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Water temperature is a vital attribute of physical riverine habitat and one of the focal
objectives of river engineering and management. However, in most rivers, there are not
enoughwater temperature measurements to characterize thermal regimes and evaluate its
effect on ecosystem functions such as fish migration. To aid in river restoration, machine
learning-based algorithms were developed to predict hourly river water temperature. We
trained, validated, and tested single-layer and multilayer linear regression (LR) and deep
neural network (DNN) algorithms to predict water temperature in the Los Angeles River in
southern CA, United States. For the single-layer models, we considered air temperature as
the predictive feature, and for the multilayer models, relative humidity, wind speed, and
barometric pressure were included in addition to air temperature as the considered
features. We trained the LR and DNN algorithms on Google’s TensorFlow model using
Keras artificial neural network library on Python. Results showed that multilayer predictions
performed better compared to single-layer models by producing mean absolute errors
(MAEs), that were 20% smaller (1.05°C), on average, compared to the single-layer models
(1.3°C). The multilayer DNN algorithm outperformed the other model where the model’s
coefficient of determination was 26 and 12% higher compared to the single-layer LR (the
base model) and multilayer LR model, respectively. The multilayer machine learning
algorithms, under proper data preparation protocols, may be considered useful tools
for predicting water temperatures in sampled and unsampled rivers for current conditions
and future estimations affected by different stressors such as climate and land-use
change. River temperature predictions from the developed models provide valuable
information for evaluating sustainability of river ecosystems and biota.
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INTRODUCTION

River water temperature is often called the “master variable” which controls the survival,
distribution, health, and recruitment of fish (Allan and Castillo, 2007). Strategically identifying,
protecting, and restoring thermal habitat in rivers is necessary for the sustainability of fish
populations and their aquatic ecosystem (Isaak et al., 2017). Fish, amphibians, and
macroinvertebrates are ectotherms, commonly referred to as “cold blooded”, meaning the
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external environment controls their body temperature and the
rates of physiological and biochemical reactions (Wilmer et al.,
2000; Hochachka and Somero, 2002). River temperatures exhibit
a natural thermal regime which is the framework wherein species
life histories have evolved to match their thermal habitat (Isaak
et al., 2017). For instance, cold water aquatic life such as the trout
family (Salmonidae) are cold water stenotherms (tolerate a
narrow temperature range); they are sensitive to warm
temperatures, where a small increase in water temperature
(2–3°C) can reduce their fitness and recruitment (Poole and
Berman, 2001). Variability in stream temperature and extreme
temperature events have been linked to suboptimal disease
immunity and declines in amphibian populations (Raffel et al.,
2006; Rohr and Raffel 2010). Sensitive macroinvertebrates, such
as caddisfly (Trichopetera) decline in both density and growth
when their native streams warm due to irrigation withdrawals
(Miller et al., 2012). Fish, amphibians, andmacroinvertebrates are
key components in aquatic ecosystems, they can be both a food
source for other consumers, controlling the populations in their
aquatic community. A shift in their abundance or distribution
due to temperature impacts the sustainability of the food web and
the ecosystem.

Anthropogenic activities including climate change and
urbanization alter river temperatures (Poole and Berman,
2001). Conservation planning requires that resource managers
and regulators seek to prepare and mitigate against dramatic
modifications in thermal habitat that cause the loss of a species.
Paleontological records and recent observations demonstrate that
a shift in only a few degrees centigrade alters the distribution of
fish and can lead to extirpations (Hochachka and Somero 2002).
Climate change simulations, that examined native fish species
distribution through the west, concluded native cutthroat trout
would be losing 58% of their habitat due to climate change alone,
but all trout species were predicted to decline by up to 70% under
future warming (Wenger et al., 2011).

The goal of setting water temperature criteria within the Clean
Water Act (CWA) is to limit the impact from anthropogenic
activities to maintain sustainable aquatic life (Todd et al., 2008).
Water temperature standards are species- and life-stage specific
to protect the entire life history of aquatic life and preserve
appropriate thermal habitat. Within the CWA there is Section
303(d) which requires that states and the US Environmental
Protection Agency (EPA) maintain a list of stream segments that
do not meet their water quality standards and protect their
designated uses (Hall, 1978). This requires extensive river
temperature monitoring and puts a burden on water resource
managers to collect data in the numerous kilometers of streams
that cross public and private land.

Artificial intelligence techniques and machine learning
algorithms are used increasingly as reliable alternatives to
more classic methodologies for temperature monitoring and
environmental modelling in riverine systems (Chen et al.,
2008; Feigl et al., 2021). In lieu of in situ data, classification
and regression-based machine learning methods have been used
to predict water quality and quantity attributes (Dogo et al., 2019;
Yaseen et al., 2019). Alizadeh et al. (2018) employed several
machine learning methods to investigate the discharge-induced

impact on water quality metrics and predicted them up to 2 hours
ahead in estuarine and coastal waters. They concluded that the
relevant water quality parameters can be properly forecasted
using the machine learning algorithms. The easy to implement
(e.g. decision trees), complex (e.g. support vector machines and
neural networks), and hybrid machine learning-based and data
mining approaches (e.g. bagging and randomizable filtered
classification) have also been used for predicting water quality
parameters in rivers (Blockeel et al., 1999), reservoirs (Peterson
et al., 2019), and catchments (Bui et al., 2020) respectively, all
indicating the effectiveness of using the machine learning
algorithms instead of traditional methods and on-site
monitoring. Water temperature has traditionally been
predicted based upon statistic models using air temperature in
the form of linear regression (LR) relationships (Morrill et al.,
2005; Krider et al., 2013), non-LR equations (Mohseni et al., 1998;
Van Vliet et al., 2012), and stochastic models (Ahmadi-Nedushan
et al., 2007; Rabi et al., 2015). These models provided simple
approaches for predicting water temperature based on only air
temperature (Zhu et al., 2018). However, machine learning
methods provided more robust predictions of water
temperature by including other features in the prediction
process. Zhu et al. (2019) applied river discharge and the day
of the year along withair temperature to predict the daily water
temperature of rivers using an extreme learning machine, a
feedforward neural network methodology and indicated that
multilayer neural network algorithms can be effective at
predicting river water temperature.

Artificial neural networks (ANNs) have been widely applied to
increase the speed of optimization and accuracy of the modelling
in environmental systems (Muttil and Chau, 2006; Shin et al.,
2020). In urban areas, ANNs provide more robust methods for
long-standing problems like leakage detection and water loss
management (Hu et al., 2020), and novel solutions for emerging
plans like smart growth (Zhang et al., 2019). The ANN algorithms
have been used for predicting river water temperature as a
function of only air temperature (Hadzima-Nyarko, et al.,
2014). River water temperature has also been predicted using
ANN models as a function of additional features such as solar
radiation (Sahoo et al., 2009), landform and forested land cover
(DeWeber and Wagner, 2014), or runoff and declination of the
Sun (Piotrowski et al., 2015). With the advances in computer
science and hardware, various deep learning models (Lecun et al.,
2015) including deep neural networks (DNNs) have been
developed (Yu et al., 2016; Sattari et al., 2021). Díaz-Vico et al.
(2017) applied a DNN algorithm as well as a support vector
machine (SVM) model for solar irradiance and wind energy
prediction and reported higher accuracy with the DNN method.
Kumari and Toshniwal (2020) predicted hourly global horizontal
irradiance using an extreme gradient boosting forest and DNNs
combined model and air temperature, clear-sky index, relative
humidity, and hour of the day parameters as the driving factors
and got the best combination of stability and prediction accuracy.
Zhang et al. (2020) forecasted the air pollution in Huaihai
Economic Zone, China for 24 h ahead by a spatial-temporal
DNN model and showed that the DNN-based model
outperformed the traditional machine learning algorithms.
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These findings demonstrate the benefits of the DNN algorithms
in predicting various environmental metrics which can be applied
in river restoration and conservation.

River restoration requires improving physical and thermal
habitat for native fish and amphibians to maintain longitudinal
connectivity of the river corridor, a key index of the urban river
restoration index (URRIX, Veról et al., 2019). River restoration
also requires extensive modelling to predict outcomes under
different design scenarios. Models depend on data for
boundary conditions to inform current and future conditions.
When river temperature data is not available modelling results
are inaccurate. In the current work we develop a tool to predict
river temperature to increase sustainable management of water
resources, a field that is growing worldwide (Aznar-Sánchez et al.,
2018). We evaluate the performance of a DNN algorithm with

single-layer and multilayer configurations for predicting river
water temperature in the Los Angeles River (LAR) located in
southern California using local weather data. The following
science questions were investigated in this study: 1) how is the
performance of multilayer machine learning algorithms
compared to algorithms focusing on only air temperature as
the independent variable? and 2) to what degree does a deep
learning algorithm improve the prediction performance
compared with a supervised machine learning algorithm?
Development of new machine learning model training
approaches improve our understanding of the effectiveness of
multiple weather-related features in predicting river water
temperature and present the relative computational strength of
a deep leaning methodology against a supervised learning
algorithm using open-source routines.

FIGURE 1 | The study area in Los Angeles (LA) River, CA, showing the temperature monitoring station on LA River downstream of the Arroyo Seco tributary and
Burbank Airport weather station location. The inset with an arrow shows the site location within the state of California.
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METHODS

Study Area and Inputs
In this study, we predict river water temperature immediately
downstream of the LAR and Arroyo Seco confluence, in the city
of Los Angeles (Figure 1). The monitoring station is located
downstream of the Glendale Narrows soft bottom area of the LAR
draining a 1,300 km2 watershed. The LAR, for about 80 km
upstream of its discharge point at the Port of Long Beach, is
predominantly concrete with uniform geometry for flood
protection and urban stormwater removal (Abdi et al., 2020).
The LAR is notable for its channelized trapezoidal cross-section
form, concrete armoring, lack of riffle-pool bedformmorphology,
and lack of riparian vegetation. Even though 90–95 percent of in-
stream riparian habitat within the LAR watershed has been lost
due to urbanization and channelization of the river (Dahl, 1990),
habitat restoration in the LAR is one of the main goals of city
planners and managers (USACE, 2016). Having accurate
estimations of water temperature is critical for designing
effective strategies.

We obtained LAR water temperature monitoring data for
the study location from the Resource Conservation District of
Santa Monica Mountains (Mongolo et al., 2017). Water
temperature data were monitored from June through July
2016 using a combination of ONSET HOBO TidbiT v2
Water Temperature Data Loggers and HOBO Pendant
Temperature Data Loggers (collectively, HOBOs)
programmed to record time, date, and temperature
(Mongolo et al., 2017). We obtained the meteorological
data from the Burbank Airport weather station for the
study period. After preparing water temperature and
weather data (Figure 2), we pre-processed observed river
temperature and weather data. Based on the available data
for the monitoring station, we selected hourly data for the
period June 10–July 18, 2016 (n � 936), during the dry weather

(summer) period. The weather dataset had multiple features
however only 12 features were monitored at hourly intervals.
We cleaned and normalized the data based on the mean (μ)
and standard deviation (σ) normalization method,
X̂i � (Xi − μ)/σ, to provide more informative input data for
the machine learning algorithms. In the third step, we applied
feature engineering techniques (Zheng and Casari, 2018) for
organizing the data, addressing missing values, and
determining the effective features (Figure 2). We used
Google’s Facets visualization for machine learning datasets
tool (https://pair-code.github.io/facets/) to inspect the
available features for the analysis (see Supplementary Figure
S1, S2 as samples). Three additional features were then selected
in addition to the hourly air temperature from the weather data,
including relative humidity, atmospheric pressure, and wind
speed. Pairwise relationships in a selected dataset based on their
joint distribution shows that water temperature is a function of
all the other parameters and the selected features are also each
correlated (Supplementary Figure S3).

In our machine learning model development, we followed 0.6,
0.2, and 0.2 ratios for the training, validation, and testing phases
(Figure 2). Table 1 shows the overall statistical analysis of the
selected features on the training and validation data before the
normalization process. The training and validation phases were
handled by the TensorFlow model using the Keras library
capabilities. After obtaining satisfactory results in the
validation period, we obtained predicted values, also using
TensorFlow functions, to see the model’s performance
compared to observed data. We analysed each machine
learning model’s performance based on three factors including
mean absolute error (MAE � ∑n

i�1
∣∣∣∣ŷi − yi

∣∣∣∣/n, °C), coefficient of
determination (R2), and the p-value form a two-sample t-test
(Figure 2). In the MAE equation, the ŷi and yi are the predicted
and observed values respectively and n is the total number of the
total number of the observations.

FIGURE 2 | The schematic diagram of the steps for data gathering, cleaning, and organizing, as well as ML model’s development and generating the predicted
values based on the trained model to evaluate their performance.

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 7383224

Abdi et al. Machine Learning for Water Temperature

https://pair-code.github.io/facets/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Machine Learning Algorithms Development
In order to evaluate the performance of the DNNs1, we
compared the trained models against single-layer and
multilayer LR supervised machine learning models in the
prediction process. For the single-layer model training, we
used hourly air temperature as the predictive parameter and
for the multilayer algorithms after applying feature engineering
techniques, we selected hourly air temperature, relative
humidity, station pressure, and wind speed as the
independent variables for the period of June 10–July 18,
2016, for the training, validation, and testing phases (see
Study Area and Inputs for more details). We considered the
water temperature as the dependent variable for all the
algorithms. For the training process, we trained the LR and
DNN algorithms on Google’s TensorFlow model version 2.3.1
(Abadi et al., 2015) using Keras ANN library2 on Python 3.

LR model: For the LR learning algorithm, a single-variable and
multilayer model was developed to predict water temperature
from the input data. We used the Keras Sequential application
programming interface (API) for predictions, which allow
creating models layer-by-layer in a stepwise fashion. We
defined a two-step sequence in building the models including
1) getting the normalized input date and 2) applying the linear
transformation (y � β1x+β0) to produce the outputs using the
Dense layer (i.e., regular deeply connected neural network layer).
We set the term units in the Dense layer as 1 (layers.Dense(units �
1)) for generating the outputs. The variable units in the Dense
layer represents the number of units and affects the output layer.
The number of inputs is defined by the input_shape argument for
the sequential model. We passed the air temperature input data as
the single-layer model to develop a linear model with air
temperature as the independent variable and water
temperature as the dependent variable. For the multilayer
model, in addition to air temperature, we added relative
humidity, station pressure, and wind speed input data to the
model for the training process.

In the LR with single-layer input, the model uses two trainable
parameters including the intercept and slope of the line to obtain
the best estimate of the linear model. In the linear equation,
ŷ � β̂1X + β̂0, parameters with the hat symbol are the predicted
outputs by the model for the target value (yi). In the multilayer

LR, the model uses five trainable parameters for each target value
which can be presented in the matrix format as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ1

ŷ2

ŷ3

.

.

.
ŷn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 + β1X1,1 + β2X1,2 + β3X1,3 + β4X1,4

β0 + β1X2,1 + β2X2,2 + β3X2,3 + β4X2,4

β0 + β1X3,1 + β2X3,2 + β3X3,3 + β4X3,4

.

.

.
β0 + β1Xn,1 + β2Xn,2 + β3Xn,3 + β4Xn,4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

where n is the number of target values for the training procedure.

After building the LR models, we compiled the model for
training procedure configuration. We set the mean absolute error
for the compilation’s loss function to be optimized based on the
Adam optimization method (Kingma and Ba, 2014). Adam
optimization is a stochastic gradient descent method (Ruder,
2016) that is based on adaptive estimation of first order and
second-order moments. For the optimizer, we used learning rates
ranging from 0.0001 to 10 with one order of magnitude in each
round and selected the best one for each model. After testing the
considered values, we selected the learning rate of 0.1 for the LR
models and 0.001 for the DNNmodels. For the training phase, we
set the number of epochs as 100 iterations. We kept 20% of the
training data for unbiased validation. The validation set is not
within the test set and 20% of the training data was used by the
model for validation to provide more accurate results about the
model’s improvement in the iterations. Splitting the data into
train and test sets was random with a fixed seed for all the
algorithms so the train-test splits were always deterministic and
reproducible.

DNN model: By definition, a DNN is an ANN architecture
with multiple layers between the input and output layers (Yu
et al., 2016). To be consistent with the LR model training, we
developed single-variable and multilayer DNN models to predict
water temperature based on the input data using the Back-
propagation technique (Keller, et al., 2016). We used the Keras
Sequential API on normalized data for the prediction process and
considered three sequences of steps in building the models
including 1) getting the normalization input data layer, 2)
applying two hidden, nonlinear Dense layers using the
rectified linear unit (ReLU) nonlinear activation function
(Jarrett et al., 2009), and 3) generating a single-output layer.
We considered 64 neurons for each of the hidden layers using the
Dense layer (Figure 3). The interior dense layers on ANN
solutions are the regular deeply connected neural network

TABLE 1 | Statistical characteristics of the dependent and independent variables have been used in the ML model development. In the table, “Std” stands for standard
deviation.

Count (#) Mean Std Min 25% 50% 75% Max

Dependent variable
Water temperature (°C) 749 26.5 2.76 20.0 24.6 26.3 28.7 33.0
Independent variables
Air Temperature (°C) 749 22.7 5.50 13.9 18.3 21.1 26.1 43.9
Relative Humidity (%) 749 61.1 20.9 5.0 47.0 64.0 79.0 94.0
Station Pressure (mm) 749 741.7 1.27 737.1 739.1 740.6 741.7 745.0
Wind Speed (m/s) 749 2.8 1.5 0.0 2.2 2.7 4.0 6.7

1https://towardsdatascience.com/a-laymans-guide-to-deep-neural-networks-
ddcea24847fb.
2Chollet. Software Available from https://keras.io/.
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layers and the name hidden for these additional DNN non-linear
layers means that they are not directly connected to the inputs
and outputs. Like the LR, we passed the air temperature time-
series data to the single-layer DNN model to predict the water
temperature. For the multilayer DNN model, in addition to the
air temperature, we passed three other features including relative
humidity, station pressure, and wind speed data. For the single-
layer DNN model with two hidden layers, each with 64 neurons,
the model used 4,353 trainable parameters, and for the multilayer
DNN, with the same configuration, the model used 4,545
trainable parameters in the training phase.

Just as we did in building the LRmodel, we compiled the DNN
models for the training procedure. To keep the evaluation process
similar between the LR algorithms and the DNN models, we
considered the mean absolute error (MAE) for the compilation’s
loss function to be optimized based on the Adam optimization
method. In the training process, we set the number of epochs to
be 100 and applied 20% of training data for the unbiased
validation.

RESULTS

By applying a single-variable LR to predict water temperature
from air temperature, using the normalized data with 100 epochs,
the average predicted water temperature was 26.9°C, 0.7°C higher
than the average observed water temperature with a standard

deviation of 1.7°C. Based on the loss function for the sequential
model analysis, the optimizing parameter, the mean absolute
error (MAE), dropped to 1.37°C after about 15 iterations in model
training and stayed relatively constant for the rest of the
iterations. The validation dataset loss optimized parameter,
MAE, dropped to 1.23°C in the 15th iteration and stayed
relatively constant for the rest of the simulations (Figure 4A).
The training process based on a single feature made a linear
relationship between the dependent and independent variables as
shown in Figure 5A. The MAE for the testing process was 1.4°C
(Table 2) and the R2 of the predicted and observed water
temperatures was 0.68 (Figure 4B). Applying a two-sample
t-test on the observed and predicted water temperature data
showed that the p-value was 0.012 indicating 95% probability
there was a significant difference between the two datasets
(α � 0.05).

We trained a DNN algorithm based on the single input
normalized data, air temperature, and 100 epochs for
predicting water temperature. The average predicted water
temperature was 26.7°C, 0.5°C warmer than the average
observed water temperature with a standard deviation of 1.6°C.
The loss function of the DNN single input algorithm for the
training and validation dataset showed a gradual decrease in the
MAE variables. The MAE of the training dataset reached 1.26°C
in iteration 83 and the validation dataset MAE was 1.15°C
(Figure 4C). The DNN algorithm resulted in a non-linear
relationship between the water and air temperature time series

FIGURE 3 | Themultilayer DNNmodel structure with four features in the input layer, two hidden layers each with 64 neurons, and the output layer constructed using
Keras library and implemented in TensorFlow model.
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FIGURE 4 |Model training and testing performance for four learning approaches including the linear regression (LR) and deep neural network (DNN) algorithms for
single-layer (SL) and multiple layer (ML) conditions. Panels a, c, d, and g show the loss functions (MAE values) for the training and validation data sets and panels b, d, f,
and h show the performance of the models in predicting the water temperatures.
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data (Figure 5B) showing that the DNN algorithm with two
hidden layers and 4,353 trainable parameters could perform
better in the training process. In the testing procedure, the
algorithm’s MAE was 1.2°C, 14% better performance to the LR
with the same number of inputs (Table 2). Comparing the
observed and predicted water temperatures predicted by the
DNN single layer algorithm, the R2 was 0.73, 7% better
performance compared to the single-layer LR model
(Figure 4D). However, the p-value for the two-sample t-test
was 0.038 which was less than the α � 0.05 indicating that the
observed and predicted water temperature datasets were
significantly different with a probability of 95%.

By applying three additional features, relative humidity,
station pressure, and wind speed, to the training process using
the multivariate LR algorithm, the average predicted water
temperature was calculated as 26.5°C, 0.3°C warmer than the
average observed water temperature with a standard deviation of
1.4°C. Comparing the single input LR with the multiple-variable
LR, the ΔT between the average observed and predicted water
temperature improved by 0.4°C (57%) demonstrating that
including additional features to the training process resulted in

a significant improvement in the training process. The training
and validation loss function optimized values, the MAEs dropped
to 1.09°C and 1.02°C respectively after about 15 iterations of
model training, and similar to the single input LR model, training
stayed relatively constant to the end of the iterations (Figure 4E).
The MAE for the testing process using this training approach was
1.1°C (Table 2) and the R2 for the predicted and observed water
temperature datasets was 0.77, 13%more than the single-layer LR
method (Figure 4F). By applying a two-sample t-test on the
observed and predicted water temperature data we got a p-value
of 0.201 indicating that assuming a probability of 95%, there was
no significant difference between two datasets (α � 0.05) and two
datasets were statistically similar.

Optimal performance was observed training a multivariate
DNN model with two hidden non-linear layers with 4,545
trainable parameters. Similar to the multilayer LR, we included
relative humidity, station pressure, and wind speed features to the
training procedure. The average predicted water temperature was
25.4°C which was only 0.2°C higher than the average observed
water temperature and the standard deviation was 1.2°C.
Although compared to the multilayer LR, the ΔT was close,

FIGURE 5 | Scatter plots showing the relationship of the air and water temperature for the single-layer training approaches using the linear regression (A) and deep
neural network (B) approaches. Panel b shows how the DNN model took the advantage the nonlinearity provided by the hidden layers.

TABLE 2 | Statistical analysis of four applied learning algorithms on TensorFlow model using the Keras library in the testing process.

Mean absolute error (MAE—°C) Coefficient of determination (R2) p-value (Two-sample t-Test)

LR-SL 1.4 0.68 0.012
DNN-SL 1.2 0.73 0.038
LR-ML 1.1 0.77 0.202
DNN-ML 1.0 0.86 0.224

LR: Linear Regression, DNN: Deep Neural Network, SL: single layer, ML: multiple layer.

Frontiers in Environmental Science | www.frontiersin.org September 2021 | Volume 9 | Article 7383228

Abdi et al. Machine Learning for Water Temperature

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


however, compared to the single-layer LR, there was 71%
improvement in the ΔT. The loss function of the DNN
multivariate algorithm for the training and validation dataset
showed a gradually decreasing (similar to single-input DNN
algorithm) in the MAE variables. The MAE of the training
dataset reached 0.93°C after 100 iterations and the validation
dataset MAE reached 0.88°C after 100 interactions in the
optimizing process (Figure 4G). For the testing, the DNN
algorithm provided an MAE 1.0°C, the lowest value among
four training practices, which was 28% less than the MAE of
the single-input LR (Table 2). Comparing the distribution of the
absolute errors for the single-layer LR and multilayer DNN
testing process showed that the DNN model’s absolute errors
were 30% more below the 1°C threshold (Figure 6). The R2 value
for the observed and predicted water temperature datasets with
this algorithm, was 0.86, 26, and 12% higher compared to the
single-layer LR and multivariate LR algorithms (Figure 4H). The
p-value for the two-sample t-test was 0.224 which indicated that
there was no significant difference between observed and
predicted water temperature datasets considering a probability
of 95%.

DISCUSSION

Traditionally when observed data is not available, river water
temperature has been predicted via air temperature using linear
or non-linear relationships (Mohseni et al., 1998; Zhang and
Johnson, 2017). Morrill et al. (2005) predicted river water
temperature for 43 sites in the US and western Europe using
LRs between the 7-days mean air and water temperatures and
calculated an average root mean square error (RMSE) of 2.4°C.
Morrill et al. (2005) also applied a non-linear regression equation
(Mohseni et al., 1998) using air temperature data at 22 sites with
the most comprehensive year-round coverage and got an average
RMSE of 2.2°C for the sites. The non-linear regression equation
proposed by Mohseni et al. (1998) has been used for generating
the upstream river temperature boundary conditions for the

mechanistic modelling of the water temperature simulations
(Abdi et al., 2020; Sun et al., 2015) as an alternative when the
observed data are not available. However, in dry weather
simulations, Abdi and Endreny (2019) showed that the non-
linear equation overestimated water temperature at the upstream
boundary condition by about 1°C. Given that the upstream
boundary temperature was considered as a sensitive parameter
in temperature simulations (Abdi et al., 2020), overestimating
that could cause overall warmer temperatures in the model. The
machine learning-based multilayer models, specifically the DNN
algorithms, could be a good alternative for the linear or non-
linear regression equations for the cases when there are observed
river temperature data for model training resulting in more
accurate predictions. One application for the case study in this
paper is predicting water temperature for the anadromous
steelhead trout (Oncorhynchus mykiss) migration season,
when observed data are not available. Stakeholders in the LAR
aim to return a sustainable population of this sensitive cold-water
native species in the LAR through stream restoration efforts.
Using the multivariate DNN developed here, thermal conditions
for the migration can be predicted in the absence of observed
winter river temperatures; the DNN algorithm estimates the
dependent (observed water temperature) with the independent
(weather) data in dry weather conditions as inputs. We selected
the epochs number based on Google’s general guidelines. Even
though the computed error’s change after epoch 50 was almost
negligible, we kept 100 epochs to present the pattern in the errors
decrease for the applied algorithms. Since our dataset wasn’t
large, the computations were fast. However, in practice and
specifically working with large datasets, a smaller epoch
number could be considered to avoid expensive computations.

River temperature data can be spatially and temporally sparse,
yet it remains the master variable which controls the
sustainability of fish, amphibians, and macroinvertebrates.
River temperature influences the distribution of fish
populations, their metabolism, their ability to spawn
successfully, hatching, growth and survival. With climate
change predicted to reduce thermal habitat for cold-water fish
by 36 percent, and their populations by 50 percent (Mohseni
et al., 2003), it is imperative to develop tools that are efficient and
rely on few input variables to conserve thermal habitat for native
species such as the steelhead trout (Benyahya et al., 2007). In areas
where river temperature monitoring networks do not exist, or the
data record is limited (similar to our case study with n � 936), the
DNN algorithm can accurately infer river temperature from
available weather data which will inform stream temperature
standards in policy, help identify areas that need intervention to
prioritize conservation, and enable entire river systems to be
modelled. More efficient estimations of river temperature from
the DNN algorithms will inform and improve models which may
be used to predict changes in river temperature due to climate
change, urbanization, dam removal and other river restoration
efforts and depending on the objectives having a larger dataset
could potentially increase the accuracy of the predictions.

Prior studies have tried to predict water temperature via ANN
algorithms and concluded that even though air temperature is the
most important predictor, including other attributes can improve

FIGURE 6 | Histograms showing the absolute errors frequency
distributions for the single-layer LR and multilayer DNN models in the testing
process.
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prediction accuracy (e.g., Sahoo et al., 2009; DeWeber and
Wagner, 2014; Piotrowski et al., 2015; Zhu et al., 2019);
meaning that overall, multilayer machine learning algorithms
could be better choices as we concluded in our analysis. The
additional independent variables in these studies includes a wide
range of descriptive properties which could affect water
temperature directly or indirectly. For example, DeWeber and
Wanger (2014) considered landform and landcover, Piotrowski
et al. (2015) added current runoff and declination of the Sun,
Sahoo et al. (2009) included solar radiation, and Zhu et al. (2019)
included the day of the year, together with different forms of air
temperature in their ANN analysis. Other studies (Isaak et al.,
2010; Ruesch et al., 2012) have found that elevation can also be an
effective independent variable for predicting water temperature.
The current study is focused entirely on a highly urbanized area in
a coastal area without much topographic relief, applying features
related with the landform or landcover won’t make a significant
improvement in the predictions in this region based on the
feature engineering fundamentals. Furthermore, including
elevation in the training analysis could decrease air
temperature effects and downplay the impacts of increasing air
temperatures under climate change (Stanton et al., 2012;
DeWeber and Wanger, 2014). The range of the observed water
temperature in the monitoring campaign (Mongolo et al., 2017)
for the study area was 13.2°C between 20.0°C and 33.2°C in June
and 8.0°C between 23.5°C and 31.5°C in July. The range of the
predicted data using the multilayer DNN was 8.5°C between
21.7°C and 32.6°C, showing good performance with a reasonable
load of computations. Our analysis confirmed that air
temperature is the most important parameter impacting river
water temperature and that including other features significantly
improved results in our multilayer analysis. Including additional
meteorological features would provide more robust predictions,
specifically with climate change and urban heat island
interactions and their impact on thermal fish habitat in urban
landscapes (Kalnay and Cai, 2003).

Even though multilayer machine learning algorithms
performed reasonably well in predicting LAR water
temperature (Table 2), training the models for multiple
climate conditions could generate more holistic machine
learning-based predictors. Further, using long term observed
data could be beneficial in the training/validation phases. For
the LAR, the only available observed data were the monitored
data provided by the Mongolo et al. (2017) for the dry weather
period in 2016. Other observations are required for creating
more robust mechanistic and/or machine learning-based
models for predicting water temperatures. Longer observed
time series data also could provide a good opportunity to apply
other reliable deep learning methods such as long short-term
memory (LSTM; Hochreiter et al., 1997) algorithm to assess its
functionality in predicting water temperature as it is capable of
learning long-term dependencies (Hochreiter et al., 2001)
which could be useful in predicting water temperature time
series data. Furthermore, future research on expanding the
objectives of this study could focus on including additional
predictive features such as direct and diffuse solar radiation,
downloadable through the National Renewable Energy

Laboratory’s National Solar Radiation Database (NREL
NSRDB; Sengupta et al., 2018), and in-situ weather data. For
this study we used weather data from nearby weather station
data without including solar radiation data in order to make the
data gathering process simple and easy to apply across other
river systems and regions.

CONCLUSION

In this study we developed four machine learning-based models,
single-layer and multilayer LR and DNN, to predict hourly river
water temperature using meteorological data. We used an open-
source TensorFlow model using Keras ANN library on Python 3
for our analysis and applied observed hourly water temperature
as well as weather data from June 10 to July 18, 2016, for the
training, validation (together, 80% of the data), and testing (20%
of the data) processes. Air temperature was used as the
independent variable for single-layer models and relative
humidity, station pressure, and wind speed were considered as
independent variables for the multilayer models. As supported by
the literature, we found that air temperature was the most
effective parameter in predicting water temperature, however,
including additional features improved the predictions by 28%
for the MAE and 26% for the R2 for the observed and predicted
water temperatures, comparing the single-layer LR and
multilayer DNN models. For two multilayer machine learning
models both algorithms generated a p-value > α � 0.05 indicating
no significant difference between observed and predicted water
temperatures, the DNN model outperformed by 12% for their R2

values. These findings suggest that to predict water temperature,
it is better to apply a range of machine learning algorithms and in
some cases training the DNN models could be more challenging
than the LR models. The overall modelling performances of the
applied machine learning models in this study indicated that
these models can be effectively used for river water temperature
prediction in the absence of observed data. The machine learning
models in this study are ultimately useful tools to address
sustainable management of water resources and species
conservation efforts. Findings from this work will assist
hydrologic and earth systems modelers investigating
alternative strategies for predicting water temperature
specifically for determining upstream river temperature
boundary conditions for mechanistic models.
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