstrated in

Figure 9. It can be seen that the change patterns of design
floods are quite different between the 2050s and 2080s for
each GCM under SSP245 and SSP585 scenarios. In detail,
during the 2031–2060, the design floods are generally lower
than those in baseline period for small return period under
the two scenarios for each GCM. However, BCC and CanESM
models project that the design flood with a 100-year return period
is obviously bigger than that in baseline period under SSP585
scenario. As for the 2080s, there have been the obviously larger
design floods for all GCMs under SSP245 scenarios comparing to
the near future period. When the return period exceeds 20 years,
the design floods of 2080s are larger than those of baseline period.
Moreover, the design flood runoffs are projected to increase more
significantly when the return periods increase. Under SSP585
scenarios, the design floods of 2080s are larger than those of
baseline period when the return period exceeds 10 years. In
addition, the flood magnitude with the same return period is
greater than that under SSP245 scenario. These indicate that flood
extremes are projected to increase during the future periods in the
upper Huai River basin, especially under SSP585 scenario.

To further investigate the results as mentioned above, the
changes of future floods are calculated for the 10, 20, 50, and 100-
year return period, shown in Figure 10. It can be observed that
the design floods of the 100-year return period are increasing for
all GCMs under the SSP245 and SSP585 scenarios during the
2050s, especially the CanESM model, which exhibits the largest

FIGURE 6 | Performance of XAJ model for the calibration (A) and validation (B) periods at daily and monthly scale in the Xixian basin.
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increasing rate with the 17.9 and 38.4% under SSP245 and SSP585
scenarios, respectively. However, there has been a general
decreasing tendency of the design floods with 50, 20 and 10-
year return periods during the 2050s under SSP245 scenario. As
the return period decreases, the reducing range of design flood
runoffs is exacerbated. In addition, Figure 10 demonstrates that
the change patterns of design floods for 2080s show great

differences from those in 2050s. All GCMs project obvious
increasing trends of the design floods for all return periods
under the two scenarios, except the design floods with a 10-
year return period of CESM andMRI. In detail, CanESM projects
that under SSP585 scenario, the rising rate of design floods for the
100-year and 50-year return periods in the 2080s can go up to 106
and 72%, respectively. For the BCC model, the design floods for

FIGURE 7 | Seasonal runoffs of different GCMs under SSP245 (bottom) and SSP585 (top) scenarios during two future periods 2050s (A) and 2080s (B).
“Baseline” denotes the results in the baseline period. “SSP245_BCC” denotes the results of BCC model under SSP245 scenario in the future period that as well applies
to the other seven abbreviations.

FIGURE 8 | Relative change results of seasonal runoffs during two future periods 2050s (A) and 2080s (B) to the historical period.
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100-year and 50-year return periods increase by 60.6 and 48.7%,
respectively, under SSP585 scenario. CESM model projects that
the increasing rates of design floods for these two return periods
are 45.4 and 36.4%, respectively, under SSP585 scenario, and
those of MRI model increase by 42.8 and 26.5%, respectively.
However, under SSP245 scenario, the increases of design floods

with 100-year and 50-year return periods are far below that under
the SSP585 scenario. These could be explained by the fact that the
heavier emission of gas such as SSP585 scenario causes the larger
extreme precipitation. These results indicate that the flood events
are likely to occur more frequently during the far future period in
the Xixian basin.

FIGURE 9 | Design floods of different return periods for various GCMs under SSP245 (bottom) and SSP585 (top) scenarios during two future periods 2050s (A)
and 2080s (B).

FIGURE 10 | Relative changes of design floods with 100-year, 50-year, 20-year, and 10-year return periods during two future periods 2050s (A) and 2080s (B) to
the baseline period.
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5 DISCUSSION

As we know, flood frequency is expected to increase as the
hydrological cycle has been altered by climate change. This paper
quantitatively evaluates the changes of future floods in response to
climate change coupling of CMIP6 models and XAJ hydrological
model in the Xixian basin. As expected, the main results
demonstrated that extreme floods will increase under future
climatic scenarios in the study area, which is consistent with the
previous studies (Wang et al., 2018; Yang et al., 2020). Jin et al. (2017)
used CMIP5 models to investigate the effects of climate change on
flood in the upper Huai River basin during 2021–2050. They found
that future floods were projected to increase under the RCP4.5 and
RCP5.8 scenarios over the upper Huai River basin. The fact is that
the heavier and more frequent precipitation extremes in future can
be used to explain the intensification of extreme floods. Based on the
Clausius–Clapeyron law, a 1 K increase in temperature is likely to
cause the water vapor holding capacity to increase by about 7%
(Trenberth et al., 2003). Therefore, a warmer atmosphere enables to
supply more sufficient water vapor and enhances the occurrence of
extreme precipitation. Although the physical mechanism of flood
production is more complex, flood extremes are projected to
increase when extreme precipitation events occur more frequently
in the future. This has been confirmed by previous literature studies
(Hirabayashi et al., 2013; Wu and Huang., 2015).

In this study, we use four CMIP6 GCMs, two SSP scenarios,
one downscaling method, one hydrological model, and one
frequent analysis approach to analyze the projections of
possible changes range for future design floods during two
time stages in the Xixian basin. The results show that GCM
and SSP scenarios both cause large uncertainties in projections of
floods under future climatic scenarios, which are in agreement
with the previous literatures (Chen et al., 2013a; Basheer et al.,
2016; Krysanova et al., 2017; Hattermann et al., 2018).
Meanwhile, the discrepancy of the projected results from
different GCM and SSP scenarios also emphasizes that the
misleading conclusions may be drawn if only one GCM and
SSP scenario is adopt for future climate change studies. In
addition, there are some limitations in this study. First, we
ignored the possible impacts of other important uncertainty
sources in this study, involving downscaling methods, the
structure and parameters of hydrological model, and the flood
frequency distribution functions. Although many studies have
suggested that GCMs generate much larger uncertainty
comparing to those from downscaling techniques and
hydrological models (Dobler et al., 2012; Karlsson et al., 2016;
Das et al., 2018), this does not mean that the impacts of other
uncertainty sourcing should be overlooked. Consequently, the
next step of our study is to thoroughly analyze the uncertainties
stemming from various uncertainty sources in the evaluation of
effects of climate change on future floods. Second, human
activities, including land-use change, water conservancy
construction, and government policy, are another important
driving factor affecting runoff and flood for the upper Huai
River basin. Hence, future runoff responses to human
activities and climate change are required to further accurately
investigate in following works.

6 CONCLUSION

Based on four CMIP6 GCMs, this study investigates the potential
influences of climate change on future seasonal runoffs and extreme
floods in the upper Huai River basin. The statistical downscaling
methods DBC is adopted to translate the GCM outputs with coarse
resolution to regional and basin scale, and then the XAJ model is
employed to simulate daily discharge for the baseline period
(1980–2014) and two future periods: 2050s (2031–2060) and
2080s (2071–2100). The POT method and GP distribution are
employed to estimate the changes in design floods for different
return periods. The main conclusions are summarized as follows:

1) There is an insignificant increasing tendency of precipitation
in the Xixian basin. The projection of annual mean
precipitation has greater climate model uncertainty and
roughly increases 11 mm (60 mm) under SSP245 (SSP585)
scenario. In terms of the annual mean temperature, there is an
obvious increasing trend with a rising rate of 0.59°C (0.36°C)
per decade under SSP585 (SSP245) scenario.

2) The XAJmodel performs well in simulating both monthly and
daily runoffs demonstrated by validation results; thus, it
enables to be employed to evaluate the potential influences
of climate change on runoffs. Modeling outputs indicate that
runoffs in most low-flow months have seen decreasing trends
under SSP245 and SSP585 scenarios during the 2050s
(2031–2060), while there has been an obvious increasing
trend of most high-flow monthly average runoffs during
the 2080s (2071–2100).

3) There is a pronounced increasing tendency in design floods
with large return period under climate change. Especially the
design flood for a 100-year return period is roughly projected
to increase 42.8–106% for SSP585 scenario during the 2080s,
and the amplitude of flood increase decreases with the
decrease of the return period. For the 2050s period, design
floods with small return periods have a decreasing trend under
two scenarios, and as the return period decreases, the
decreasing extent of design flood runoffs is exacerbated.
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