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Air quality is a major problem in the world, having severe health implications. Long-term
exposure to poor air quality causes pulmonary and cardiovascular diseases. Several
studies have also found that deteriorating air quality also causes substantial economic
losses. Thus, techniques that can forecast air quality with higher accuracymay help reduce
health and economic consequences. Prior research has utilized state-of-the-art artificial
neural network and recurrent neural network models for forecasting air quality. However, a
comprehensive investigation of different architectures of recurrent neural network,
especially LSTMs and ensemble techniques, has been less explored. Also, there have
been less explorations of long-term air quality forecasts via these methods exists. This
research proposes the development and calibration of recurrent neural network models
and their ensemble, which can forecast air quality in terms of PM2.5 concentration 6 hours
ahead in time. For forecasting air quality, a vanilla-LSTM, a stack-LSTM, a bidirectional-
LSTM, a CNN-LSTM, and an ensemble of individual LSTMmodels were trained on the UCI
Machine Learning Beijing dataset. Data were split into two parts, where 80% of data were
used for training the models, while the remaining 20%were used for validating the models.
For comparative analysis, four regression losses were calculated, namely root mean
squared error, mean absolute percentage error, mean absolute error and Pearson’s
correlation coefficient. Results revealed that among all models, the ensemble model
performed the best in predicting the PM2.5 concentrations. Furthermore, the ensemble
model outperformed other models reported in literature by a long margin. Among the
individual models, the bidirectional-LSTM performed the best. We highlight the
implications of this research on long-term forecasting of air quality via recurrent and
ensemble techniques.
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INTRODUCTION

Deteriorating air quality is a significant problem in the world (Irfan, 2018). It not only has health
implications but also causes huge economic losses (OCED, 2016). Globalization, non-sustainable
development, vehicular emissions, and industrialization are some of the likely causes of worsening air
quality (Bernard & Kazmin, 2018). Various studies have found that prolonged exposure to poor air
quality can lead to lung cancer, asthma, heart attack, and bronchitis (World Health Organization,
2018). It is estimated that around 4.2 million people die per year due to air pollution-related ailments
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(World Health Organization, 2018). Among these deaths, most
were reported in densely populated countries like India and
China (World Health Organization, 2018).

Given the health and economic consequences of poor air
quality, it is imperative to develop forecasting models that can
forecast air quality with higher accuracy, multiple time-steps
ahead in time. Long-term air-quality forecasting may likely
give policymakers sufficient time to devise regulations that
could deter air quality degradation (Wieland & Wolters,
2012). Widespread use and adaptation of the forecasting
models may derive policy decisions. For example, various
regulations like restrictions on vehicles, licensing of new
industries, and expenditure on sustainable development could
be made based on the future forecast of air quality (Edwards,
1996).

A number of prior research works have forecasted air-quality
variables (Huang & Kuo, 2018; Zhao et al., 2019; Feng et al.,
2020). For example, Huang and Kuo (2018) proposed a deep
Convolution Neural Network-LSTM model that was specifically
designed for sequence prediction problems to forecast particulate
matter concentrations of equal to or less than 2.5 μm (PM2.5).
Zhao et al. (2019) and Tsai et al. (2018) developed an LSTM-FC
model and a vanilla-LSTM model to forecast PM2.5 levels.
Various ensemble techniques have also been explored (Ganesh
et al., 2018; Qiao et al., 2019). For example, Ganesh et al. (2018)
proposed an ensemble of three methods, namely, gradient
boosting, neural network, and random forest for the
prediction of PM2.5. Qiao et al. (2019) investigated Stacked
Autoencoder LSTMs (SAE-LSTMs) for PM2.5 forecasting and
compared their results with Back Propagation (BP), Stacked
Autoencoder Back Propagation (SAE-BP), and Extreme
Learning Machine (ELM) models. However, in both of their
research (Ganesh et al., 2018; Qiao et al., 2019), the data used were
small, and only a small number of parameters were optimized in
the models. Also, most of these models only forecasted one time-
step ahead in time. Though, Feng et al. (2020) proposed a model
which forecasted multiple-step ahead in time, but they only
investigated a multi-layer perceptron (MLP) model.
Furthermore, an investigation of ensemble models via
calibration of individual models has also been less explored.

In this paper, the above-mentioned literature gaps are bridged
by developing and calibrating different recurrent neural
networks, namely, vanilla-LSTMs, stacked LSTMs,
bidirectional-LSTMs, and CNN-LSTMs. This research also
proposes a weighted average ensemble model based on the
above-mentioned individual LSTM models. A grid-search was
utilized to calibrate hyperparameters in the models, where grid-
search exhaustively tries all possible parameters within a given
range. For training and validating the models, a large multi-
variate UCI Machine Learning Beijing dataset was used (Liang
et al., 2015). The data was collected over 5 years at US Embassy in
Beijing.

In what follows, we first describe the prior literature in this
field and its limitation. Next, we describe the methodology
utilized to develop and calibrate different recurrent neural
network models. The subsection includes the source of data,
description of data, and the ranges and values of the

hyperparameters, which were optimized using the grid-search
technique. The result section describes the results obtained from
the calibrated models. Lastly, we discuss the implication of the
research and its applications to predicting air quality in the
longer term.

Background
Feng et al. (2020) proposed the use of a Multilayer Perceptron
(MLP) prediction model for the forecasting of PM2.5 levels. The
model forecasted short-term and long-term PM2.5 concentrations
based on the multivariate data. However, the study only
investigated the MLP model, and other recurrent neural
network models were not investigated. Huang and Kuo (2018)
proposed the use of a deep CNN-LSTM model for PM2.5

forecasting. Data from the Beijing dataset (Liang et al., 2015)
were used to train and validate the model. However, the
developed forecasting model only forecasted short-term values.
Also, an investigation of other recurrent neural network models
and a comparative study against other models was not performed.
Qiao et al. (2019) proposed a hybrid model based on wavelet
transform Stacked Autoencoder-LSTM to forecast PM2.5. Again,
the forecasting model performed short-term predictions, and no
comparative study against other recurrent neural network models
was performed. Li et al. (2020) proposed a hybrid CNN-LSTM
model for forecasting PM2.5. However, no other architectures of
recurrent neural network models were investigated. Also, the
hyperparameters of models were calibrated in a small range. Jin
et al. (2020) proposed a hybrid deep learning model for long-term
predictions in which the PM2.5 data were decomposed into
components by empirical mode decomposition (EMD) and
then passed to gated-recurrent-unit (GRU). However,
benchmarking against other recurrent neural networks was not
explored. Saini et al. (2020) proposed MLP, CNN, LSTM,
SARIMA, and ensemble models for PM2.5 forecasting.
However, only univariave models were investigated.
Furthermore, the investigation was limited to forecasting one-
step ahead in time. Tsai et al. (2018) proposed forecasting PM2.5

using the vanilla-LSTM model. The data used to train the model
were retrieved from the Environmental Protection Agency of
Taiwan. Again, only a vanilla-LSTM was explored, and the
benchmarking of the model against other models was absent.
Also, in the calibration of the model, only lookback periods was
optimized in a small range and no other parameters were
calibrated. Furthermore, no ensembling techniques were
explored. Some researchers have also explored statistical
modeling techniques for forecasting PM2.5 concentrations. Like
Pozza et al. (2010) proposed the use of Seasonal Autoregressive
Moving Average (SARIMA) model to forecast PM2.5 and PM10

concentration. The study was conducted in Sao Carlos city in
Brazil and only statistical techniques like SARIMA and Holt-
Winters were explored. No comparative study against state-of-
the-art machine learning models were explored.

In this research, we bridge these literature gaps by developing
four multi-variate multi-step recurrent neural network models,
namely, vanilla-LSTM, stack-LSTM, bidirectional-LSTM, CNN-
LSTM, and a weighted average ensemble model of individual
LSTM models. Data from the Beijing dataset (Liang et al., 2015)
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was used to train and validate the models. While the grid-search
was used to calibrate the model’s hyperparameters. For
comparative study, four error functions were calculated on the
forecasted value, namely, root mean squared error (RMSE), mean
absolute percentage error (MAPE), mean absolute error (MAE),
and Pearson’s correlation coefficient (r) values. The research was
focused on developing multi-step long-term forecasting models
which could forecast multiple time-steps ahead in time.

METHODOLOGY

Data
Data for the experiments were taken from the UCI Machine
Learning Repository, where it was collected at US Embassy in
Beijing (Liang et al., 2015). The data consisted of one pollutant
i.e., particulate matter of 2.5-micron size (PM2.5), and six weather
parameters, namely, dewpoint, atmospheric pressure, cumulated
wind speed, cumulated hours of snow, and cumulated hours of
rain. Table 1 shows the summary information about the

parameters in the data. For example, the units of the PM2.5

parameter was µg/m3, the minimum value was 0 μg/m3, the
maximum value was 994 μg/m3, the average value was 98.6 μg/
m3, and the standard deviation was 92.05 μg/m3. The data was
logged on an hourly basis for 5 years, i.e., between January 1st,

2010, and December 31st, 2014. It consisted of around 43,000
observations. The total dimension of data was (43,824, 7), i.e., the
data table had 43,824 rows and seven columns. The data was split
into two parts, where 80% of the data were used to train the
models, while the remaining 20% of the data were used to validate
the models.

Figure 1 shows the heatmap detailing Pearson’s correlation
coefficient values between different parameters in data. A
gradient from dark blue to white represents positive to
negative correlations between different parameters. As can be
observed in Figure 1, some of the parameters showed strong
correlation values between the dependent and independent
variables. For example, dewpoint and temperature showed a
strong positive correlation while dewpoint and pressure
showed a strong negative correlation. Similary, PM2.5

TABLE 1 | Parameter description.

Parameter Unit Min Max Average Standard deviation

PM2.5 µg/m3 0 994 98.60 92.05
Temperature Fahrenheit -19 42 12.40 12.17
Dewpoint Fahrenheit -40 28 1.75 14.43
Pressure hPa 991 1,046 1,016.44 10.30
Wind Speed m/s 0.45 565.41 23.86 49.68
Rain Cumulated hours of rain 0.0 36.0 0.19 1.42
Snow Cumulated hours of snow 0.0 27.0 0.05 0.78

FIGURE 1 | Heatmap of the Pearson’s correlation coefficient values for different parameters in data. A gradient from dark blue to white color represents strong
positive to strong negative correlations, respectively.
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concentration showed a negative correlation with the wind speed
parameter.

Data Preparation
The time-series data were first pre-processed and then converted
into a supervised dataset. Missing entries were dropped from the
dataset. As the features had different scales, machine learning
models could have assigned higher weightage to features with
high magnitudes. This differential weighting would have
impacted the performance of models. Thus, to resolve the
issue, all parameters were normalized using a min-max scaler,
and their values were converted into the range [-1, 1]. This range
was selected after experimenting with other ranges. A supervised
machine learningmodel requires data in the form of the following
equation:

y(t) � f(x) (1)

Here, the model takes some input vector x and maps it to some
output y. In this paper, we developed models that could forecast
PM2.5 6 hours ahead in time, where each prediction was 1-h apart.
The following equation represents the input vector that was
provided to models:

It � (pm2.5t, tempt, dewpointt, pressuret, wst, raint, snowt)
(2)

Here, t represents the specific time period ‘t’ in the data series, and
It represents the input vector at time t. Other variables on the
right-hand side are the values of different measured quantities
like PM2.5, temperature, dewpoint, pressure, wind speed, rain,
and snow at time t. The following equation shows the inputs and
the outputs in the developed models:

[y′pm2.5(t+1), y′pm2.5(t+2), y′pm2.5(t+3), y′pm2.5(t+4), y′pm2.5(t+5), y′pm2.5(t+6)]
� f(It, It−1, It−2, . . . . . . .. It−lb)

(3)

Here, the input to the model was a normalized series of
parameter vectors described in Eq. 2 from some hour ‘t’ up to
hour defined by ‘t − lb’. In Eq. 3, the lookback period (lb)
represents the number of the recent observations to be used
when predicting the future values of PM2.5 concentration. The

lookback period was varied in a specific range and it
was optimized using a grid-search. The output of the model
was [y′pm2.5(t+1), y′pm2.5(t+2), y′pm2.5(t+3), y′pm2.5(t+4), y′pm2.5(t+5),
y′pm2.5(t+6)] representing the forecasted normalized PM2.5

concentration values at hour t + 1, t + 2, . . . ., t + 6. We first
rescaled the outputs from the models to their original value,
and then we computed the RMSE and MAPE errors. Figure 2
shows the higher-level architecture of the models. As can be
observed, PM2.5, temperature, pressure, dewpoint, wind speed,
rain, and snow parameters from hour t to hour t-lb period were
passed as an input to a model, and the model forecasted PM2.5

concentration at hours t+1, t+2, t+3, t+4, t+5, and t+6.
Figure 3 shows the flow-chart of the procedure followed in
this research. As can be observed in Figure 3, data were first
cleaned and normalized. Then, data were converted into a
supervised format (Eq. 1) and these transformed data were
then used for training the individual models and an ensemble
model. After the training of models, error metrics were
calculated for each hour on training and test dataset.

Models
For this research, four variants of LSTMmodels, namely, vanilla-
LSTM, stack-LSTM bidirectional-LSTM, and CNN-LSTM, were
developed. A weighted average ensemble model using the above-
mentioned optimized models was also developed to obtain a
regularized model.

Vanilla-LSTM: A vanilla-LSTM model is a variant of the
LSTM model with only a single hidden layer. So, it consists of
one input layer, one hidden layer of one or multiple LSTM
nodes, and an output layer (Kumar et al., 2021). Figure 4
shows the LSTM node with three gates: input gate, forget gate,
and output gate. These gates allow the LSTM unit to regulate
which information to keep in memory and which to forget.
Vanilla-LSTM can have multiples LSTM nodes in its
hidden layer.

Stack-LSTM: A stack-LSTM model consists of multiple
hidden layers (Kumar et al., 2021). So, it has one input layer,
a number of hidden layers consisting of a varying number of
nodes per layer, and an output layer (Kumar et al., 2021). The
LSTM unit depicted in Figure 4 is the same for the stack-LSTM
model too.

FIGURE 2 | High-level model inputs and outputs.
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Bidirectional-LSTM: In the bidirectional-LSTMs model,
instead of one, two LSTM units are trained on the same
input sequence (Kumar et al., 2021). The first unit of LSTM
is trained on the input sequence as it is, and a second LSTM
unit is trained on the reversed copy of the input sequence. This
technique enables the LSTM to learn additional context or
dependency in the data. In this experiment, we developed a
stacked bidirectional-LSTM model with a varied number of
nodes and layers. Figure 5 shows the architecture of the
bidirectional-LSTM model.

CNN-LSTM: In this architecture, a hybrid combination of
CNN and LSTM is utilized, where the CNN layer finds the
local-spatial relationship, and the LSTM layer finds the
temporal relationship in the data (Ding et al., 2018). One

1D-CNN layer followed by 1D max-pooling layer, cascaded
with one LSTM layer, is used in the model. The 1D-CNN layer
interpreted the input subsequence using the specified filter
size and kernel size. The output from the 1D-CNN layer is
then passed to a 1D max-pooling layer that distilled the output
to its half the size, which includes the most salient features of
the data. Then, this distilled data is passed to the LSTM unit
for further processing. We optimized the filter size and kernel
size in the CNN layer and the number of nodes in the
LSTM layer.

Ensemble Model: The weighted average technique is utilized
to develop the ensemble model using all the five aforementioned
models. Each model contributes to calculating the forecast in the
proportion of its performance on the test dataset. The model

FIGURE 3 | Flow-chart of the procedure followed in training models.

FIGURE 4 | The building block of LSTM.
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weights are small positive values and sum up to one. Its numerical
value represents the importance in the calculation of forecasting.
Eq. 4 shows how the final forecast is calculated in the ensemble
model.

yfinal � (WVLSTMMVLSTM +WStack−LSTMMStack−LSTM

+WBi−LSTMMBi−LSTM +WCNN LSTMMCNN LSTM) (4)

Here, Wx is the weight assigned to the model x, andMx is the
forecasted value of the model x. In this research, we first trained
and calibrated the above-mentioned individual models. Then,
using these calibrated models, we computed the weights for
each model in the ensemble model via the grid-search
technique.

Calibration of Models
For training the machine learning model, a root-mean-squared
error was used as the loss function, and the Adam optimizer
(Kingma & Ba, 2015) was used to optimize the weights of the
models. The experiments were executed on a GPU-enabled high-
performance cluster, and the experiments were coded using the
Keras framework (Ketkar, 2017). The parameters were optimized
using the grid-search method. Table 2 shows different model
parameters and their ranges. These ranges were choosen based on
prior literature concerning these data (Saini et al., 2020). As can
be observed from Table 2, for the vanilla-LSTM model, only the
number of nodes in its single layer was varied in the set {32, 64,
128, 256}. For the stack-LSTM model, the number of layers and
number of nodes per layer was varied in the set {2, 4, 8, 16, 32} and
{32, 64, 128, 256}, respectively. For the bidirectional-LSTM
model, number of nodes and number of layers were varied in
the set {16, 32, 64, 128, 256}, and {1, 2, 4, 8, 16}, respectively. For
the CNN-LSTM, filter size, kernel size of CNN, and the number
of nodes in the LSTM layer were varied in the set {16, 32, 64}, {1,
3, 5}, and {16, 32, 64, 128}, respectively. Lastly, using the
calibrated individual models, the weights for the ensemble
model were calculated. Here, the weights were varied in the
range of [0, 1], with a step size of 0.01. Other than these
parameters, one parameter, i.e., lookback period, was also
calibrated for each model and was varied in the set {2, 4, 6, 12}.

For the individual models, i.e., vanilla-LSTM, stack-LSTM,
bidirectional-LSTM, and CNN-LSTM, the input to the models
was the multivariate data from hour ‘t’ to hour ‘t-lb’ (where lb was
the lookback period), and the output was the forecasted PM2.5

concentration at hour t+1, t+2, t+3, t+4, t+5, and t+6,
respectively. During the training of the models, an error

FIGURE 5 | The architecture of Bidirectional-LSTM.

TABLE 2 | Parameters of the machine learning model and their ranges.

Model name Parameter Range

Vanilla-LSTM number of nodes 32, 64, 128, 256

Stack-LSTM number of nodes 32, 64, 128, 256
number of layers 2, 4, 8, 16, 32

Bidirectional-LSTM number of nodes 16, 32, 64, 128, 256
number of layers 1, 2, 4, 8, 16

CNN-LSTM filter-size 16, 32, 64
kernel-size 1, 3, 5
number of nodes 16, 32, 64, 128

Ensemble Model WVLSM [0, 1] step size of 0.01
WStack-LSM [0, 1] step size of 0.01
WBi-LSM [0, 1] step size of 0.01
WCNN-LSTM [0, 1] step size of 0.01
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gradient was computed, and it was used to determine the new
weights of the neural network. We computed the root mean
squared error (RMSE) between actual and predicted values for
each hour in the output. Based on the computed RMSE, the
weights of the models were updated via the backpropagation
method (Leung & Haykin, 1991). For example, if there were 80
observations in the training dataset, 20 observations in the test
dataset, and the lookback period was 5, then the observations
from one to 5 (actual) were inputted into a model to forecast
PM2.5 concentration at hours 6 to 11 (predicted). In the next
iteration, observations from two to 6 (actual) were inputted into
the model to forecast PM2.5 concentration at hours 7 to 12
(predicted), and so on. The last training would involve
inputting observations 69 to 74 (actual) to forecast PM2.5

concentration at hours 75 to 80 (predicted). Similarly, in the
test dataset, datapoint 81 to 85 (actual) were inputted into the
model to forecast PM2.5 concentration at hours 86 to 91
(predicted), and so on. The last test would involve inputting
observations 89 to 94 (actual) to forecast PM2.5 concentration at
hours 95 to 100 (predicted). After computing the forecasts in the
above-mentioned way, we computed the RMSE between the
actual and predicted values for each hour individually and
then took its average. This average RMSE was minimized
during the training of the models. The difference between
training and test was that the parameters of the model were
varied during training to minimize the average RMSE across the
predicted observations. However, during the test, the best value of
parameters found during training was set in the model to predict
test values.

For the training of the ensemble model, we utilized the grid-
search method to find the optimized weights for each model.
Here, the input to the ensemble model was the predicted values of
each individual model at hour t+1, t+2, t+3, t+4, t+5, and t+6, and
the output was the weighted forecast at hour t+1, t+2, t+3, t+4,
t+5, and t+6. Here, t+1, t+2, t+3, t+4, t+5, and t+6 were the PM2.5

future forecasts 1-h, 2-h, 3-h, 4-h, 5-h, and 6-h ahead in time. As
the lookback period was different for each model, the starting of
the data series was also different. So, to match the data series, we
trimmed the initial observations from the dataset (up to the
maximum lookback period). For example, if the lookback period
for vanilla-LSTM was 6, for stack-LSTM was 4, for bidirectional-
LSTM was 8, and for CNN-LSTM was 12, then we trimmed the
first 12 observations from the training and test dataset, and the
remaining data were used in the training and testing of the
ensemble model. So, if there were 80 observations in the
training dataset and 20 observations in the test dataset, then
after trimming, there were 68 observations in the training dataset
and eight observations in the test dataset. The difference between
the training and test was that the weights of the ensemble model
were varied during the training to minimize the average RMSE
across the predicted observations, i.e., we computed the RMSE
between the actual and predicted value for each hour and then
took its average. This average RMSE was minimized during the
training of the ensemble model. However, during the test, the best
value of the weights of the ensemble model found during the
training was set in the model to predict the test values.

The models were evaluated using four error functions:
RMSE, MAPE, MAE and Pearson’s correlation coefficient
(r) value. For every model, we calculated the RMSE, MAPE,
MAE and r-value separately for each hour. Also, in the training
of the models, the average of the RMSEs between the actual and
predicted values for each hour was minimized. For example, in
vanilla-LSTM, after each epoch, the model computed the
RMSE between the actual and predicted values for each
hour, i.e., from (t+1) to (t+6), and then took its average.
This average RMSE was minimized by the model. Similarly,
we trained the other individual models, namely, stack-LSTM,
bidirectional-LSTM, and CNN-LSTM. The RMSE penalizes
large errors in the forecast. It can be calculated by the following
equation:

RMSE �
�����������������������∑n

i�1 (Predictedi − Actuali)2
n

√
(5)

Where Predicted is the forecasted value outputted by the
model, Actual is the ground truth value, and n is the number of
observations. In the performed experiment, the model outputs
the forecasted PM2.5 concentration at hour t+1, t+2, t+3, t+4,
t+5, and t+6, respectively. So, RMSE was also computed for
each hour, i.e., we computed the RMSE between the actual and
predicted values for hour (t+1) to (t+6), which is described in
the result section. For example, if there were 80 observations in
the training dataset, 20 observations in the test dataset, and the
lookback period was 5, then in the first iteration of the training
process, the model outputs the forecast for hours 6 to 11 (as
mentioned above). Here, six represents the t+1 h of the first
iteration, seven represents the t+2 h of the first iteration, and
so on. The last hour 11 represents the t+6 h of the first
iteration. Similarly, we can compute the prediction for all
the iterations over the training data. Thus, the predictions
for hours 6 to 75 would belong to the hour t+1, the predictions
for hours 7 to 76 would belong to the hour t+2, and the
predictions for hours 12 to 80 belong to the hour t+6. Here,
the n would be 69, which can be calculated by subtracting the
lookback period and number of hours being forecasted from
the total observations in the dataset. Similarly, for test data, the
n would be 9. We can now substitute the values in the RMSE
formula mentioned in Equation 5 and calculate the RMSE for
each hour.

MAPE is scale-independent, easy to interpret (Kim & Kim,
2016), and it can be calculated by the following equation:

MAPE � 1
n
∑n
i�1

|Actuali − Predictedi|
Actuali

(6)

where Actuali represents the ground truth of PM2.5 concentration
for the ith data point, Predictedi represents the forecasted value
from the model for the ith data point, and n is the number of
observations.

MAE is a measure of errors between paired observations
expressing the same phenomenon. MAE is a more natural
measure of average error, and it is unambiguous (Willmott &
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Matsuura, 2005). It can be calculated by the following
equation:

MAE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣Actuali − Predictedi

∣∣∣∣∣∣∣∣∣
Similar to RMSE calculation, in MAPE and MAE error

calculations, n can be calculated by subtracting the lookback
period and number of hours being forecasted from the total
observations in the dataset.

Pearson’s correlation coefficient (r) is ameasure of linear correlation
between two sets of data. The range of r-value is between −1 and 1,
where positive values represent positive linear relationships and
negative values represent inverse linear relationships between the

TABLE 3 | Calibrated parameter values obtained from the grid-search method in
training dataset.

Model nName Parameter vValue

Vanilla-LSTM lookback: 6, number of nodes: 128
Stack-LSTM lookback: 4, number of nodes: 128,

number of layers: 2
Bidirectional-LSTM lookback: 4, number of nodes: 64,

number of layers: 2
CNN-LSTM lookback: 12, filter-size: 32, kernel-size:

1, number of nodes: 32
Ensemble Model WVLSM 0.13

WStack-LSM 0.23
WBi-LSM 0.57
WCNN-LSTM 0.07

TABLE 4 | RMSE (in μg/m3), MAPE (in %), MAE (in μg/m3) and r-value for each individual and ensemble models.

Model Metric Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6

VLSTM Train RMSE 7.95 22.58 33.22 41.34 47.88 53.29
MAPE 18.09 32.88 48.86 60.31 70.87 89.01
MAE 3.43 12.49 18.46 23.88 28.18 31.66
r 0.99 0.97 0.94 0.91 0.87 0.84

Test RMSE 8.04 21.67 32.22 41.70 49.78 55.60
MAPE 11.02 27.03 41.39 58.13 74.48 87.34
MAE 7.53 14.09 21.56 24.88 31.98 36.26
r 0.99 0.91 0.88 0.85 0.80 0.82

SLSTM Train RMSE 4.55 20.78 31.32 38.94 45.28 50.50
MAPE 11.85 25.00 43.67 55.86 72.87 85.98
MAE 4.33 13.09 18.76 24.28 30.78 34.96
r 0.99 0.90 0.88 0.88 0.86 0.75

Test RMSE 4.80 21.44 31.69 39.66 46.01 51.19
MAPE 9.63 21.72 33.67 47.13 59.53 69.23
MAE 5.83 17.29 23.06 24.38 33.78 37.36
r 0.94 0.83 0.80 0.82 0.82 0.76

Bi-LSTM Train RMSE 3.60 23.15 35.68 45.10 51.40 56.22
MAPE 6.40 26.21 43.64 67.71 73.87 80.74
MAE 4.23 11.39 16.16 22.68 26.48 30.46
r 0.99 0.98 0.93 0.91 0.95 0.90

Test RMSE 3.68 20.79 31.10 38.83 45.43 50.67
MAPE 10.88 20.64 33.55 47.90 62.56 75.17
MAE 5.53 14.79 19.26 25.28 31.08 31.16
r 0.99 0.96 0.91 0.88 0.86 0.81

CNN-LSTM Train RMSE 6.03 21.22 31.62 39.69 45.68 50.78
MAPE 12.49 23.04 38.51 58.64 72.04 87.09
MAE 5.93 15.09 20.46 27.18 32.38 38.66
r 0.98 0.87 0.87 0.85 0.79 0.72

Test RMSE 6.52 22.17 33.38 42.36 49.84 55.27
MAPE 14.05 23.64 36.51 48.83 64.59 80.57
MAE 10.23 17.69 21.76 29.58 35.58 42.16
r 0.93 0.92 0.89 0.85 0.89 0.75

Ensemble Train RMSE 2.64 20.97 31.43 38.83 45.11 50.40
MAPE 4.44 24.39 39.14 54.43 73.97 88.56
MAE 2.31 20.91 31.16 38.50 44.92 50.06
R 0.99 0.99 0.94 0.91 0.95 0.89

Test RMSE 3.60 23.15 31.40 39.61 44.97 50.77
MAPE 6.40 26.21 43.64 67.17 73.87 80.74
MAE 3.51 21.01 33.86 42.90 48.62 53.46
r 0.99 0.98 0.94 0.90 0.94 0.89
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two sets of data. It can be calculated between actual observations and
predicted observations from a model the following equation:

r � ∑(Actuali −Mean of Actual)(Predictedi −Mean of Predicted)���������������������������������������������������������∑(Actuali −Mean of Actual)2 ∑(Predictedi −Mean of Predicted)2√
We computed the r value between actual and predicted values

for each timestep on both training and test dataset separately. As
RMSE, MAPE, MAE, and r are good measures to evaluate the
correctness of models, these error functions were used to evaluate
and benchmark the developed models.

RESULTS

Table 3 shows the optimized hyperparameter values for each
model obtained from the grid search. For the vanilla-LSTM, the
lookback period was 6, and the number of nodes was 128. For the
stack-LSTM, the lookback period was 4, number of nodes was
128, and the number of layers was 2. For the bidirectional-LSTM,
the lookback period was 4, number of nodes was 64, and the
number of layers was 2. For the CNN-LSTM, the lookback period
was 12, filter-size was 32, kernel-size was 1, and the number of
nodes was 32. Lastly, for the ensemble model, the weight
parameters for the vanilla-LSTM, stack-LSTM, bidirectional-
LSTM, and CNN-LSTM models were 0.13, 0.23, 0.57, and
0.07, respectively. Overall, the bidirectional-LSTM model
contributed the most to the ensemble model and its
contribution was followed by the stack-LSTM model. The
vanilla-LSTM and CNN-LSTM models had fairly smaller
contributions to the ensemble model.

Vanilla-LSTM
Table 4 shows the hourly RMSE, MAPE, MAE, and the r values
for different model predictions ahead in time. For the future
hourly forecasts from the vanilla-LSTM model, the RMSE values
on the training and test datasets were: 7.95 and 8.04 (hour 1);
22.58 and 21.67 (hour 2); 33.22 and 32.22 (hour 3); 41.34 and 41.7
(hour 4); 47.88 and 49.78 (hour 5); and, 53.29 and 55.6 (hour 6).
Similarly, the MAPE for the vanilla-LSTM model on the training
and test datasets were: 18.09 and 11.02 (hour 1); 32.88 and 27.03
(hour 2); 48.86 and 41.39 (hour 3); 60.31and 58.13 (hour 4);
70.87and 74.48 (hour 5); and, 89.01 and 87.34 (hour 6).
Furthermore, the MAE for the vanilla-LSTM model on the
training and test datasets were: 3.43 and 7.53 (hour 1); 12.49
and 14.09 (hour 2); 18.46 and 21.56 (hour 3); 23.88 and 24.88
(hour 4); 28.18 and 31.98 (hour 5); and, 31.66 and 36.20 (hour 6).
Finally, the r value for the vanilla-LSTM model on the training
and test datasets were: 0.99 and 0.99 (hour 1); 0.97 and 0.91 (hour
2); 0.94 and 0.88 (hour 3); 0.91 and 0.85 (hour 4); 0.87 and 0.80
(hour 5); and, 0.84 and 0.82 (hour 6).

Stack-LSTM
For the future hourly forecasts from the stack-LSTM model, the
RMSE values on the training and test datasets were: 4.55 and 4.8
(hour 1); 20.78 and 21.44 (hour 2); 31.32 and 31.69 (hour 3);
38.94 and 39.66 (hour 4); 45.28 and 46.01 (hour 5); and, 50.5 and

51.19 (hour 6). Similarly, the MAPE for the stack-LSTM model
on the training and test datasets were: 11.85 and 9.63 (hour 1); 25
and 21.72 (hour 2); 43.67 and 33.67 (hour 3); 55.86 and 47.13
(hour 4); 72.87 and 59.53 (hour 5); and, 85.98 and 69.23 (hour 6).
Furthermore, the MAE for the stack-LSTMmodel on the training
and test datasets were: 4.33 and 5.83 (hour 1); 13.09 and 17.29
(hour 2); 18.76 and 23.06 (hour 3); 24.28 and 24.38 (hour 4);
30.78 and 33.78 (hour 5); and, 34.96 and 37.36 (hour 6). Finally,
the r value for the stack-LSTM model on the training and test
datasets were: 0.99 and 0.94 (hour 1); 0.90 and 0.83 (hour 2); 0.88
and 0.80 (hour 3); 0.88 and 0.82 (hour 4); 0.86 and 0.82 (hour 5);
and, 0.75 and 0.76 (hour 6).

Bidirectional-LSTM
For the future hourly forecasts from the bidirectional-LSTM
model, the RMSE values on the training and test datasets
were: 3.6 and 3.68 (hour 1); 23.15 and 20.79 (hour 2); 35.68
and 31.1 (hour 3); 45.1 and 38.83 (hour 4); 51.4 and 45.43 (hour
5); and, 56.22 and 50.67 (hour 6). Similarly, the MAPE for the
bidirectional-LSTMmodel on the training and test datasets were:
6.4 and 10.88 (hour 1); 26.21 and 20.64 (hour 2); 43.64 and 33.55
(hour 3); 67.71 and 47.9 (hour 4); 73.87 and 62.56 (hour 5); and,
80.74 and 75.17 (hour 6). Furthermore, the MAE for the
bidirectional-LSTM model on the training and test datasets
were: 4.23 and 5.53 (hour 1); 11.39 and 14.79 (hour 2); 16.16
and 19.26 (hour 3); 22.68 and 25.28 (hour 4); 26.48 and 31.08
(hour 5); and, 30.46 and 31.16 (hour 6). Finally, the r value for the
bidirectional-LSTMmodel on the training and test datasets were:
0.99 and 0.99 (hour 1); 0.98 and 0.96 (hour 2); 0.93 and 0.91 (hour
3); 0.91 and 0.88 (hour 4); 0.95 and 0.86 (hour 5); and, 0.90 and
0.81 (hour 6).

CNN-LSTM
For the future hourly forecasts from the CNN-LSTM model, the
RMSE values on the training and test datasets were: 6.02 and 6.52
(hour 1); 21.22 and 22.17 (hour 2); 31.62 and 33.38 (hour 3);
39.69 and 42.36 (hour 4); 45.68 and 49.84 (hour 5); and, 50.78 and
55.27 (hour 6). Similarly, the MAPE for the CNN-LSTM model
on the training and test datasets were: 12.49 and 14.05 (hour 1);
23.04 and 23.64 (hour 2); 38.51 and 36.51 (hour 3); 58.64 and
48.83 (hour 4); 72.04 and 64.59 (hour 5); and, 87.09 and 80.57
(hour 6). Furthermore, the MAE for the CNN-LSTM model on
the training and test datasets were: 5.93 and 10.23 (hour 1); 15.09
and 17.69 (hour 2); 20.46 and 21.76 (hour 3); 27.18 and 29.58
(hour 4); 32.38 and 35.58 (hour 5); and, 38.66 and 42.16 (hour 6).
Finally, the r value for the CNN-LSTMmodel on the training and
test datasets were: 0.93 and 0.98 (hour 1); 0.87 and 0.92 (hour 2);
0.87 and 0.89 (hour 3); 0.85 and 0.85 (hour 4); 0.79 and 0.89 (hour
5); and, 0.72 and 0.75 (hour 6).

Ensemble Model
For the future hourly forecasts from the ensemble model, the
RMSE values on the training and test datasets were: 2.64 and 3.6
(hour 1); 20.97 and 23.15 (hour 2); 31.43 and 31.4 (hour 3); 38.83
and 39.61 (hour 4); 45.11 and 44.97 (hour 5); and, 50.4 and 50.77
(hour 6). Similarly, the MAPE for the ensemble model on the
training and test datasets were: 4.44 and 6.4 (hour 1); 24.39 and
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26.21 (hour 2); 39.14 and 43.64 (hour 3); 54.43 and 67.17 (hour
4); 73.97 and 73.87 (hour 5); and, 88.56 and 80.74 (hour 6).
Furthermore, the MAE for the ensemble model on the training
and test datasets were: 2.31 and 3.51 (hour 1); 20.91 and 21.01
(hour 2); 31.16 and 33.86 (hour 3); 38.50 and 42.90 (hour 4);
44.92 and 48.62 (hour 5); and, 50.06 and 53.46 (hour 6). Finally,
the r value for the ensemble model on the training and test
datasets were: 0.99 and 0.99 (hour 1); 0.99 and 0.98 (hour 2); 0.94
and 0.94 (hour 3); 0.91 and 0.90 (hour 4); 0.95 and 0.94 (hour 5);
and, 0.89 and 0.89 (hour 6).

Model Comparisons
As can be observed from Table 4, for hour 1, the ensemble model
had the least RMSE (train: 2.64 μg/m3 and test: 3.6 μg/m3) among
all the models. For hour 2, the stack-LSTM had the least RMSE on
the training dataset (20.78 μg/m3), while the bidirectional-LSTM
had the least RMSE on the test dataset (20.79 μg/m3) among all
the models. For hour 3, again, the stack-LSTM had the least
RMSE on the training dataset (31.12 μg/m3), while the
bidirectional-LSTM had the least RMSE on the test dataset
(31.1 μg/m3). For hour 4, the ensemble model had the least
RMSE on the training dataset (38.83 μg/m3), while the
bidirectional-LSTM had the least RMSE on the test dataset
(38.83 μg/m3). For hour 5, the ensemble model had the least
RMSE on both train and test dataset (train: 45.11 μg/m3 and test:
44.97 μg/m3). And, finally, for hour 6, the ensemble model had
the least RMSE on the training dataset (50.4 μg/m3), while the
bidirectional-LSTM had the least RMSE on the test dataset
(50.67 μg/m3).

Similarly, for hour 1, the ensemble model had the least MAPE
value (train: 4.44% and test: 6.4%). For hour 2, the CNN-LSTM
had the least MAPE value on the training dataset (23.04%), while
the bidirectional-LSTM had the least MAPE value on the test
dataset (20.64%). For hour 3, again, the CNN-LSTM had the least
MAPE value on the training dataset (38.51%), while the
bidirectional-LSTM had the least MAPE value on the test
dataset (33.55%). For hour 4, the ensemble model had the
least MAPE value on the training dataset (54.43%), while the
bidirectional-LSTM had the least MAPE value on the test dataset
(47.13%). For hour 5, the vanilla-LSTM model had the least
MAPE value on the training dataset (70.87%), while the stack-
LSTM had the least MAPE value on the test dataset (59.53%).
And finally, for hour 6, the bidirectional-LSTM model had the
least MAPE on the training dataset (80.74%), while the stack-
LSTM had the least MAPE value on the test dataset (69.23%).

The overall results in Table 4 show that the errors (RMSE,
MAPE, and MAE) increased and the correlation coeffient values
decreased as the models predicted from hour one to hour six
ahead in time. For certain hours, the test statistics were slightly
better compared to the training statistics, which could be due to
the different complexities present in training data and test data. It
could also be due to the models’ fitting process, where the average
RMSE across all 6 h was minimized while training different
models.

FIGURE 6 | Time-series plots of actual and predicted PM2.5

concentrations obtained by the ensemble model for (A) 1 h ahead (B) 2 h
ahead (C) 3 h ahead (D) 4 h ahead (E) 5 h ahead, and (F) 6 h ahead.
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Results From the Ensemble Model
Figures 6A–F shows the hourly PM2.5 concentration (in µg/m3)
forecasts obtained by the ensemble model for the first, second,
third, fourth, fifth, and sixth hours ahead in time compared to
those observed actually. The x-axis represents the hours from the
starting time of the time-series, while the y-axis represents the
hourly PM2.5 concentration for a particular hour. For example,
in the graph for hour 3, an hourly PM2.5 value at the 12th hour
(x-axis) meant that it was the PM2.5 concentration prediction for
the 15th hour and it was made at the 12th hour from the starting
time (midnight of 01-Jan-2010). Similary, in the graph for hour 2,
an hourly PM2.5 value at the 130th hour (x-axis) meant that it
was the PM2.5 concentration prediction for the 132 nd h and it
was made at the 130th hour from the starting time (midnight of
01-Jan-2010). Plotting all 43,000 observations would have made
the graph cluttered and incomprehensible. Thus, only 800
observations from the dataset were plotted. As mentioned in
the model calibration section, while training the ensemble model,
we trimmed some initial points from the data series (up to the
maximum value of lookback period, which was 12). Thus,
because of this trimming, the hours start from 12 on the x
axis. The first 600 observations in the figure are from the
training data, while the remaining 200 are the first 200
observations from the test dataset. In Figure 6, the dotted line
separates the train and test data. As can be observed from
Figure 6, the actual and predicted values almost overlap each
other for different hours. The ensemble model even captured the
peaks and troughs present in data.

Benchmarking Against Other Models in
Literature
Models developed and calibrated in this research outperformed
the ones developed in the literature (Huang &Kuo, 2018; Jin et al.,
2020; Li et al., 2020; Saini et al., 2020). Huang and Kuo (2018)
developed APNet for PM2.5 forecasting. The model forecasted
one step ahead in time and had the RMSE of 24.228 μg/m3, MAE
of 14.63 μg/m3 and the r-value of 0.95. Li et al. (2020) developed a
hybrid of CNN and LSTMmodel for PM2.5 forecasting. Again the
model forecasted single step ahead in time. It had the MAE of
13.96 μg/m3 and RMSE of 17.93 μg/m3. Jin et al. (2020) proposed
a combination of EMD, CNN, and GRU for PM2.5 forecasting.
The proposed model had the RMSE of 46.26 μg/m3 and MAE of
34.59 μg/m3. Lastly, Saini et al. (2020) proposed an ensemble of
MLP, LSTM, CNN, and SARIMA models. The proposed
ensemble model had the RMSE of 23.45 μg/m3. As can be
observed, models developed in this research (including the
ensemble model) outperformed prior models developed in
literature by a huge margin.

DISCUSSION AND CONCLUSION

Health implications and the economic impact of deteriorating air
quality are well-known (OCED, 2016; World Health Organization,
2018). So, it is crucial to develop forecasting models that can
forecast with high accuracy multiple hours ahead in time. Ferlito

et al. (2020), Tsai et al. (2018), and Zhao et al. (2019) proposed
MLP, vanilla-LSTM, and LSTM-FC model respectively, to forecast
PM2.5. Various ensemble techniques were also explored, like
Ganesh et al. (2018) and Qiao et al. (2019) proposed an
ensemble of three methods, gradient boosting, neural network,
and random forest, and stacked autoencoder LSTM (SAE-LSTM),
respectively. However, a comprehensive investigation of recurrent
neural network type architectures for air quality forecasting still
lacked in the literature. Also, techniques like calibration of
hyperparameters using grid-search and generalization of the
individual models using weighted ensemble techniques were left
unexplored.

The primary goal of this research was to bridge the gaps in
the literature by developing short- and long-term, highly
accurate forecasting models. For this purpose, we developed
calibrated recurrent neural networks, namely, vanilla-LSTM,
stack-LSTM, bidirectional-LSTM, and CNN-LSTM. We also
developed a weighted average ensemble model of the
individual LSTM models to achieve better accuracy. Beijing
dataset (Liang et al., 2015) was used to train and validate the
models. Our results revealed that the developed and calibrated
models were able to predict short-term pollution concentration
with high accuracy. Experiments also revealed that as the
forecasted hour increased, so did the RMSE and MAPE
value. These findings are consistent with prior literature
(Huang & Kuo, 2018; Feng et al., 2020), where it has been
shown that the accuracy degrades as the hour increases. One
likely reason can be due to the small size of the dataset; long-
term forecasting models generally require a larger dataset.
However, the models developed and calibrated in this
research outperformed the ones developed in the literature
(Huang & Kuo, 2018; Feng et al., 2020; Jin et al., 2020; Li
et al., 2020; Saini et al., 2020). Higher accuracy of the developed
models can be attributed to the techniques employed in this
research, i.e., the systematic calibration of hyperparameters of
the models via the grid-search technique, which was absent in
the literature.

Results from the experiments also revealed that the weighted
average ensemble model performed the best among all the
models. The RMSE and MAPE value were the lowest for the
ensemble model. A likely reason for this finding could be that the
ensemble model was able to generalize the output by taking the
best out of the forecasts of the individual models. This
generalization leads to higher accuracy. Among the individual
models, bidirectional-LSTM outperformed the other models,
i.e., vanilla-LSTM, stack-LSTM, and CNN-LSTM. A likely
reason for this result can be attributed to the capability of
bidirectional-LSTM to process input in the forward as well as
in the backward direction, first, on the input sequence as-is and
then on a reversed copy of the input sequence. This increases the
amount of information available to the network, improving the
context available to the network. Again, these findings are
consistent with prior literature where Bidirectional-LSTM had
performed better than its counterparts (Zhang et al., 2021).
However, the Zhang et al. (2021) study only investigated the
bidirectional-LSTM model, and other recurrent neural network
models were not investigated. In our experimentation, we
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investigated a wide variety of RNN models by calibrating the
models using the grid-search technique.

It was also found that there were certain hours where the
loss metrics on the training data were a little higher compared
to the loss metrics computed on test data. One likely reason for
this finding could be that, for such hours, the complexity of the
training data was likely much more than that in test data. It
could also be due to model fitting process where the average
RMSE across all 6 h was minimized. Overall, models developed
in this research (including the ensemble model) outperformed
prior models developed in literature by a huge margin.

This research has several implications in the real world. The
forecast results from the ensemble models could be used to devise
long-term governmental policies. The short- and long-term
forecast will help policymakers to take immediate steps to
curb air pollution. Widespread use of the developed models by
local environmental authorities will complement their day-to-day
work. Based on the results from the model, they can make
informed, dynamic decisions. Also, a fusion of the developed
models with the real-time air-quality monitoring stations will
create an ecosystem where using live data, the model can forecast
pollutant concentration in real-time. This ecosystem will also
help the public to remain vigilant about the deteriorating air
quality in their surroundings. The developed models can also be
used to generate a timely warning to the public.

Future research may build upon this work where one includes
other pollutant parameters, like, ozone, nitrogen oxides, sulphur
oxides, and carbon oxides, for the training of the models. One
may also experiment with different split-ratios between the test
and train data and observe how different splits affect the accuracy
of models. We may also include unstructured data, like
governmental policies, industrialization, and public perception,
to study its effect on the changing air quality. Another aspect to
consider is to utilize datasets from other sources (like new
established air-quality monitoring stations) to train and

validate the developed models. We can also investigate new
state-of-the-art machine learning models like time-series
generative adversarial network (TGAN) (Goodfellow et al.,
2020) and transformers (Vaswani et al., 2017). Some of these
ideas form the immediate next steps in our program.
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