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Multiplicity and complexity in sources account for polycyclic aromatic hydrocarbons
(PAHs) in soil and health risk levels in industrial zones. In the present study, cancer
risks (CR) for soil-bound carcinogenic PAHs were estimated and compared for the first
time in seven different land-use areas adjacent to an industrial zone (Ulsan) in Korea. The
entire study area has been recognized as a “low CR” zone (10−6 < value < 10−4). Hence, all
land-use areas were found to have significant (>10−6) CR levels, except for an area used to
store ore and iron scraps. Estimated CR levels were highest in the railroad area (RA) and
traffic area (TA), followed by those in the industrial area (IA). In addition, exposure through
dermal absorption (61–70%) and ingestion (21–39%) were the most common factors for
CR levels in the study area. Among all health parameters, exposure duration, body weight,
and open skin surface area were distinguished as most sensitive to total CR levels.
Moreover, among all carcinogenic PAHs, indeno[1,2,3-c,d]pyrene and benzo[a]pyrene
were most sensitive to CR levels. Creosote, which was utilized in railroad ties in RA and
vehicular exhaust emission in TA, was classified as a source of soil-bound carcinogenic
PAHs. Therefore, CR levels resulting from transportation activities were found to be two to
three times higher than those obtained from industrial processes. Transportation activities
in urban areas mostly serve to provide rapid and comfortable carriage for commuters.
However, these facilities were mostly responsible for potential carcinogen exposure. This
study directly challenges the conventional perception that industrial zones are the most
polluted areas, especially when compared to transportation zones in urban areas. These
findings can help local and national governments to better manage resources andmaintain
an economic balance.
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INTRODUCTION

Industries are the backbone of a country’s economy. It is a common belief that industrial areas (IA)
are more polluted than urban areas. Currently, the Korean Government is spending substantial funds
to clean up industrial zones. Government policies on industrial disposal management, emission
control techniques, and reuse and recycle systems have provided more sustainability within the
industrial process system. However, Korean city managements are facing problems due to rapid
urbanization, dense population, and waste volume. Although cities have several sources of pollution,
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people are still migrating toward them. Moreover, cities are
surrounded by high traffic density zones. Soils from dense
traffic areas (TA) are enriched with more carcinogenic
polycyclic aromatic hydrocarbons (PAHs), as compared to
soils from other areas (Kim et al., 2019). Growing
concentrations of soil-bound carcinogenic PAHs require
attention from the scientific community in Korea.

Persistent organic pollutants such as PAHs are notable for
their cancer-causing and mutagenic properties because of the
fused aromatic rings in the structure (U.S. EPA, 2003). Due to
hydrophobicity and stable chemical structure, the accumulation
of PAHs onto the soil organic components is rapid (Abdel-Shafy
and Mansour, 2016). The soil-bound PAHs are direct and
indirectly exposed in the human body (Roy et al., 2017;
Tarafdar et al., 2018; Ambade et al., 2021a; Ambade et al.,
2021b; Ambade et al., 2021c; Ambade et al., 2021d). Vehicular
exhaust emissions, fossil fuel combustions, excessive utilization of
manufactured composts for horticulture, and industrial pyrolysis
are the major sources of PAHs in soil environments (Bosetti et al.,
2007; Arora and Reddy, 2013; Zhang et al., 2015; Ambade et al.,
2020; Kumar et al., 2020; Ambade and Sethi, 2021). Moreover,
long-term exposures to PAHs are responsible for development of
cancerous tumors in human organs (IARC, 2010).

Monte Carlo simulations are a technique to analyze
probabilistic uncertainty. The parameter values for exposure
equations are randomly selected from distributions generated
from the probability density functions for individual input
parameters (Roy et al., 2019c; Roy et al., 2019d; Tarafdar
et al., 2018). Hence, the role of these parameters in
determining the total health risk can be established using
sensitivity analysis (Roy et al., 2020). Exposure through
ingestion, inhalation, and dermal absorption are the three
routes by which PAHs in the soil enter the human body.
Deposition and absorption of PAHs carrying particles on open
surfaces of human skin, bio-accumulation of soil-bound PAHs in
food, and soil particles erosion from the earth surface followed by
inhalation are the common ways of human exposures. Apart
from the PAHs levels in the soil, other age-specific risk
assessment parameters such as body weight (BW), exposure
durations (ED), exposure frequency (EF), skin surface area
(SA), and inhalation rate are the most important factors for
the risk value (Armstrong et al., 2004; Tarafdar et al., 2018;
Tarafdar and Sinha, 2017a; Tarafdar and Sinha, 2017b; Roy et al.,
2019a; Roy et al., 2019b; Roy et al., 2019c; Roy et al., 2019d). The
role of those parameters in the total health risk levels can be
determined through sensitivity analysis. Globally, Monte Carlo
probabilistic approaches with sensitivity analysis are in common
practice to estimate the human health risk levels (Roy et al., 2020;
Tarafdar and Sinha, 2017a; Tarafdar and Sinha, 2017b).

Previous studies have focused on the monitoring and
distribution of PAHs in agricultural soil, source identification
of toxic PAHs, PAH levels in soils and sediments in coastal areas,
and PAH levels in coastal fish. Recently, higher PAH levels in
roadside soils at traffic-dense regions were observed in Ulsan
(Jeon and Oh, 2019; Kim et al., 2019). At present, detailed
investigations are required for source identification and health
risk levels due to soil-bound carcinogenic PAHs over various

land-use area types. Overall, detailed investigations and
comparisons of cancer risk (CR) levels are still required for
soil-bound PAHs across various land-use areas near industrial
zones. The current study aims to reduce research gaps through
the following objectives: 1) compare CR levels in soil-bound
PAHs for various land-use areas in industrial complex, 2)
evaluate the impact of transportation [railroad area (RA) and
TA] on CR levels, and 3) identify the most sensitive parameters
and significant exposure routes for CR levels.

METHODOLOGY

Data Collection and Source Identification of
PAHs
This study focused on CR assessment for soil-bound PAHs at
various land-use areas near an industrial cluster in Korea.
Previous published data (Jeon and Oh, 2019) on soil-bound
PAHs were acquired to calculate CR levels: naphthalene
(NaP), acenaphthylene (AcPy), acenaphthene (AcP), fluorene
(Flu), phenanthrene (PhA), anthracene (AnT), fluoranthene
(FluA), pyrene (Pyr), benzo[a]anthracene (BaA), chrysene
(Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene
(BkF), benzo[a]pyrene (BaP), indeno[1,2,3-c,d]pyrene (InP),
dibenz[a,h]anthrathene (DbA), and benzo[g,h,i]perylene
(BghiP). The seven different land-use areas near Ulsan city
and its IA were taken from the previous study. The land-use
areas were as follows: waste treatment facilities area (WA), TA,
child playground area (CA), IA, RA, ore and iron scraps area
(OA), and residential area (ReA).

Interactions within the source delivering the PAHs directly
influence the PAH profile. The diagnostic ratios used to trace
PAH sources were generated from pyrolytic or petrogenic
combustion, as shown in Table 1. PAHs such as AnT (AnT:
178) and flouranthene (FluA: 202) are commonly used to
distinguish between combustion and petroleum sources
(Budzinski et al., 1997; Soclo et al., 2000). AnT/(AnT + FluA)
ratios <0.1 and >0.1 are generally indicative of a petroleum and
combustion source, respectively (Budzinski et al., 1997). For Fl/
(Fl + Py) ratios, <0.5, 0.4–0.5, and >0.5 indicate petroleum/
combustion, liquid fossil fuel combustion, and coal/wood/grass
combustion sources, respectively (Budzinski et al., 1997).
Moreover, the IP/[IP + B(ghi)P] ratios of <0.2, 0.2–0.5, and
>0.5 represent the petroleum, liquid fossil fuel, and coal/wood/
grass combustion sources, respectively. Finally, the BaA/
(BaA + Chry) ratios of <0.2 and >0.2 indicate petroleum and
pyrogenic/coal combustions, respectively (Budzinski et al., 1997).

Human CR Assessment
Human CRs were assessed from the exposure of the 16
carcinogenic PAHs in soil. The relative potency equivalency
factor (PEF) to BaP was used to convert each PAH
concentration level into BaP equivalent (BaPequ) (U.S. EPA,
1993). Here, the following assumptions were used: 1)target age
groups: 18 (teen) and 70 (adult); 2) exposure path: ingestion (ing),
dermal absorption (derm), and inhalation (inh); 3) the BaPequ
value was considered for each PAH to calculate CR levels; and 4)
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risk assessment parameters such as air inhalation rate (HR), ED,
BW, and soil ingestion rate (IRd) values were used based on
Korean standard values (Table 2). Other model parameter values
were taken from the standard values reported by the US
Environmental Protection Agency (USEPA) (U.S. EPA, 2011).
The chronic daily intake (CDI) of PAHs was calculated as CDIing,
CDIinh, and CDIderm. The equations used to calculate CDI, CR

levels for individual exposure paths, and total cancer risk
[CR(Total)] levels resulting from exposure to soils are shown
in Table 3.

The Monte Carlo simulation tool from Oracle’s Crystal Ball
(11.1.2.4.600) was used to calculate CR levels. Determining CR
levels using Monte Carlo simulations for soil-bound PAHs is
common in literature (Qu et al., 2015; Roy et al., 2020), as Monte

TABLE 1 | Calculated diagnostic ratio, ranges, and possible sources.

PAHs
ratio

WA TA RA CA OA IA ReA Ranges Sources

IP/(IP + BghiP) 4.86E−01 4.98E−01 4.58E−01 4.21E−01 0.00E+00 6.11E−01 4.60E−01 <0.2 Petrogenic producta

0.2−0.5 Petroleum combustion (diesel)a

>0.5 Coal and softwood combustiona

BaA/(BaA + Chr) 5.11E−01 4.67E−01 4.05E−01 4.52E−01 3.94E−01 5.59E−01 4.87E−01 <0.2 Petrogenic product petrogenic/coalb

>0.2 Combustion (gasoline)b

Ant/(Ant + Phe) 4.74E−01 3.85E−01 2.31E−01 4.44E−01 5.00E−01 4.19E−01 3.75E−01 <0.1 Petrogenic productc

>0.1 Petrogenic productc

Fla/(Fla + Pyr) 5.03E−01 4.99E−01 4.62E−01 4.97E−01 — 5.10E−01 — <0.5 Petrogenic productd

>0.5 Coal/wood combustiond

aYunker et al.(2002)
bAkyüz and Cabuk(2010)
cKong et al.(2011)
dYu et al.(2014)

TABLE 2 | Cancer risk (CR) assessment parameters.

Input parameter Description (unit) Teen Adults Data distribution References

Csoil BaP equivalent concentration (mg/kg) — — — Present Study
ED Exposure duration (year) U (0, 18) U (0, 52) Uniform Present Study
EF Exposure frequency (day/year) G (252, 1.01) G (252, 1.01) Log normal U.S. EPA (2002)
BW Body weight (kg) A (35.9, 19.2) A (62.8, 10.9) Log normal Chen and Lio (2006), U.S. EPA, 2002
AT Averaging time (day) 25,550 25,550 Constant —

CF Conversion factor (kg/mg) 1.00E−06 1.00E−06 Constant —

IRd Soil ingestion rate (mg/day) 118 50 Constant NIER (2016), U.S. EPA (2011)
HR Air inhalation rate (m3/day) A (12.1, 2.1) A (14.3, 1.1) Log normal NIER (2016), MOE (2007)
PEFsoil Soil particle emission factor (m3/kg) 1.32E+09 1.32E+09 Constant U.S. EPA (1997)
SA Surface area of skin that contacts soil (cm2/day) A (2,938, 1,171) A (4,271, 440) Log normal NIER (2016), MOE (2007)
AF Relative skin adherence factor (mg/cm2) 0.1 0.08 Constant U.S. EPA (2011), Cappelletti et al. (2018)
ABS Dermal absorption factor G (0.13, 1.26) G (0.13, 1.26) Log normal Wester et al. (1990)
CSFing Cancer slope factor for BaP (mg/kg/day) G(7.3, 1.56) G(7.3, 1.56 Log normal Chen et al. (2012)
CSFinh Cancer slope factor for BaP (mg/kg/day) G(3.14, 1.8) G(3.14, 1.8) Log normal Chen and Liao (2006)
CSFderm Cancer slope factor for BaP (mg/kg/day) 37.5 37.5 Constant Hussain et al. (1998)

TABLE 3 | Equations to calculate exposures and CR levels.

Equation
No

Equations Parameter References

1 CDIing � CSsoil×IRd×CF×ED×EF
BW×AT CDIing, chronic daily intake through ingestion; CDIinh, chronic daily intake

through inhalation; CDIderm, chronic daily intake through dermal absorption;
CRx, cancer risk (x � ing or inh or derm); CR (Total): sum of all CRs

U.S. EPA (1989), U.S. EPA (2004),
U.S. EPA (2009)2 CDIinh � CSsoil×HR×ED×EF

PEFsoil×BW×AT
3 CDIderm � CSsoil×CF×SA×AF×ABS×ED×EF

BW×AT
4 CRx � CDIx × CSFx U.S. EPA (1989), U.S. EPA (1997)
5 CR(Total) � CRinh + CRing + CRderm U.S. EPA (1989), Chiang et al. (2009)
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Carlo simulations help in analyzing probabilistic uncertainty.
Risk value was calculated with 50,000 iterations along with a
sensitivity analysis. Apart from the PAHs levels in the soil, other
age-specific risk assessment parameters such as BW, ED, HR, EF,
and SA were important considerations in determining risk
(Table 2). Monte Carlo simulations and sensitivity analysis are
universally used for CR analysis (e.g., Chen and Liao, 2006;
Williams et al., 2013; Arora and Reddy, 2014, 2015;
Gungormus et al., 2014; Tarafdar and Sinha, 2017a; Tarafdar
and Sinha, 2017b; Roy et al., 2020). According to USEPA, CR
value >10−6 is considered as a significant level for CR (Wang et al.,
2011; Li et al., 2014). The lifetime CR levels can be explained as
very low, CR ≤ 10−6; low, 10−6 < CR < 10−4; moderate,
10−4 ≤ CR < 10−3; high, 10−3 ≤ CR < 10−1; and very high,
CR ≥ 10−1 (NYSDOH, 2012).

Uncertainty and Variability Analysis
Variability and uncertainty are part of risk assessment processes,
and they should be dealt with exclusively. Isolating these ideas in a
reenactment drives us to distinguish the variety all the more
precisely in the prediction because of limited knowledge and
natural variations in the computation. Monte Carlo simulation
from Crystal Ball 2D Simulation tool runs an outer loop to
simulate the uncertainty values. To simulate the variability, the
uncertainty values freeze while it runs an inner loop (of the whole
model). This process repeats for hundred times to get the forecast
distribution patterns. The 2D simulation output was compared
with the previously done one-dimensional simulation results for
both variability and uncertainty.

Moreover, deduction of CR induces uncertainties because of
varieties in the health hazard evaluation parameters utilized in the
estimations. Thus, for the parameters like ED, IRd, BW, and HR,
Korean standard values were used to reduce uncertainty. The
sample assortment and investigation techniques additionally
might have brought about uncertainty in CR assessment;
specifically, the disappearance or addition of PAHs in the
cooking activity was not taken into account.

RESULTS AND DISCUSSION

Concentration of Soil-Bound PAHs and
Source Identification
The concentrations of soil-bound PAHs exhibited a wide range.
The estimated soil-bound Ʃ 16 PAH concentrations were highest
in RA (mean: 13,124 µg/kg), followed by those in IA (mean:
5,130 µg/kg), TA (mean: 3,728 µg/kg), and WA (mean:
3,724 µg/kg), as shown in Supplementary Figure S1A. Korean
standards for soil-bound PAH levels are still unpublished. Other
countries like Mexican (0–6 µg/g), Polish (0.02–0.05 µg/g), and
Dutch (0.02–0.05 µg/g) standards have been compared for this
study (Malawska 2000; Ray et al., 2008). As per Polish standards,
OA and ReA were classified as low-pollution zones. Meanwhile,
RA, IA, TA, and WA were classified as highly polluted sites.

The mean values of Ʃ 16 PAHs ranged from 368.5 to
13,152 µg/kg throughout the study area. At RA, Pyr + BbF
levels exhibited a maximum of 16% among all PAHs. BbF was

found to be highest in IA and WA, with a mean value of 766 and
472 µg/kg, respectively. In TA, concentration levels of InP were
the highest (702 µg/kg) among all PAHs. Total PAHs as BaP toxic
equivalent concentration (ƩBaPequ) levels were estimated to
exhibit a range of 44–1,930 µg TEQ/kg. The ƩBaPequ value was
highest in RA (mean: 1,930 µg TEQ/kg), followed by that in TA
(mean: 973 µg TEQ/kg), IA (mean: 781 µg TEQ/kg), and WA
(mean: 633 µg TEQ/kg). Moreover, BaPequ values were largest for
BaP (mean: 857.5 µg TEQ/kg), followed by those in InP (583.5 µg
TEQ/kg), as presented in Supplementary Figure S1B. The
(BaP + InP) levels were responsible for 1.5 times higher
ƩBaPequ values in TA, although IA exhibited higher Ʃ 16
PAHs levels than those in TA. Furthermore, BaP + InP (as
BaPequ) contributed 88%, 80%, 78%, and 75% to ƩBaPequ
levels in TA, WA, IA, and RA, respectively. In the previous
study higher PAHs levels were reported in Ulsan than those for
other cities in Korea, Tokushima (Japan), Bangkok (Thailand),
and Tarragona (Spain) (Jeon and Oh, 2019). Previous literature
reported that numerous modern industrial units and substantial
traffic near the Ulsan IA caused higher than normal ƩPAH (Lee
and Dong, 2009; Yoo et al., 2010).

For sources, a diagnostic ratio analysis primarily identified the
petrogenic products, petroleum combustion (diesel), coal/soft
wood combustion, and petrogenic/coal combustion (gasoline)
throughout the study area (Table 1). In RA, sources related to
petrogenic products, petroleum combustion (diesel), and
petrogenic/coal combustion (gasoline) IP/(IP + BghiP): 0.46;
BaA/(BaA + Chr): 0.41; Ant/(Ant + Phe): 0.23; and Fla/
(Fla + Pyr): 0.46 were the largest contributors to PAHs in soil.
The elevated amount of ƩPAH in RA might be clarified using
creosote as a wood additive for railroad ties. In previous research,
high ƩPAH levels were also reported for RA (Baek, 2013). Railroad
car movement and inadvertent fuel release are potential sources of
PAHs in RA (Kim and Shin, 2001). Petroleum combustion (diesel),
petrogenic/coal combustion (gasoline), and petrogenic products
were also identified as major sources of soil-bound PAHs in TA.
Pha, FluA, and BghiP, which are signature compounds in soils of
dense TA, were found to be significant in TA (Kim et al., 2019).
Except for RA, ƩPAH levels inWA and IA were two to three times
higher compared to those in other areas; this was likely due to the
wastes generated by petrochemical plants and their modern
processing operations. In IA, IP/(IP + BghiP), BaA/(BaA + Chr),
Ant/(Ant + Phe), and Fla/(Fla + Pyr) ratios were high (0.6, 0.6, 0.4,
and 0.51, respectively). Sources related to industrial activities such
as combustion [coal/soft wood combustion and petrogenic/coal
combustion (gasoline)] and petrogenic products were mostly
observed in IA.

In the Ulsan IA, petrochemical, automobile, shipbuilding,
and oil refining are the primary industries that contribute to
PAHs in soil. Combustion sources (coal, wood, petroleum)
and petrogenic product sources were associated with soil
pollution levels in WA. The petrogenic product and combustion
sources were also commonly identified in CA, OA, and ReA.
Moreover, traffic and industrial sources primarily contributed to
soil pollution in ReA and CA. In particular, diesel, gasoline, and
heavy oil combustion have been identified as major sources of soil-
bound PAHs (Kwon and Choi, 2014). Ulsan is well known for
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industrial clusters in Korea, containing refineries, non-ferrous
metal smelting plants, petrochemical and automobile factories,
shipbuilding complexes, and their vendors (Kwon and Choi, 2014).

The combustion of petrochemical products and direct
emission of PAHs are possible sources of ƩPAH in the study

area (Kim and Shin, 2001; Chung et al., 2006). Two big refinery
units are situated in Ulsan, and a lot of raw petroleum is imported
to the Port of Ulsan. Therefore, storage, distribution (pipelines),
and transportation (ground) processes are potential sources of
ƩPAH (Jeon and Oh, 2019).

FIGURE 1 | (A) Probability density functions fromMonte Carlo simulations used to predict CR (95% confidence level) from soil-bound PAHs for the teen group at (a)
WA, (b) TA, (c) RA, (d) CA, (e) OA, (f) IA, and (g) ReA. (B) Probability density functions from Monte Carlo simulations used to predict CR (95% confidence level) from soil-
bound PAHs for the adult group at (a) WA, (b) TA, (c) RA, (d) CA, (e) OA, (f) IA, and (g) ReA.
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Human Health Risk Levels
The ƩPAH concentration (BaPequ) was used as an input for the
Monte Carlo simulations that calculated the 95% confidence
levels for CR in the teen and adult age groups (Figure 1).
Seven different land-use areas near the Ulsan industrial
complex were considered for the CR assessment. Except for
OA, CR(Total) for all other six areas was significant (>10−6),
and these areas were classified as low CR zones (Figure 2). The
highest CR(Total) was found in RA (95% CL: 4.13E−05 for teen;
3.81E−05 for adult), followed by that in TA (95% CL: 2.10E−05
for teen; 1.89E−05 for adult), IA (95% CL: 1.69E−05 for teen;
1.52E−05 for adult), and WA (95% CL: 1.35E−05 for teen;
1.23E−05 for adult). ReA was identified as a significant CR
zone but exhibited the second-lowest CR levels among the
seven areas. Compared to ReA, CR levels were estimated to be
19, 10, 8, 6, and 2 times higher in RA, TA, IA, WA, and CA,
respectively. OA was not only insignificant (<10−6) but also
exhibited a CR level two times lower than that of ReA.

Throughout the study area, CR levels through dermal
exposure (adult: 79%; teen: 61%) and ingestion (teen: 39%;
adult: 21%) were most significant (Supplementary Figure S2).
Hence, CR through inhalation exposure was determined to be
insignificant (10−10–10−11). Kim et al. (2019) also reported
insignificant CR levels through inhalation exposure in Korea.
Additionally, the teen group exhibited a higher CR level than the
adult group. High concentrations of soil-bound total PAHs and
carcinogenic PAHs were responsible for the elevated CR levels in
RA.Moreover, the presence of higher carcinogenic PAH (InP and
BaP) levels was responsible for higher CR in RA. Likewise, higher
InP and BaP levels were identified as the most probable PAHs
that explained higher CR levels in TA than in IA. The diagnostic
ratio analysis showed that the combustion of petroleum (diesel)

and petrogenic (gasoline) were the major contributors other than
petrogenic products. A significant correlation between traffic
volume and CR levels was reported by Kim et al. (2019).

Overall, industrial activity can still be a major cause for
elevated CR levels in IA. Oil refining, automobile
manufacturing, petrochemical processes, shipbuilding, and
smelting plants can all raise CR levels. Sustainable
development with resource recovery and reuse are potential
techniques to reduce pollution loads in IA. Moreover, fossil-
fuel-free transportation systems can reduce PAH levels in TA. In
Seoul, CR levels for soil-bound PAHs were reported in the range
of 1.245E−06 to 1.357E−05 for children in playground dust
(Tarafdar et al., 2020). This level is three and five times higher
than the CA and ReA, respectively in Ulsan. Although Ulsan is a
well-known industrial hub in Korea, RA and TA were identified
as having the highest CR levels among the seven land-use areas.
This outcome can change the conventional perceptions of Korea’s
residents and policymakers.

Sensitivity Analysis
A Monte Carlo analysis was conducted to identify the factors that
aremost sensitive to the CR levels (Figure 3). Sensitivity test results
are shown in Table 4. The sensitivity to CR levels for all risk
assessment parameters was evaluated. For the teen group, total CR
levels were estimated to be most sensitive to the following
parameters: ED (63%), BW (−26%), SA (6%), cancer slope
factor for BaP (CSFing; 3%), and dermal absorption factor (ABS;
2%). For the adult group, total CR levels were most sensitive to ED
(87%), ABS (6%), BW (−5%), and SA (1%). BWwas determined to
be negatively sensitive to CR levels. ED (63–87%) was the most
sensitive among all exposure routes (ingestion, dermal absorption,
and inhalation) and age groups. The significant role of ED on CR

FIGURE 2 | CR levels (95% confidence level) at various land-use areas.
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FIGURE 3 | Sensitivity results based on Monte Carlo simulations for (A) teen and (B) adult groups.

TABLE 4 | Monte Carlo sensitivity analysis results for CR assessment parameters.

WA TA RA

Teen Adults Teen Adults Teen Adults

CRing ED (58.1) ED (71.7) ED (58.1) ED (71.5) ED (57.6) ED (72)
BW (−23.4) CSFing (24.7) BW (−23.6) CSFing (25) BW (−24) CSFing(24.4)
CSFing (18.4) BW (−3.5) CSFing (18.2) BW (−3.4) CSFing (18.4) BW (−3.5)

CRinh ED (50) ED (60.7) ED (50.9) ED (61.4) ED (50.7) ED (61)
CSFinh (27.4) CSFinh (35.5) CSFinh (27) CSFinh (35.1) CSFinh (27) CSFinh (35.6)
BW (−19.8) BW (−3.1) BW (−19.9) BW (−2.8) BW (−20) BW (−2.9)
HR (2.6) HR (0.6) HR (2.2) HR (0.7) HR (2.3) HR (0.5)

CRderm ED (57.3) ED (84.6) ED (57.8) ED (85.1) ED (57.7) ED (85.1)
BW (−23.1) ABS (9.2) BW (−23.2) ABS (8.5) BW (−24.2) ABS (8.4)
SA (14.7) BW (−4.5) SA (13.8) BW (−4.7) SA (13.2) BW (−4.7)
ABS (4.8) SA (1.7) ABS (4.8) SA (1.6) ABS (4.9) SA (1.7)

Total CR ED (63.2) ED (86.6) ED (62.8) ED (87) ED (62.6) ED (87.2)
BW (−26.4) ABS (6.3) BW (−26.5) ABS (5.7) BW (−27) ABS (5.7)
SA (5.6) BW (−4.8) SA (5.6) BW (−4.9) SA (5.1) BW (−4.9)
CSFing (3.1) SA (1.2) CSFing (3.3) CSFing (1.4) CSFing (3.4) SA (1.1)
ABS (1.7) CSFing (1.1) ABS (1.8) SA (1.1) ABS (2) CSFing (1)

OA IA ReA

Teen Adults Teen Adults Teen Adults

CRing ED (57.8) ED (71.9) ED (57.6) ED (72) ED (58.7) ED (71.6)
BW (−23.5) CSFing (24.9) BW (−23.9) CSFing (24.5) BW (−23) CSFing (25)
CSFing (18.7) BW (−3.2) CSFing (18.4) BW (−3.5) CSFing (18.3) BW (−3.4)

CRinh ED (50.4) ED (61.4) ED (53.3) ED (65) ED (51.3) ED (61.5)
CSFinh (27.6) CSFinh(35.2) CSFinh(23.2) CSFinh(31.4) CSFinh (27.1) CSFinh (35.2)
BW (−19.7) BW (−2.7) BW (−20.8) BW (−3) BW (−19.1) BW (−2.8)
HR (2.2) HR (0.7) HR (2.6) HR (0.6) HR (2.4) HR (0.5)

CRderm ED (58.6) ED (85.1) ED (58) ED (84.5) ED (57.5) ED (85.1)
BW (−23.2) ABS (8.4) BW (−23.7) ABS (9) BW (−23.5) ABS (8.5)
SA (13.2) BW (−4.8) SA (13.2) BW (−4.8) SA (13.7) BW (−4.8)
ABS (4.9) SA (1.6) ABS (5) SA (1.7) ABS (5.3) SA (1.4)

Total CR ED (63) ED (87.2) ED (62.8) ED (86.8) ED (63.9) ED (86.8)
BW (−26) ABS (5.9) BW (−26.6) ABS (5.9) BW (−25.5) ABS (6)
SA (5.6) BW (−4.6) SA (5.2) BW (−5) SA (5.6) BW (−4.8)
CSFing (3.5) CSFing (1.2) CSFing (3.3) CSFing (1.1) CSFing (3.3) CSFing (1.3)
ABS (1.8) SA (1.1) ABS (2.1) SA (1.1) ABS (1.7) SA (1.0)

Note: Values are in percentage (%).
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levels has been previously reported (Chen and Liao, 2006; Chiang
et al., 2009; Tarafdar and Sinha, 2017a). The negative BW value
indicated the negative relationship between BW and total CR levels
(Tarafdar and Sinha, 2017b; Chawada et al., 2020). For CRderm and
CRing levels, ED + BW was approximately 81% and 75% for the
teen and adult groups, respectively. Risk assessment parameters,
such as BW, ED, HR, ABS, CSFing, and SA, were identified as the
most common factors sensitive to CR levels. In the present study,
BW, ED, and HR were based on Korean standards, while the other
parameters were taken from the U.S. EPA data. Determination of
other risk assessment parameters value could be fruitful in future

research. Risk assessment efficiency might also be improved by
using more specific health risk parameters.

Uncertainty and Variability Analysis
Two-dimensional simulation plots for variability and uncertainty
are shown in Figures 4A, B. The overlay chart of risk curves and
trend chart of certainty bands for teen in the case of CR from soil-
bound PAHs have been reported in Figures 4A, B, respectively.
The 2D simulation result shows that the risk curves are densely
clustered near the center, although limited outlier curves are
distributed to the Cumulative Frequency axis. The result shows

FIGURE 4 | Two-dimensional simulation plots of variability and uncertainty (A) overlay chart of risk curves for teen and adults and (B) trend chart of certainty bands
for teen and adults at Ulsan.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 7443878

Roy et al. Soil-Bound PAHs and Cancer Risk

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


the lesser probability of having a much higher risk than the
simulated. Moreover, for soil-bound PAHs at Ulsan area, the 95th
percentile CR in two-dimensional study (4.07E−05 for teen) is
similar to that of the 95th percentile CR of one-dimensional
simulation (4.13E−05 for teen).

CONCLUSION

Ulsan is a well-known industrial city in Korea. In this study, CR
levels were estimated for seven different land-use areas, based on
soil-bound PAHs. Additionally, the most important exposure
routes and sensitive parameters were identified. Although several
industries and their associated endeavors (such as petrochemical
and automobile factories, non-ferrous metal smelting plants,
refineries, and shipbuilding complexes) contributed significant
amounts of PAHs to the soil, concentration levels were
approximately three times higher in RA than those in IA. CR
levels in RA and TA were also higher than those in IA because of
the larger amounts of carcinogenic PAHs in the soil. Moreover,
exposure through dermal absorption and food ingestion were
most significant for soil-bound PAHs. Risk assessment
parameters such as ED, AF, and BW were identified as the
most sensitive parameters for CR levels. While industrial
activities are well-known anthropogenic sources for global
pollution and negative human health impacts, carcinogenic
PAHs resulting from transportation activities (RA and TA)
caused elevated CR levels. Nowadays, cities are surrounded by
traffic-intense areas with high vehicle density and railroads. There
is a large possibility that the soil in these areas is being
contaminated with carcinogenic PAHs, which could result in
an unhealthy urban environment. Therefore, detailed
investigations on CR levels, with respect to soil-bound PAHs

in RA and TA, can be performed in future studies for cities in
other areas and countries.
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