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Tillage and straw incorporation are important agricultural practices that can break the plow
layer and improve Mollisol fertility. The effect of these practices on the limitation of
resources for soil microorganisms, however, is unclear. We established a field
experiment in 2018 and collection of soil samples in 2020 to study the acquisition of
resources by microbes in a Mollisol region in northeastern China. Four treatments were
studied: conventional tillage (CT), straw incorporation with conventional tillage (SCT),
subsoil tillage (ST) and straw incorporation with subsoil tillage (SST). The limitation of
resources for soil microorganisms was assessed using models of extracellular enzymatic
stoichiometry. The soil microbes were generally colimited by C and P but not N. The degree
of limitation, however, varied among the treatments. SCT and SST alleviated microbial P
limitation in the 0–15 and 15–35 cm layers, respectively, but ST did not significantly affect P
limitation relative to CT. Interestingly, N-resource contents were strongly correlated with
indicators of C and P limitation. A random forest analysis found that the contents of
available N and total dissolved N were the most important factors for microbial C and P
limitation, respectively. Straw incorporation alleviated microbial P limitation but did not
eliminate P limitation and deep tillage aggravate microbial C limitation. We suggest that N
fertilization may be reduced due to the N-rich characteristics of the Mollisols in
northeastern China.
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INTRODUCTION

Microbes play a key role in the decomposition of organic matter
and the release of nutrients (Daniela et al., 2011; Leininger et al.,
2006). Most microbially controlled processes strongly depend on
the biomass and activity of microorganisms, which are mostly
limited by resources, including carbon (C), nitrogen (N) and
phosphorus (P) (Ekblad and Nordgren., 2002; Hill et al., 2014).
The amounts of soil C, N and P, however, have been altered in a
Mollisol region in China due to straw incorporation, because
straw incorporation can promote the sequestration of C in the soil
(Ji et al., 2012; Wang et al., 2015), enhance soil respiration and the
activity of soil enzymes (Li et al., 2019; Zhao et al., 2016), increase
soil microbial biomass and activity and affect the supply of soil
nutrients (Zhao et al., 2015) and can help to reduce the inputs of
chemical fertilizers (Linquist et al., 2006). Understanding the
impacts of straw incorporation on microbial resource limitation
will shed some light to improve the sustainability of agricultural
development.

Tillage management can influence the depth of straw
incorporation (Chen et al., 2017). Tillage affects soil porosity,
moisture content, temperature and the activity of
microorganisms in various soil layers (Hojatollah et al., 2018).
Straw incorporation has been widely used to increase soil fertility,
with good results (Mahdi et al., 2005), but most studies have
focused on the effect of straw mulching or mixing straw with the
topsoil (Kahlon et al., 2013; Tao et al., 2015). These strategies of
tillage management can increase the content of soil organic C
(SOC) of the surface soil and reduce soil disturbance (Choudhury
et al., 2014) but are not conducive to improving the structure of
deep soil, enhancing the use efficiency of residues or
accumulating SOC (Liu et al., 2021). Some previous studies
have found that deep tillage combined with straw
incorporation substantially increased soil C sequestration
(Tian et al., 2016; Zhao et al., 2015), soil physical properties
and the activities of soil enzymes (Zhao et al., 2016). Both tillage
and straw management affect the physical and chemical
properties of soil and nutrient recycling to promote crop
growth, which intensifies the competition for nutrients
between plants and microbes. Microbes also have a
competitive advantage over plants in the acquisition of
nutrients from soil (Hodge et al., 2000). Some microorganisms
acquire nutrients by producing extracellular enzymes to degrade
complex organic compounds (Jones et al., 2009). Straw
incorporation with deep tillage into the field provide a
favorable environment for accelerating the secretion of
extracellular enzymes and lead to changes in the contents of
soil nutrients (Heinze et al., 2010; Kabiri et al., 2016).

Many methodologies have been used to assess the alteration of
microbial resource limitation. Investigating the changes of
substrate-induced respiration or microbial biomass has
traditionally been used to assess microbial resources. This
methodology, however, is relatively time-consuming, and
added “unnatural” nutrients may become bound to the soil
matrix and have side effects (Sullivan et al., 2014). Microbial
resource limitation is also partly due to an unbalanced nutrient
stoichiometry. The stoichiometry of extracellular enzymes, which

represents the ability of microorganisms to absorb nutrients, can
be used as an important indicator to assess the flow of energy in
an ecosystem (Sullivan et al., 2014). The stoichiometry of
extracellular enzymes is based on the assumption that
enzymatic activity can indicate the acquisition of organic C, N
and P.

We assayed the activities of four extracellular enzymes,
β-D-glucosidase (BG), L-leucine aminopeptidase (LAP), β-N-
acetylglucosaminidase (NAG) and acid/alkaline phosphatase
(AP), which play important roles as indicators of the
decomposition of organic matter (Sinsabaugh et al., 2012). BG
is a cellulase responsible for hydrolyzing organic C to glucose.
NAG and LAP are two important N-cycle enzymes responsible
for depolymerizing chitin and protein, respectively. AP is a key
enzyme associated with the hydrolyzation of organic P. This
approach has been widely used because it is more effective than
the traditional method. For example, analyzing the stoichiometry
of extracellular enzymes has been used to determine C, N and P
limitations in a karst region (Chen et al., 2019.; Li et al., 2019) and
in agro-ecosystems in semiarid areas (Ma et al., 2021) in China.
Microbial growth is strongly related to microbial metabolic
characteristics, which is controlled by microbial resource
status, so that adopting effective soil managements to relief
microbial resource limitation and thus increase microbial
growth is important. Few studies, however, have used
ecological enzymatic stoichiometry to identify the metabolic
characteristics of microbes in agro-ecosystems in Mollisols in
northeastern China.

To elucidate the metabolic characteristics of microbes,
Moorhead et al. (2016) proposed to calculate the ratio of
enzyme C:N vs. C:P acquisition the “lengths” and “angles” of
the vectors in the activity diagram to quantify the to quantify the
relative investment of C vs. nutrient acquisition (vector lengths)
or P vs. N acquisition (vector angles). These ratios are converted
into vector lengths and angles for determining the simultaneous
and relative nutrient demands of the community, independent of
changes in total enzymatic activities, thereby providing a clear
metric corresponding to relative C limitation and P vs. N
limitation (Cui et al., 2018; Moorhead et al., 2013, 2016). The
threshold element ratio (TER) can also help to quantify the shift
in microbial metabolism between energy limitation (C) and
nutrient limitation (N and P) (Sinsabaugh et al., 2009).
Microbial resource limitation can therefore be assessed using
enzymatic stoichiometry, including enzymatic ratios, vector
variables and TER (Zheng et al., 2020). Enzymatic
stoichiometry provides strong evidence of microbial C, N or P
limitation. The effects of tillage and straw management on soil
physical properties and the availability of nutrients have been
widely studied, but the functional and metabolic responses of
microorganisms to these practices remain unknown.

We set up a field experiment in Mollisol soil in northeastern
China to analyze the effects of different strategies of tillage and
straw management on soil nutrient contents, microbial biomass
C, N and P contents and the activities of soil enzymes to
determine the status of soil microbial resource limitation. The
main objectives were to 1) determine the effects of subsoil tillage
and straw management on microbial resource limitation, and 2)
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identify the relationships between microbial resource limitation
and changes in the contents of soil nutrients.

MATERIALS AND METHODS

Site Description
This field experiment was established in 2018 at the Hailun
National Field Station of Agroecosystems of the Chinese
Academy of Sciences in Hailun County, Heilongjiang
Province, China (47.27°N, 126.41°E; 240 m a.s.l.) (Figure 1).
The soil type in this area is a Mollisol. The experimental
region has a typical temperate continental seasonal climate,
with hot summers and cold winters. The mean annual
temperature and precipitation are 1.5°C and 550 mm,
respectively. The highest mean monthly temperature of 21°C
in July and the lowest of −23°C in January. The precipitation is
mainly concentrated from July to September. The frost-free
period is 125 days. The study site has no gradient slope and
no erosion processes, and corn and soybeans are mainly planted.
Corn was the crop at the time of sampling.

Experimental Design and Treatments
The experiment tested four treatments: conventional tillage (CT,
tillage depth to 15 cm with no straw incorporation), straw
incorporation with conventional tillage (SCT, tillage depth to
15 cm), subsoil tillage (ST, tillage depth to 35 cm) and straw
incorporation with subsoil tillage (SST, tillage depth to 35 cm).
The experiment had a complete randomized block design with
three replicates. All plots were manually plowed. The rate of straw
incorporation in SCT and SST was 10,000 kg ha−1, with the straw
clipped to sizes >5 cm and evenly mixed into the soil. The rate of

straw incorporation was determined by the total straw production
for returning the soil. The treatments were continuous croppings
of maize in 12 m2 (4 × 3 m) plots. Each plot was fertilized with
180.0 kg N ha−1, 70.0 kg P2O5 ha

−1 and 60.0 kg K2O ha−1. The
practices of field management were the same as local practices.

Collection of Soil Samples
Soil samples were collected in July 2020 from the 0–15 and
15–35 cm layers for each treatment at three randomly selected
points and then mixed into composite samples. These composite
samples were packed in sterile bags and transported to the
laboratory. Each sample was then divided into two subsamples
for analysis. One subsample was air-dried and used for
determining the chemical properties. The other subsample was
passed through a 2-mm sieve and stored at 4°C for analyzing the
activities of soil extracellular enzymes.

Measurements of Soil Properties and
Activities of Extracellular Enzymes
The soil particle composition was determined with a laser Particle
Size Analyzer (Mastersizer 2000; Malvern Company,
United Kingdom) after removing organic matter by digestion
in heated hydrogen peroxide solution with sodium
hexametaphosphate as dispersant. Based on the international
soil particle size fraction system, the percentages of clay
(<0.002 mm), silt (0.002–0.02 mm) and sand (0.02–2 mm) in
0–15 cm layer soil were 40.00, 25.84 and 34.16%, respectively,
and the percentages in 15–35 cm layer soil were 35.05, 22.87 and
43.09%, respectively. Soil-moisture content was measured by
weighing the soil before and after drying at 105°C for 48 h.
Soil pH (1:2.5 soil:water) was determined using an FE28-

FIGURE 1 | The study site at different geographical scales in a map of China.
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Standard composite electrode (Mettler Toledo). Soil total N (TN)
content was determined using the Kjeldahl digestion-distillation
method. The contents of SOC, available N (AN), available
P (AP), available K (AK), dissolved organic C (DOC) and
total dissolved N (TDN) were measured as described by Taylor
and Francis (2012) (Carter and Gregorich, 2012). Microbial
biomass C (MBC), microbial biomass P (MBP) and microbial
biomass N (MBN) were measured using chloroform
fumigation-extraction (Vance et al., 1987). Enzymatic
activity was measured within 2 weeks after soil sampling.
The activities of four enzymes were determined using
fluorometric and oxidative enzymatic assays (Ai et al.,
2012): one C-acquiring enzyme (β-D-glucosidase, BG), two
N-acquiring enzymes (β-N-acetylglucosaminidase, NAG, and
L-leucine aminopeptidase, LAP) and one P-acquiring enzyme
(acid/alkaline phosphatase, AP). The enzymatic activities are
expressed as nmol g−1 dry soil h−1.

Assays of Enzymatic Stoichiometry
We used four methods to analyze microbial resource limitation
(Zheng et al., 2020). The first method was based on a scatter plot,
which used (NAG + LAP)/AP activities as the X-axis and BG/
(NAG + LAP) activities as the Y-axis (Hill et al., 2012). The four
quadrants of the scatter plot represented N limitation, P
limitation, C and P colimitation and N and P colimitation.

The second method calculated three ratios, BG/(NAG + LAP)
activities, BG/AP activities and (NAG + LAP)/AP activities,
where higher BG/(NAG + LAP) and BG/AP ratios represent
lower N limitation and P limitation, respectively (Waring et al.,
2014).

The third method was based on vector analysis (Moorhead
et al., 2016). Vector length (L, unitless) and vector angle (A, °)
were calculated as:

L � √(lnBG/ln[NAG + LAP])2 + (lnBG/lnAP)2 (1)

A � Degrees(ATAN2((ln BG/ln AP), (lnBG/ln[NAG + LAP]))
(2)

Increases in vector length indicate that the limitation of
microorganism C increases, and vector angles >45° and <45°
indicate P and N limitation, respectively. A larger vector angle
indicates higher P limitation (Sinsabaugh et al., 2009).

The fourth method used differences between TER for C:N
(TERC:N) and the DOC:TDN ratio (RC:N) and between TER for
C:P (TERC:P) and the DOC:AP ratio (RC:P). TERC:N and TERC:P

were calculated as (Moorhead et al., 2016):

TERC:N � (BG/(NAG + LAP)) × BC:N/n0 (3)

TERC:N � (BG/AP) × BC:P/p0 (4)

where BC:N and BC:P indicate the ratios of microbial biomass C:
N and C:P, respectively, n0 and p0 are intercepts for the type II
standard major-axis regressions of ln(BG) vs. ln(NAG + LAP)
and ln(BG) vs. ln(AP), respectively. When RC:N or RC:P is
larger than TERC:N or TERC:P, N or P are limited for soil
microbes, respectively. A higher RC:N-TERC:N or RC:P-TERC:P

indicates greater N or P limitation, respectively (Zheng et al.,
2020).T
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Statistical Analysis
Correlations between the soil properties and microbial resource
limitations were determined using generalized linear models.
Structural equation modeling (SEM) was performed using
Amos v.24 (IBM, Armonk, United States) to identify the
possible ways in which variables could influence microbial
resource restriction. The importance of the influencing factors
for microbial metabolic limitation were identified using a random
forest (RF) analysis for classification by Rv. 4.0.4 (R Development
Core Team, 2021) with the random forest package (Trivedi et al.,
2016). Percentage increases in the mean squared error (MSE) of
variables were used to estimate the importance of these indices: a
high MSE% implied the importance of the variables (Breiman,
2001). Other statistical analyses were performed using IBM SPSS
Statistical software v. 22 (SPSS Inc., Chicago, United States).

RESULTS

Soil Properties
Most soil properties were affected by tillage depth and straw
incorporation (Table 1). SOC, AN, AP, AK, MBN and MBP
contents were significantly higher in the 0–15 than the 15–35 cm
layer in CT and SCT but did not differ significantly in ST and SST.
SOC content was significantly higher by 11.8% in SCT than CT in
the 0–15 cm layer. AN and AK contents were significantly higher
by 15.7 and 11.0% in SST than CT, respectively, in the 15–35 layer

but did not differ significantly in the other treatments in the
0–15 cm layer. Soil pH and AP content did not differ significantly
among CT, SCT, ST and SST in either layer. DOC
(215.3 mg kg−1) and TDN (20.12 mg kg−1) contents were
highest in SST in the 0–15 cm layer. MBC content was
significantly higher by 81.5% in SST than ST and by 33.9% in
SCT than CT in the 0–15 cm layer. MBN and MBP contents were
significantly higher in SST than the other treatments in the
0–15 cm layer.

Activity of Soil Enzymes
The activities and stoichiometries of the extracellular enzymes
varied among the treatments (Figure 2). The activities of the C-
and P-acquiring enzymes were significantly higher in the 0–15
than the 15–35 cm layer in CT and SCT. BG activity was
significantly higher by 46.2, 38.1 and 87.6% in SCT, ST and
SST, respectively, than CT in the 0–15 cm layer and was
significantly higher in ST and SST than CT in the 15–35 cm
layer. NAG and LAP activities were significantly higher in SST
and SCT than CT in the 0–15 cm layer and significantly higher in
SST than CT, SCT and ST in the 15–35 cm layer. AP activity was
significantly higher in SCT, ST and SST than CT in the 0–15 cm
layer. AP activity was highest in SST (299.8 nmol g−1 h−1) in the
0–15 cm layer.

The enzymatic C:N activity ratio was significantly higher in
SST and ST than SCT and CT. The enzymatic C:P activity ratio
was significantly higher in SCT than CT in the 0–15 cm layer and

FIGURE 2 | Responses of the activities of soil extracellular enzymes to tillage and straw management in the 0–15 and 15–35 cm layers (A–C). Responses of
enzymatic activity ratios to tillage and straw management in the 0–15 and 15–35 cm layers (D–F). Different capital letters represent significant differences among four
different treatments. Different lowercase letters represent significant differences among four different treatments in different soil layers. See Materials and methods for
abbreviation definitions.
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significantly higher in SST than CT in the 15–35 cm layer. The
enzymatic N:P activity ratio was significantly highest in SCT in
the 0–15 cm layer.

Enzymatic Stoichiometry
The scatter plot of the stoichiometry of the extracellular enzymes
indicated that all data and all plots were C- and P-limited
(Figure 3). The microbial C and P limitations were quantified

by calculating the vector lengths and angles. The vectors
were significantly longer for SCT and SST than CT in the
15–35 cm layer and were significantly longer for SST than
SCT in the 0–15 cm layer. The vector angles were >45° in all
treatments and were lowest in SST in the 15–35 cm layer.
Tillage depth and straw incorporation had no significant
interactive effect on RC:N-TERC:N for any of the treatments.
RC:P-TERC:P was significantly larger than zero in all
treatments and was significantly highest in SST in the
0–15 cm layer.

Relationships Between Soil Properties and
Vector Characteristics of the Enzymatic
Activities
Soil properties were strongly correlated with enzymatic activities
(Table 2). BG activity was significantly correlated with TN, AK,
DOC, TDN, MBC, MBN andMBP contents. NAG + LAP activity
was significantly correlated with all soil properties except pH. AP
activity was significantly correlated with TN, AK, DOC, TDN,
MBC, MBN and MBP contents. Linear regression analysis
indicated that microbial C limitation increased with MBN
content (p < 0.05; Figure 4) and that microbial P limitation
decreased as SOC, TN, AN, AK and MBP contents increased (p <
0.001; Figure 5).

FIGURE 3 | Scatter plot of soil enzymatic stoichiometry showing the general pattern of microbial resource limitation (A). Variation of vector length (B), vector angle
(C), RC:N-TERC:N (D) and RC:P-TERC:P (E) among the treatments. Different capital letters represent significant differences among four different treatments. Different
lowercase letters represent significant differences among four different treatments in different soil layers. See Materials and methods for abbreviation definitions.

TABLE 2 | Correlation coefficients for the relationships between the activities of
soil enzymes (nmol g−1 soil h−1) and soil properties.

Variable BG activity NAG + LAP activity AP activity

pH 0.131 0.010 0.140
SOC content (g kg−1) 0.488* 0.800** 0.469*
TN content (g kg−1) 0.627** 0.845** 0.568**
AN content (mg kg−1) 0.409* 0.655** 0.370
AP content (mg kg−1) 0.381 0.525** 0.374
AK content (mg kg−1) 0.722** 0.774** 0.696**
DOC content (mg kg−1) 0.727** 0.720** 0.805**
TDN content (mg kg−1) 0.870** 0.728** 0.862**
MBC content (mg kg−1) 0.669** 0.693** 0.754**
MBN content (mg kg−1) 0.913** 0.806** 0.860**
MBP content (mg kg−1) 0.691** 0.826** 0.651**

Asterisks indicate significant relationships (p < 0.05). See Materials and methods for
abbreviation definitions.
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SEM was used to analyze the relationships between the
chemical properties and the microbial nutrient limitations of
the soil (length, χ2 � 2.93, p � 0.82; angle, Chi-square � 1.20, p �
0.75) (Figure 6). Vector lengths were correlated positively with
AN content and the enzymatic C:N and C:P activity ratios and
negatively with DOC content. The enzymatic C:N and N:P
activity ratios were primarily correlated with AN content. The
enzymatic C:N activity ratio was correlated positively with the
enzymatic C:P activity ratio and negatively with the enzymatic N:
P activity ratio. Vector angles were primarily negatively correlated
with TDN content and the enzymatic C:P and N:P activity ratios.
The enzymatic C:P activity ratio was primarily correlated with
TDN content, and the enzymatic N:P activity ratio was primarily
correlated with TDN and SOC contents. The enzymatic N:P
activity ratio was correlated positively with the enzymatic C:P
activity ratio and negatively with the enzymatic C:N activity ratio.
The enzymatic C:P activity ratio was positively correlated with the
enzymatic C:N activity ratio. The random forest analysis
demonstrated that the importance of each factor was
determined by vector length and angle. We estimated the
importance of the indices using percent increases in the mean
squared error of the variables, where higher values denoted more

important variables. The most important factors for vector length
were AN content followed by AP content, and the most
important factor for the vector angle was TDN content.

DISCUSSION

Effects of Tillage and StrawManagement on
the Activities of the Soil Enzymes
Tillage and straw management strongly influenced the activities
of the C-, N- and P-acquiring enzymes (Figure 2). The activity of
the C-acquiring enzyme was significantly higher in SCT than CT
in the 0–15 cm layer, indicating that the decomposition of the
straw incorporated into the surface soil could supply sufficient C
for the growth of soil microorganisms (Li et al., 2021). The
activity of the C-acquiring enzyme was also higher in ST and
SST than CT, perhaps due to the input of root C, because deep
tillage breaks plow pan layers and provides favorable soil
ventilation that promotes root development (Mu et al., 2016).
Deep tillage proved to be a measure to enhance soil C and N, by
translocating large amounts of not easily decomposable soil C and
N the greater depth soil. Deep tillage also transfers the carbon

FIGURE 4 | Vector lengths for the soil properties (A–I). Solid lines indicate that the model fit the vector lengths and the properties well, and the gray areas are the
95% confidence intervals of the models. See Materials and methods for abbreviation definitions.
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resources from the surface soil to the deeper layers, which leads to
the homogenization of the carbon resources throughout the
entire tilled layer (Urioste et al., 2006). In support of this, we
did find a significantly positive negative relationship between
DOC with BG activity in the current study (Table 2) and the
DOC contents were significantly higher not only in the 0–15 cm
soil layer but also in the 15–35 cm soil layer of the SST compared
with ST treatment, it can be assumed that downward transport
DOC is relatively high.

The activities of both N-acquiring enzymes were higher in
SCT than CT, perhaps due to the input of organic C with the
application of straw, which improved microbial demand for
available N to maintain a stoichiometric balance. The
activities of N-acquiring enzymes were higher in SST than
CT in the 15–35 cm layer, perhaps due to the deep tillage
involves incorporation of straw into the subsoil, and can
significantly improve nutrient supply and soil physical
properties (Xu et al., 2019). Meanwhile, the activity of the
P-acquiring enzyme was also higher in SCT than CT, because
straw incorporation increased the availability of C and N
(Table 1), which improved microbial demand in activity P to
maintain a stoichiometric balance.

Straw incorporation facilitates the mineralization of soil
organic P, so microorganisms release more P-acquiring
enzymes to compete with plants for the available P (Waqas
et al., 2020). Some previous studies have also reported that the
activities of these enzymes were statistically correlated with pH
(Sinsabaugh et al., 2008; Zheng et al., 2020), but pH and the
activity of the P-acquiring enzyme in our study were not
significantly correlated. Our short-term study of tillage and
straw management may not have been long enough to identify
a large impact on soil pH, which did not differ between CT and
the other treatments (Table 1). A change in the activity of only
one enzyme, however, cannot fully represent microbial resource
limitation, because resource limitation is not determined by a
single nutrient but by the relative availabilities of multiple
nutrients (Zhou et al., 2013). Studying microbial resource
limitation thus also needs an analysis of enzymatic stoichiometry.

Effects of Tillage and StrawManagement on
Microbial C, N and P Limitation
Our results suggest that the growth of soil microorganisms tended
to be co-limited by C and P but not N. This finding is supported

FIGURE 5 | Vector angles for the soil properties (A–I). Solid lines indicate that the model fit the vector angles and properties well, and the gray areas are the 95%
confidence intervals of the models. See Materials and methods for abbreviation definitions.

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 7370758

Zhang et al. Microbial Nutrient Acquisition in Mollisols

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


by three lines of evidence. Firstly, the scatter plot of the
stoichiometry of the extracellular enzymes provided intuitive
evidence that all soil microbes were limited by C and P
(Figure 3). Secondly, the vector angles were >45° and RC:P-
TERC:P was larger than zero for all treatments and RC:N-TERC:

N was larger than zero in some treatments. These results all
suggest that the soil microbes were limited by P rather than N for
all treatments. Thirdly, the enzymatic C:P and N:P activity ratios
were 0.29 and 0.15 in CT in the 0–15 cm layer, much lower than
the means for terrestrial ecosystems (0.62 and 0.44, respectively)
(Sinsabaugh et al., 2009), and the enzymatic C:N activity ratio
(1.91) was higher than the mean ratio for terrestrial ecosystems
(1.41). These results also indicated that the soil microbes tended
to be limited by P.

The variation of the enzymatic C:P activity ratio among the
treatments, however, indicated that the range of microbial P
limitation varied (Figure 2). The ratio was significantly higher in
SCT than CT in the 0–15 cm layer, indicating that straw
incorporation could substantially reduce the limitation of
microbial P. The alleviation of P limitation was likely due to
the effect of straw incorporation on the availability of soil P.
Vector angles indicate whether soil microbes are limited by the

availability of P with a greater value, implying more P limitation
(Moorhead et al., 2013). Based on the vector angle and the
enzymatic C:P activity ratio in our study, the incorporation of
straw may have increased the amount of available C, thereby
increasing the enzymatic C:P activity ratio and reducing
microbial P limitation (Figures 2, 3). Based on this, the
incorporation of straw provides additional substrate and a
favorable environment for the production of soil enzymes,
which leads to dynamic changes in soil nutrients and is
conducive to the sustainable production of crops. Based on the
vector angle, RC:P-TERC:P and the enzymatic C:P activity ratio,
however, deep tillage did not significantly affect microbial P
limitation; the vector angle, RC:P-TERC:P and the enzymatic C:
P activity ratio did not differ significantly between ST and CT in
the 0–15 cm layer, perhaps because ST lacked C inputs relative to
SCT (Tian et al., 2020). In support, ST did not significantly affect
SOC relative to CT in the 0–15 cm layer (Table 1).

Vector length is a useful index of whether soil microbes are
limited by the availability of C, with a longer vector implying
more C limitation (Moorhead et al., 2013). The indicators of
microbial C limitation (vector length and the enzymatic C:N
activity ratio) were higher in ST and SST but did not differ

FIGURE 6 |Relationships of microbial resource limitation with soil properties. (A) Structural equation modeling was used to identify the possible pathways by which
attributes controlled microbial C limitation (represented by vector length) and microbial P limitation (represented by vector angle). Solid and dashed arrows indicate
positive and negative relationships (p < 0.05), respectively. The numbers on the arrows indicate significant standardized path coefficients. R2 indicates the variance of the
dependent variable explained by the model. (B) Importance analysis of factors affecting microbial metabolic limitation in soil (random forest analysis). **, p < 0.01; *,
p < 0.05. See Materials and methods for abbreviation definitions.
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significantly between SCT and CT (Figures 2, 3), indicating that
deep tillage could aggravate microbial C limitation. Deep tillage
transfers surface soil with high SOC content to deeper layers,
leading to the homogenization of SOC throughout the entire
tilled layer, thus contributing to the increase in SOC content in
the subsoil layer (Urioste et al., 2006).

The variations in these P-limitation indicators were associated
with changes in TDN and SOC contents and the enzymatic C:P
and N:P activity ratios (Figures 5, 6), consistent with the results of
the random forest analysis (TDN content was the most important
factor of microbial P limitation). Microbial C limitation was also
mainly affected by AN, AP and MBN contents (Figures 4, 6). We
inferred that the soil in this region was N-saturated, and N
saturation leads to microbial C and P limitation. This
conclusion was supported by the following evidence. The straw-
incorporation treatments had higher levels of organic matter, and
the addition of a large amount of organic matter would
theoretically lead to the lack of N in crops, which would lead to
competition between microorganisms and crops for N (Bowles
et al., 2014). The difference in our study was that microbial
resource limitation was not converted to N limitation, although
straw incorporation provided a large source of C. This difference
also implied that the microorganisms in the Mollisol in our study
area were N-saturated. A previous study reported that N saturation
causes microbial C limitation and that N addition could aggravate
microbial C limitation (Jiří et al., 2013). N addition has aggravated
microbial C limitation in some N-addition experiments (Treseder
et al., 2008; Chen et al., 2019; Li et al., 2019).

Tillage and straw management did not weaken the status of N
saturation and even exacerbated it; RC:N-TERC:N was less than
zero and RC:N-TERC:N was higher in SST than CT in the 0–15 cm
layer. The enzymatic C:N activity ratio also suggested that deep
tillage increased microbial N saturation because the enzymatic C:
N activity ratio was higher in ST than CT. These results indicated
that the region was saturated with N resources. When the
application of fertilizers caused new N inputs exceeding the
holding capacity of living and non-living organisms, has
serious implications for the structure and function of
terrestrial ecosystems. It is suggested to reduce the application
of conventional N fertilizer and improve the utilization efficiency
of N fertilizer.

CONCLUSION

We investigated the changes in microbial resource limitation by
tillage and straw management using enzymatic stoichiometry in a
Mollisol in northeastern China. The results indicated that the
growth of microorganisms was mainly colimited by soil C and P
and not N. The incorporation of straw alleviated the P limitation
of the microorganisms, likely due to the increased level of
available C. Deep tillage tended to aggravate microbial C
limitation. The soil in this region is saturated with N
resources, so the status of microbial N saturation was not
affected, regardless of management strategy, which also
influenced microbial C and P limitation. The application of N
fertilizer can thus be appropriately reduced in the management of
conventional farmland in Mollisols in this region in China. This
study provides critical information on the effects of tillage and
straw management on microbial nutrient acquisition and
elsewhere in the world with similar climates and soil types.
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