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Spatiotemporal fusion has got enough attention and many algorithms have been
proposed, but its practical stability has not been emphasized yet. Observing that the
strategies harnessed by different types of algorithms may lead to various tendencies, an
integration strategy is introduced to make full use of the complementarity between different
types of spatiotemporal fusion algorithms for better fusion stability. In our method, the
images fused by two different types of methods are decomposed into components
denoting strength, structure, and mean intensity, which are combined separately involving
a characteristic analysis. The proposed method is compared with seven algorithms of four
types by reconstructing Landsat-8, Landsat-7, and Landsat-5 images to validate the
effectiveness of the spatial fusion strategy. The digital evaluation on radiometric, structural,
and spectral loss illustrates that the proposed method can reach or approach the optimal
performance steadily.
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1 INTRODUCTION

Satellite images with dense time series and high spatial resolution are eagerly needed for remote
sensing of abrupt changes in Earth, while they are hardly obtained due to physical constraints and
adverse weather conditions (Li et al., 2019). Spatiotemporal fusion algorithms were developed to
combine images of different temporal and spatial resolutions to obtain a composite image of high
spatiotemporal resolution, which have been put to practice to monitor floods (Tan et al., 2019b) or
forests (Chen et al., 2020). The spatiotemporal fusion process usually involves two types of remote
sensing images. One type has high temporal and low spatial resolution (hereinafter referred to as low-
resolution images), such as MODIS images. The other type has high spatial and low temporal
resolution (hereinafter referred to as high-resolution images), such as Landsat images. The one-pair
fusion is mostly studied for its convenience that only one pair of known images is required. The one-
pair spatiotemporal fusion algorithms can be classified into four types, namely, weight-based,
unmixing-based, dictionary pair–based, and neural network–based, as will be discussed.

Weight-based methods search similar pixels within a window in the given high-resolution images
and predict the values of central pixels with weights linear to the inverse distance. Gao et al. (2006)
proposed the spatial and temporal adaptive reflectance data fusion model (STARFM) with the
blending weights determined by spectral difference, temporal difference, and location distance,
which is the earliest weight-based method. STARFM was subsequently improved for more complex
situations, resulting in the spatiotemporal adaptive algorithm for mapping reflectance change

Edited by:
Peng Liu,

Institute of Remote Sensing and Digital
Earth (CAS), China

Reviewed by:
Costica Nitu,

Politehnica University of Bucharest,
Romania

Guang Yang,
South China Normal University, China

Jining Yan,
China University of Geosciences

Wuhan, China
Xinghua Li,

Wuhan University, China

*Correspondence:
Jingbo Wei

wei-jing-bo@163.com

Specialty section:
This article was submitted to

Environmental Informatics
and Remote Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 27 June 2021
Accepted: 01 September 2021

Published: 11 October 2021

Citation:
Ma Y, Wei J and Huang X (2021)

Integration of One-Pair Spatiotemporal
Fusion With Moment Decomposition

for Better Stability.
Front. Environ. Sci. 9:731452.

doi: 10.3389/fenvs.2021.731452

Frontiers in Environmental Science | www.frontiersin.org October 2021 | Volume 9 | Article 7314521

ORIGINAL RESEARCH
published: 11 October 2021

doi: 10.3389/fenvs.2021.731452

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2021.731452&domain=pdf&date_stamp=2021-10-11
https://www.frontiersin.org/articles/10.3389/fenvs.2021.731452/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.731452/full
https://www.frontiersin.org/articles/10.3389/fenvs.2021.731452/full
http://creativecommons.org/licenses/by/4.0/
mailto:wei-jing-bo@163.com
https://doi.org/10.3389/fenvs.2021.731452
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2021.731452


(STAARCH) (Hilker et al., 2009) and enhanced STARFM
(ESTARFM) (Zhu et al., 2010). When land cover type change
and disturbance exist, the former can improve the performance of
STARFM and the latter can improve the accuracy of STARFM in
heterogeneous areas. There are other methods in this category,
such as modified ESTARFM (mESTARFM) (Fu et al., 2013), the
spatiotemporal adaptive data fusion algorithm for temperature
mapping (SADFAT) (Weng et al., 2014), the rigorously weighted
spatiotemporal fusion model (RWSTFM) (Wang and Huang,
2017), and the bilateral filter method (Huang et al., 2013).

Unmixing-based methods work out the abundance matrix of
endmember fractions by clustering on the known high-
resolution images. The first unmixing-based spatiotemporal
method may be the multisensor multiresolution technique
(MMT) proposed by Zhukov et al. (1999). Later, Zurita-Milla
et al. (2008) introduced constraints into the linear unmixing
process to ensure that the solved reflectance values were positive
and within an appropriate range using the spatial information of
Landsat/TM data and the spectral and temporal information of
medium resolution imaging spectrometer (MERIS) data to
generate images. Wu et al. (2012) proposed a spatiotemporal
data fusion algorithm (STDFA) that extracts fractional covers
and predicts surface reflectance under the rule of least square
errors. Xu et al. (2015) proposed an unmixing method that
includes the prior class spectra to smoothen the prediction
image of STARFM within each class. Zhu et al. (2016)
proposed the flexible spatiotemporal data fusion (FSDAF) (Li
et al., 2020b) where a thin plate spline interpolator is used. The
enhanced spatial and temporal data fusion model (ESTDFM)
(Zhang et al., 2013), the spatial and temporal reflectance
unmixing model (STRUM) (Gevaert and Javier Garcia-Haro,
2015), and the modified spatial and temporal data fusion
approach (MSTDFA) (Wu et al., 2015b) were also proposed
along the framework.

Separately, dictionary pair–based methods introduced
coupled dictionary learning and nonanalytic optimization to
predict missing images in the sparse domain, where the coded
coefficients of high- and low-resolution images are very similar,
given the over-complete dictionaries being well designed. Based
on this theory, Huang and Song (2012) proposed the sparse
representation–based spatiotemporal reflectance fusion model
(SPSTFM), which may be the first to introduce dictionary
pair–learning technology from natural image super-resolution
into spatiotemporal data fusion (Zhu et al., 2016). SPSTFM was
developed for predicting the surface reflectance of high-
resolution images through jointly training two dictionaries
generated by high-resolution and low-resolution difference
image patches and sparse coding. After SPSTFM, Song and
Huang (2013) developed another dictionary pair–based fusion
method, which uses only one pair of high-resolution and low-
resolution images. The error-bound-regularized semi-coupled
dictionary learning (EBSCDL) (Wu et al., 2015a) and the fast
iterative shrinkage-thresholding algorithm (FISTA) (Liu et al.,
2016) are also proposed based on this theory. We have also
investigated this topic and proposed sparse Bayesian learning and
compressed sensing for spatiotemporal fusion (Wei et al., 2017a;
Wei et al., 2017b).

Recently, dictionary learning has been replaced with
convolutional neural networks (CNNs) (Liu et al., 2017) for
sparse representation, which are used in the neural
network–based methods to model the super-resolution of
different sensor sources. Dai et al. (2018) proposed a two-layer
fusion strategy, and in each layer, CNNs are employed to exploit
the nonlinear mapping between the images. Song et al. (2018)
proposed two five-layered CNNs to deal with the problem of
complicated correspondence and large spatial resolution gaps
between MODIS and Landsat images. In the prediction stage,
they design a fusion model consisting of the high-pass
modulation and a weighting strategy to make full use of the
information in prior images. These models have small numbers of
convolutional layers. Li et al. (2020a) proposed a learning method
based on CNNs to effectively obtain sensor differences in the bias-
driven spatiotemporal fusion model (BiaSTF). Many new
methods are subsequently proposed, such as the deep
convolutional spatiotemporal fusion network (DCSTFN) (Tan
et al., 2018), enhanced DCSTFN (EDCSTFN) (Tan et al., 2019a),
the two-stream convolutional neural network (StfNet) (Liu et al.,
2019), and the generative adversarial network–based
spatiotemporal fusion model (GAN-STFM) (Tan et al., 2021).
It is expected that when a sequence of known image pairs are
provided, the missed images can be predicted with the
bidirectional long short-term memory (LSTM) network
(Zhang et al., 2021).

Although spatiotemporal fusion has received wide attention
and a lot of spatiotemporal fusion algorithms were developed
(Zhu et al., 2018), the stability of algorithms has not been
emphasized yet. On the one hand, the selection of base image
pairs greatly affects the performance of fusion, as has been
addressed in Chen et al. (2020). On the other hand, the
performance of an algorithm is constrained by its type. This
could be explained with FSDAF (Zhu et al., 2016) and Fit-FC
(Wang and Atkinson, 2018), which are among the best
algorithms. The linear model of Fit-FC projects the phase
change, which can approach good fitness for the homogeneous
landscapes. However, the nearest neighbor and linear upsampling
methods used to model spatial differences in Fit-FC are too much
rough, and the smoothing in the local window accounts for
insufficient details. FSDAF focuses on heterogeneous or
changing land covers. Different prediction strategies are used
to adapt to heterogeneous and homogeneous landscapes. The
thin plate spline for upsampling interpolation shows admirable
fitness to the spatial structure. However, it is challenging for the
abundance matrix to disassemble the homogeneous landscapes
due to the long tail data. An unchanged area may be incorrectly
classified as a heterogeneous landscape or changed areas may not
be discovered, which leads to wrong prediction directions. To
sum up, Fit-FC excels well at predicting homogeneous areas,
while FSDAF excels at heterogeneous areas.

The combination of different algorithms is a way to improve
the performance consistency in different scenarios. For example,
Choi et al. (2019) proposed a framework called the consensus
neural network to combine multiple weak image denoisers. Liu
et al. (2020) proposed a spatial local fusion strategy to decompose
images of different denoised images into structural patches and
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reconstruct them. The combined results showed overall
superiority than any other single algorithm. These strategies
can be transplanted to the results of spatiotemporal fusion to
improve the stability of practice.

Observing the complementarity of different spatiotemporal
fusion algorithms, in this study, we propose a universal approach
to improve the stability. Specifically, the results of FSDAF and Fit-
FC are merged with the structure-based spatial integration
strategy and the advantages of different algorithms are
expected to be retained. The CNN-based methods are not
integrated because deep learning has limited performance for a
single pair of images, and the unclear theory makes it difficult to
locate advantages. Extensive experiments demonstrated that the
proposed combination strategy outperforms state-of-the-art one-
pair spatiotemporal fusion algorithms.

Our method makes the following contributions:

1) The stability issue of spatiotemporal fusion algorithms is
investigated for the first time.

2) A fusion framework is proposed to improve the stability.
3) The effectiveness of the method is proved by comparing with

different types of algorithms.

The rest of this article is organized as follows. Section 2
introduces the FSDAF model and the Fit-FC model in detail.
Section 3 summarizes the fusion based on the spatial structure.
Section 4 gives the experimental scheme and results visually and
digitally, which is followed by discussion in Section 5. Section 6
gives the conclusion.

2 RELATED WORK

In this section, the FSDAF and Fit-FC algorithms are detailed for
further combination.

2.1 FSDAF
The FSDAF algorithm (Zhu et al., 2016) predicts high-resolution
images of heterogeneous regions by capturing gradual and abrupt
changes in land cover types. FSDAF integrates ideas from
unmixing-based methods, spatial interpolation, and STARFM
into one framework. FSDAF includes six main steps.

Step 1: The unsupervised classifier ISODATA is used to
classify the high-resolution image at time t1, and the class
fractions Ac are calculated as

Ac(i) � Nc(i)/M, (1)

where Nc(i) is the number of high-resolution pixels belonging to
class c within the ith low-resolution pixel andM is the number of
high-resolution pixels within one low-resolution pixel.

Step 2: For every band of the two low-resolution images Ct1

and Ct2 captured at time t1 and t2, respectively, the reflectance
changes ΔC are used to estimate the temporal change of all
classes ΔFc with the following:

ΔC(i) � Ct2(i) − Ct1(i) � ∑L
c�1

Ac(i) · ΔFc, (2)

where L denotes the number of classes.

Step 3: The class–level temporal change is used to obtain the
temporal prediction image FTP

t2
at time t2 and calculate the

residual R with the following:

FTP
t2

ji( ) � Ft1 ji( ) + ΔFc, (3)

R(i) � ΔC(i) − 1
M

∑m
j�1

FTP
t2

ji( ) − Ft1 ji( )( )⎡⎢⎢⎣ ⎤⎥⎥⎦. (4)

Here, Ft1 is the known high-resolution image at time t1 and ji is
the coordinate of the jth high-resolution pixel within the ith low-
resolution pixel.

Step 4: The thin plate spline (TPS) interpolator is used to
interpolate the low-resolution image Ct2 to obtain the spatial
prediction image FSP

t2
at time t2.

Step 5: Residual errors were distributed based on temporal
prediction FTP

t2
and spatial prediction FSP

t2
,

CW ji( )� FSP
t2

ji( )−FTP
t2

ji( )−R(i)( ) ·HI ji( )+R(i), (5)

W ji( ) � CW ji( )/∑M
j�1

CW ji( ), (6)

r ji( ) � M · R(i) ·W ji( ). (7)

Here, HI denotes the homogeneity index, CW denotes the weight
coefficient, W denotes the normalized weight coefficient, and r
denotes the weighted residual value. The range of HI is set to (0,
1), and a larger value represents a more homogeneous landscape.

The prediction of the total change of a high-resolution pixel
between time t1 and t2 is predicted as

ΔF ji( ) � r ji( ) + ΔFc. (8)

Step 6: The final result F̂t2 is obtained with the information in
neighborhood as

F̂t2 ji( ) � Ft1 ji( ) +∑N
k�1

Wk · ΔF(k). (9)

Here,Wk is the neighborhood similarity weight for the kth similar
pixel andN is the number of similar pixels. For a pixel Ft1(ji), after
the N similar pixels are selected, Wk is calculated with the
normalized inverse distance as

Wk � 1/dk( )/∑N
k�1

1/dk( ), (10)

where the distance dk is defined with the spatial locations between
Ft1(ji) and Ft1(k).

A w × w sized window is centered around Ft1(ji) and searched
for the pixels with a similar spectrum to the center pixel. The
spectral difference sdk between Ft1(ji) and Ft1(k) in its
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neighboring window is defined with the ℓ2 norm where all bands
are involved, that is,

sdk �
∑
b

Ft1(k, b) − Ft1 ji, b( )[ ]2/B√
, (11)

where b denotes the band number and B denotes the number
of bands.

After all the spectral differences in a window are obtained, the
firstN pixels with smallest values (including the center pixel itself)
are identified as spectrally similar neighbors. These pixels will be
used to update the value of the central pixel with weights
according to their distances from the window’s center dk,

dk � 1 +

loc Ft1(i)( ) − loc Ft1(k)( )���� ����2√

/(w/2), (12)

where loc(·) denotes the 2-dimensional coordinate values and w
is the window size.

FSDAF predicts high-resolution images in heterogeneous
areas by capturing both gradual and abrupt land cover type
changes and retaining more spatial details. However, it cannot
capture small type changes in land covers. The smoothness within
each class lessens the intra-class variability. The classification
accuracy of unsupervised algorithms will also affect the results as
very large images cannot be clustered effectively. To conclude, the
performance of FSDAF is dominated by the unmixing process of
the global linear unmixing model.

2.2 Fit-FC
Wang and Atkinson (2018) proposed the Fit-FC algorithm based
on the linear weight models for spatiotemporal fusion. It uses
the low-resolution images at time t1 and t2 to fit the linear
coefficients and then applies the coefficients to the
corresponding high-resolution images at time t1. In order to
eliminate the blocky artifacts caused by large differences in
resolution, it performs spatial smoothing of fitting values and
error values based on neighborhood similar pixels. Fit-FC
includes four main steps.

Step 1: Parameters of linear projection are estimated from low-
resolution images, and the low-resolution residual image r is
calculated. For every band of the two low-resolution images
Ct1 and Ct2 captured at time t1 and t2, respectively, a moving
window is used to extract blocks Bt1(i) and Bt2(i) for the ith
location. Given that two groups of pixels Bt1(i) and Bt2(i) in the
local window are known, the least square error is minimized to
fit the linear model

Bt2(i) � a(i)Bt1(i) + b(i), (13)

where a(i) and b(i) are the estimated weight and bias for the ith
location.

After the linear coefficients are obtained, the low-resolution
residual image r is calculated pixel-by-pixel with the following
equation:

r(i) � Ct2(i) − a(i)Ct1(i) − b(i). (14)

Step 2: The matrix of two linear coefficients and residuals are
upsampled to the ground resolution of the known high-
resolution image. The nearest neighboring interpolation is
used for linear coefficients, and the bicubic interpolation is
used for residuals.
Step 3: The initially predicted high-resolution image ~Ft2 at time
t2 is calculated with the following equation:

~Ft2 ji( ) � a ji( ) · Ft1 ji( ) + b ji( ), (15)

where ji is the coordinate of the jth high-resolution pixel within
the ith low-resolution pixel and a (ji) and b (ji) are the upsampled
linear coefficients at the same location as the known high-
resolution pixels Ft1(ji).

Step 4: Using information in neighborhood to obtain the final
result F̂t2,

F̂t2 ji( ) � ∑n
k�1

Wk
~Ft2 ji( ) + r ji( )[ ], (16)

where r (ji) is the upsampled residual values at the same location
as the known high-resolution pixels Ft1(ji). Wk is the
neighborhood similarity weight for the kth similar pixel, which
is calculated in the same way to FSDAF as is shown in Eq. 10.

Fit-FC performs well in maintaining spatial and spectral
information and is especially suitable for situations where
there is a strong time change and the correlation between low-
resolution images is small. However, the fused image smoothens
spatial details for visual identification.

3 METHODOLOGY: COMPONENT
INTEGRATION

In this section, the structure-based spatial integration strategy by Liu
et al. (2020) is adopted to combine the images fused by FSDAF and
Fit-FC. According to Liu et al. (2020), an image patch can be viewed
from its contrast, structure, and luminance, which is valuable to find
local complementarity. However, the patch size in the study by Liu
et al. (2020) is not suitable for spatiotemporal applications because,
under the goal of data fidelity, current fusion algorithms may
produce large errors such that the brightness and contrast of
small patches are unreliable. Although the local enhancement can
improve visual perception, it may lose data fidelity. Therefore, the
decomposition is performed in the whole image. The flowchart of
the proposed combination method is outlined in Figure 1.

An image x can be decomposed in the form of moments into
three components, namely, strength, structure, and mean
intensity,

x � x − μx
���� ����2 · x − μx

x − μx
���� ����2 + μx

� ‖~x‖2 · ~x
‖~x‖2 + μx

� c · s + l,

(17)
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where ‖ · ‖2 denotes the l2 norm of a matrix, μx is the mean value,
and ~x � x − μx represents a zero-mean image. The scalar l � μx,
c � ‖~x‖2, and the unit-length matrix s � ~x/‖~x‖ roughly represent
the strength component, structure component, and mean
intensity component of x, respectively.

Each fused image can have its own components through
decomposition. By integrating the components of multiple
fusion results, the new components may outbreak the
limitations of different fusion types. The merging strategy will
be discussed in detail below.

The visibility of the image structure largely depends on the
contrast, which is directly related to the intensity component.
Generally, the higher the contrast, the better the visibility.
However, too much contrast may lead to unrealistic
representation of the image structure. All input images in this
study are generated by spatiotemporal fusion algorithms, and
their contrasts are usually higher than those of real images. This is
reflected in the residual calculation of FSDAF and Fit-FC where
stochastic errors are injected as well as details. Consequently, the
image with the lowest contrast has the highest fidelity. Therefore,
the desired contrast of the composite images is determined by the
minimum contrast of all input images, that is, the fusion results of
FSDAF and Fit-FC,

ĉ � min c1, c2( ) � min ~x1‖ ‖2, ‖~x2‖2( ), (18)

where ~x1 and ~x2 represent the zero-mean fusion images of FSDAF
and Fit-FC, respectively.

The structure component is defined by the unit matrix s. It is
expected that the structure of the fused image can represent the
structures of all the input images effectively, which is calculated
with the following:

ŝ � ∑
i

Wisi/∑
i

Wi, (19)

where Wi is the weight to determine the contribution of the ith
image by its structural component si.

To increase the contribution of higher-contrast images, a
power-weighting function is given by the following:

Wi � ~xi‖ ‖p, (20)

where p ≥ 0 is a norm limited in 1, 2, or ∞.
The value of p is adaptive to the structure consistency of the

input images, which is measured based on the degree of direction
consistency R as

R � ∑
i

~xi

���������
���������/∑i ~xi‖ ‖. (21)

The norm p is empirically set to 1 when R ≤ 0.7, ∞ when R ≥
0.98, and 2 otherwise.

The structural strategy is dedicated to the combination of
FSDAF and Fit-FC. For the heterogeneous areas, Fit-FC predicts
weak details, while the results of FSDAF are rich and relatively
accurate. When the above method is used, the structure of FSDAF
accounts for a large proportion. For the homogeneous landscapes,
Fit-FC predicts fewer details in a more accurate way, while the

results of FSDAF are richer but not accurate. In this case, the two
images are mixed in a relatively similar ratio to achieve a tradeoff
between detail and accuracy.

The intensity component can be estimated with weights as

l̂ � ∑
i

wili/∑
i

wi. (22)

Here, wi is the weight normalized with the Gaussian function as
given below:

wi � exp − μi − μc( )2
2σ2i

( ), (23)

where μi and σ2i are the mean value and variance of the ith image,
respectively. μc is a constant approaching the mid-intensity value.
The typical value of μc is 0.5, which is far higher than the mean
value of a linearly normalized remote sensing image for visual
improvement.

After the combined values ĉ, ŝ, and l̂ are calculated, the target
image is restored with the following:

x̂ � ĉ · ŝ + l̂. (24)

The integration strategy is performed band by band, which
requires the maximum and minimum normalization of all the
input images in unified thresholds.

4 EXPERIMENT

4.1 Experimental Scheme
The datasets for validation are the Coleambally irrigation area
(CIA) and Lower Gwydir Catchment (LGC) that were used in
Emelyanova et al. (2013). CIA has 17 pairs of Landsat-7 ETM
+ and MODIS images, and LGC has 14 pairs of Landsat-5 TM
and MODIS images. Four pairs of Landsat-8 images are also
used for the spatiotemporal experiment, which were captured
in November 2017 and December 2017. The path number is
121, and the row number is 41 and 43. These images have six
bands, of which the blue, green, red, and near-infrared (NIR)
bands are reconstructed. All images are cropped to the size of
1200 × 1200 at the center to avoid the outer blank areas. For
the CIA and LGC datasets, four pairs of images were used for
training and four pairs of images were used to validate the
accuracy. For the Landsat-8 dataset, 2 pairs of images were
used for training and the other 2 pairs of images were used to
validate the accuracy. In each dataset, the two adjacent pairs of
images are set as the known image pair and prediction image
pair, respectively. The dates of the predicted images are
marked in Tables 1–6.

To judge the effectiveness of the proposed method, some state-
of-the-art algorithms are compared, including STARFM (Gao
et al., 2006), SPSTFM (Huang and Song, 2012), EBSCDL (Wu
et al., 2015a), FSDAF (Zhu et al., 2016), Fit-FC (Wang and
Atkinson, 2018), STFDCNN (Song et al., 2018), and BiaSTF
(Li et al., 2020a). STARFM and Fit-FC use linear weights.
FSDAF is an unmixing-based method. SPSTFM and EBSCDL
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TABLE 1 | RMSE evaluation of radiometric error for the CIA dataset.

Image Band Mean Stdev STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.0903 0.0381 0.0177 0.0186 0.0181 0.0165 0.0160 0.0189 0.0186 0.0156
1 Green 0.0685 0.0285 0.0120 0.0120 0.0119 0.0110 0.0108 0.0118 0.0123 0.0102
2001 Blue 0.0406 0.0236 0.0109 0.0109 0.0110 0.0104 0.0097 0.0112 0.0111 0.0098
1109 NIR 0.2166 0.0476 0.0350 0.0324 0.0349 0.0313 0.0312 0.0415 0.0378 0.0292

All 0.1040 0.0809 0.0212 0.0203 0.0213 0.0192 0.0190 0.0242 0.0226 0.0180

Red 0.1413 0.0225 0.0275 0.0275 0.0260 0.0251 0.0250 0.0272 0.0263 0.0248
2 Green 0.1029 0.0145 0.0180 0.0185 0.0171 0.0164 0.0168 0.0181 0.0170 0.0164
2001 Blue 0.0677 0.0105 0.0147 0.0148 0.0142 0.0137 0.0137 0.0154 0.0140 0.0138
1204 NIR 0.2539 0.0313 0.0386 0.0380 0.0373 0.0357 0.0355 0.0452 0.0387 0.0351

All 0.1414 0.0853 0.0264 0.0263 0.0253 0.0243 0.0243 0.0289 0.0259 0.0240

Red 0.1002 0.0378 0.0224 0.0239 0.0223 0.0203 0.0204 0.0251 0.0233 0.0199
3 Green 0.0825 0.0327 0.0139 0.0152 0.0143 0.0127 0.0124 0.0151 0.0150 0.0122
2002 Blue 0.0517 0.0225 0.0114 0.0116 0.0113 0.0105 0.0102 0.0114 0.0117 0.0103
0222 NIR 0.2724 0.0606 0.0351 0.0341 0.0332 0.0324 0.0330 0.0394 0.0353 0.0324

All 0.1267 0.0998 0.0227 0.0229 0.0220 0.0208 0.0210 0.0252 0.0232 0.0206

Red 0.1070 0.0302 0.0186 0.0178 0.0184 0.0169 0.0166 0.0200 0.0190 0.0164
4 Green 0.0817 0.0210 0.0130 0.0121 0.0121 0.0114 0.0117 0.0124 0.0122 0.0112
2002 Blue 0.0461 0.0167 0.0121 0.0117 0.0119 0.0115 0.0115 0.0123 0.0121 0.0113
0317 NIR 0.2524 0.0727 0.0341 0.0304 0.0331 0.0306 0.0304 0.0377 0.0358 0.0297

All 0.1218 0.0922 0.0214 0.0195 0.0207 0.0193 0.0192 0.0231 0.0220 0.0188

TABLE 2 | RMSE evaluation of radiometric error for the LGC dataset.

Image Band Mean Stdev STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.1149 0.0381 0.0173 0.0236 0.0179 0.0155 0.0180 0.0166 0.0183 0.0150
1 Green 0.0937 0.0285 0.0141 0.0196 0.0145 0.0126 0.0144 0.0131 0.0147 0.0120
2004 Blue 0.0631 0.0236 0.0121 0.0158 0.0124 0.0111 0.0106 0.0102 0.0119 0.0101
0502 NIR 0.2131 0.0476 0.0242 0.0318 0.0258 0.0224 0.0221 0.0239 0.0259 0.0214

All 0.1212 0.0665 0.0175 0.0235 0.0184 0.0160 0.0168 0.0167 0.0184 0.0152

Red 0.1224 0.0225 0.0238 0.0470 0.0292 0.0210 0.0196 0.0586 0.0291 0.0175
2 Green 0.0951 0.0145 0.0149 0.0225 0.0166 0.0138 0.0142 0.0223 0.0161 0.0127
2004 Blue 0.0701 0.0105 0.0120 0.0159 0.0115 0.0094 0.0144 0.0277 0.0112 0.0085
1025 NIR 0.2154 0.0313 0.0483 0.1086 0.0739 0.0335 0.0193 0.0429 0.0620 0.0209

All 0.1257 0.0589 0.0286 0.0607 0.0410 0.0215 0.0171 0.0404 0.0356 0.0156

Red 0.0846 0.0378 0.0300 0.0398 0.0301 0.0297 0.0290 0.0292 0.0309 0.0288
3 Green 0.0742 0.0327 0.0254 0.0341 0.0256 0.0253 0.0245 0.0252 0.0260 0.0245
2004 Blue 0.0513 0.0225 0.0184 0.0239 0.0187 0.0183 0.0179 0.0182 0.0189 0.0173
1212 NIR 0.1253 0.0606 0.0402 0.0540 0.0408 0.0408 0.0401 0.0395 0.0412 0.0392

All 0.0839 0.0489 0.0296 0.0395 0.0299 0.0297 0.0290 0.0291 0.0304 0.0286

Red 0.0968 0.0302 0.0141 0.0173 0.0145 0.0134 0.0132 0.0181 0.0149 0.0129
4 Green 0.0882 0.0210 0.0114 0.0137 0.0113 0.0103 0.0107 0.0134 0.0111 0.0098
2005 Blue 0.0642 0.0167 0.0114 0.0123 0.0106 0.0100 0.0119 0.0118 0.0102 0.0096
0113 NIR 0.2120 0.0727 0.0299 0.0406 0.0313 0.0301 0.0272 0.0384 0.0317 0.0275

All 0.1153 0.0706 0.0184 0.0239 0.0189 0.0180 0.0171 0.0230 0.0191 0.0167

TABLE 3 | RMSE evaluation of radiometric error for the Landsat-8 dataset.

Data Band Mean Stdev STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.0374 0.0202 0.0093 0.0082 0.0087 0.0081 0.0079 0.0089 0.0094 0.0078
1–41 Green 0.0416 0.0158 0.0074 0.0064 0.0070 0.0067 0.0067 0.0060 0.0073 0.0066
2017 Blue 0.0281 0.0127 0.0075 0.0062 0.0072 0.0070 0.0072 0.0070 0.0069 0.0069
1219 NIR 0.1784 0.0584 0.0227 0.0220 0.0211 0.0210 0.0209 0.0544 0.0244 0.0204

All 0.0714 0.0700 0.0133 0.0126 0.0125 0.0123 0.0122 0.0279 0.0140 0.0119

Red 0.0435 0.0259 0.0090 0.0091 0.0086 0.0083 0.0084 0.0108 0.0095 0.0080
2–43 Green 0.0505 0.0211 0.0078 0.0079 0.0068 0.0068 0.0073 0.0086 0.0075 0.0067
2017 Blue 0.0302 0.0150 0.0061 0.0051 0.0056 0.0056 0.0059 0.0056 0.0058 0.0055
1219 NIR 0.2326 0.0727 0.0265 0.0230 0.0228 0.0229 0.0252 0.0474 0.0265 0.0236

All 0.0892 0.0925 0.0148 0.0132 0.0130 0.0130 0.0141 0.0248 0.0148 0.0132
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TABLE 4 | SSIM evaluation of structural discrepancy for the CIA dataset.

Image Band STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.8861 0.8917 0.8873 0.9062 0.8953 0.8805 0.8808 0.9064
1 Green 0.8911 0.9063 0.8989 0.9134 0.9036 0.8989 0.8912 0.9154
2001 Blue 0.8860 0.9092 0.9009 0.9143 0.9046 0.8958 0.8951 0.9150
1109 NIR 0.9849 0.9874 0.9843 0.9882 0.9872 0.9791 0.9807 0.9894

All 0.9125 0.9240 0.9183 0.9309 0.9232 0.9141 0.9124 0.9319

Red 0.8325 0.8544 0.8539 0.8673 0.8694 0.8507 0.8465 0.8704
2 Green 0.8586 0.8685 0.8730 0.8885 0.8734 0.8719 0.8676 0.8841
2001 Blue 0.8701 0.8865 0.8865 0.9010 0.8837 0.8799 0.8830 0.8948
1204 NIR 0.8243 0.8558 0.8457 0.8558 0.8470 0.8073 0.8337 0.8549

All 0.8482 0.8684 0.9667 0.8800 0.8705 0.8546 0.8597 0.8780

Red 0.9570 0.9542 0.9557 0.9654 0.9631 0.9486 0.9506 0.9658
3 Green 0.8840 0.8910 0.8868 0.9080 0.9004 0.8782 0.8770 0.9096
2002 blue 0.8821 0.9007 0.8968 0.9153 0.9067 0.8962 0.8884 0.9154
0222 NIR 0.8750 0.9021 0.8960 0.9016 0.8932 0.8724 0.8844 0.8985

All 0.9010 0.9132 0.9103 0.9236 0.9172 0.9005 0.9018 0.9238

Red 0.9000 0.9229 0.9098 0.9230 0.9212 0.8979 0.9023 0.9242
4 Green 0.8945 0.9248 0.9187 0.9263 0.9186 0.9159 0.9137 0.9253
2002 Blue 0.8930 0.9318 0.9212 0.9299 0.9176 0.9146 0.9156 0.9270
0317 NIR 0.9112 0.9397 0.9230 0.9338 0.9286 0.9041 0.9097 0.9338

All 0.8999 0.9299 0.9185 0.9285 0.9216 0.9084 0.9107 0.9277

TABLE 5 | SSIM evaluation of radiometric error for the LGC dataset.

Image Band STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.8809 0.8726 0.8760 0.9059 0.8915 0.8949 0.8763 0.9070
1 Green 0.8823 0.8711 0.8777 0.9086 0.8991 0.9002 0.8785 0.9123
2004 Blue 0.8882 0.8856 0.8833 0.9126 0.9129 0.9064 0.8855 0.9194
0502 NIR 0.8555 0.8436 0.8460 0.8788 0.8784 0.8606 0.8475 0.8851

All 0.8772 0.8674 0.8713 0.9017 0.8957 0.8913 0.8725 0.9061

Red 0.9203 0.8207 0.8809 0.9467 0.9597 0.6999 0.8833 0.9614
2 Green 0.8573 0.7822 0.8139 0.8840 0.9007 0.7155 0.8166 0.9018
2004 Blue 0.9240 0.8987 0.9193 0.9573 0.9469 0.7557 0.9209 0.9667
1025 NIR 0.6395 0.4610 0.5004 0.7611 0.8629 0.6366 0.5304 0.8607

All 0.8377 0.7428 0.7821 0.8891 0.9190 0.7057 0.7910 0.9243

Red 0.6315 0.5527 0.6220 0.6128 0.6290 0.6461 0.6217 0.6317
3 Green 0.6316 0.5504 0.6207 0.6109 0.6295 0.6384 0.6234 0.6300
2004 Blue 0.6139 0.5499 0.6062 0.6038 0.6156 0.6361 0.6080 0.6261
1212 NIR 0.6249 0.5497 0.6219 0.6219 0.6213 0.6174 0.6232 0.6371

All 0.6252 0.5498 0.6176 0.6122 0.6240 0.6347 0.6188 0.6312

Red 0.8946 0.8868 0.8927 0.9078 0.9074 0.8602 0.8929 0.9114
4 Green 0.8916 0.8851 0.8899 0.9103 0.9060 0.8562 0.8917 0.9135
2005 Blue 0.8748 0.8756 0.8793 0.8985 0.8915 0.8433 0.8813 0.9042
0113 NIR 0.8572 0.8458 0.8528 0.8667 0.8843 0.8154 0.8532 0.8833

All 0.8797 0.8724 0.8790 0.8961 0.8973 0.8438 0.8800 0.9032

TABLE 6 | SSIM evaluation of radiometric error for the Landsat-8 dataset.

Image Band STARFM SPSTFM EBSCDL FSDAF Fit-FC STFDCNN BiaSTF Proposed

Red 0.9752 0.9811 0.9776 0.9809 0.9814 0.9780 0.9721 0.9817
1–41 Green 0.9251 0.9524 0.9435 0.9471 0.9415 0.9541 0.9267 0.9461
2017 Blue 0.9791 0.9865 0.9788 0.9810 0.9791 0.9853 0.9820 0.9810
1219 NIR 0.9056 0.9090 0.9160 0.9190 0.9095 0.8933 0.8810 0.9191

All 0.9467 0.9572 0.9543 0.9573 0.9534 0.9529 0.9411 0.9575

Red 0.9800 0.9821 0.9801 0.9835 0.9818 0.9811 0.9735 0.9837
2–43 Green 0.9842 0.9871 0.9871 0.9890 0.9863 0.9854 0.9839 0.9890
2017 Blue 0.9778 0.9866 0.9803 0.9824 0.9780 0.9864 0.9787 0.9810
1219 NIR 0.9126 0.9377 0.9361 0.9369 0.9118 0.9290 0.9165 0.9272

All 0.9641 0.9738 0.9712 0.9734 0.9650 0.9707 0.9636 0.9705
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are based on the coupled dictionary learning. STFDCNN and
BiaSTF were recently proposed that use the CNNs and deep
learning.

The default parameter settings were kept for all competing
algorithms. For STFDCNN, the SGD optimizer was used in
the training, the batch size was set as 64, the training iterated

300 epochs with the learning rate of the first two layers set to
1 × 10−4 and the last layer to 1 × 10−5, and the training images
were cropped into patches with a size of 64 × 64 for learning
purposes. For BiaSTF, the Adam optimizer was used in the
training by setting β1 � 0.9, β2 � 0.999, and ϵ � 10−8; the batch
size was set as 64, the training iterated 300 epochs with the

TABLE 7 | Hardware and software for experiment.

Hardware
RAM CPU GPU

62.6G 2 × Intel Xeon E5-2620 v4 2 × Tesla V100

Software

PYTHON CUDA PyTorch

3.6.2 9.0 1.2.0

MATLAB RAM CPU

R2018b 16.0 GB Intel(R) Core(TM) i7-6700 CPU at 3.40 GHz

TABLE 8 | SAM evaluation of spectral inconsistency.

Dataset CIA LGC Landsat-8

Image 1 2 3 4 1 2 3 4 1 2

STARFM 0.0891 0.0728 0.0723 0.0674 0.0664 0.1215 0.1443 0.0742 0.0646 0.0443
SPSTFM 0.0938 0.0760 0.0638 0.0567 0.0681 0.3511 0.1931 0.0802 0.0577 0.0346
EBSCDL 0.0934 0.0685 0.0665 0.0657 0.0631 0.1675 0.1400 0.0676 0.0637 0.0412
FSDAF 0.0789 0.0644 0.0620 0.0595 0.0539 0.0964 0.1513 0.0674 0.0593 0.0403
Fit-FC 0.0674 0.0619 0.0656 0.0587 0.0552 0.0694 0.1419 0.0729 0.0589 0.0426
STFDCNN 0.0853 0.0744 0.0714 0.0686 0.0543 0.1810 0.1275 0.0662 0.0888 0.0447
BiaSTF 0.1019 0.0687 0.0725 0.0713 0.0639 0.1614 0.1400 0.0667 0.0639 0.0495
Proposed 0.0661 0.0617 0.0620 0.0569 0.0516 0.0660 0.1370 0.0645 0.0577 0.0391

TABLE 9 | ERGAS evaluation of spectral inconsistency.

Dataset CIA LGC Landsat-8

Image 1 2 3 4 1 2 3 4 1 2

STARFM 0.2040 0.1863 0.1897 0.1892 0.1541 0.1886 0.3443 0.1493 0.2117 0.1732
SPSTFM 0.2048 0.1873 0.1983 0.1787 0.2069 0.3567 0.4569 0.1798 0.1848 0.1631
EBSCDL 0.2057 0.1784 0.1886 0.1840 0.1592 0.2408 0.3481 0.1482 0.2009 0.1597
FSDAF 0.1906 0.1715 0.1731 0.1740 0.1396 0.1523 0.3437 0.1390 0.1936 0.1565
Fit-FC 0.1835 0.1719 0.1712 0.1738 0.1476 0.1567 0.3359 0.1452 0.1933 0.1643
STFDCNN 0.2162 0.1947 0.2038 0.1948 0.1407 0.3462 0.3390 0.1766 0.2410 0.2038
BiaSTF 0.2121 0.1789 0.1968 0.1888 0.1583 0.2203 0.3536 0.1477 0.2080 0.1730
Proposed 0.1795 0.1709 0.1696 0.1707 0.1312 0.1249 0.3303 0.1320 0.1894 0.1543

TABLE 10 | Q4 evaluation of spectral inconsistency (R/G/B).

Dataset CIA LGC Landsat-8

Image 1 2 3 4 1 2 3 4 1 2

STARFM 0.8636 0.8543 0.8939 0.8963 0.8947 0.6207 0.6804 0.8811 0.8791 0.9289
SPSTFM 0.8636 0.8360 0.8918 0.9142 0.8386 0.2050 0.2242 0.8200 0.9132 0.9338
EBSCDL 0.8688 0.8684 0.9012 0.9099 0.8945 0.5289 0.6806 0.8820 0.8968 0.9422
FSDAF 0.8832 0.8767 0.9116 0.9182 0.9107 0.6757 0.6671 0.8924 0.9010 0.9414
Fit-FC 0.8740 0.8749 0.9025 0.9138 0.8955 0.7101 0.6794 0.8881 0.8981 0.9342
STFDCNN 0.8617 0.8695 0.8812 0.8991 0.9096 0.2713 0.6888 0.8433 0.9056 0.9178
BiaSTF 0.8614 0.8649 0.8921 0.9047 0.8944 0.5537 0.6836 0.8811 0.8892 0.9331
Proposed 0.8846 0.8774 0.9104 0.9186 0.9109 0.7342 0.6817 0.8958 0.9132 0.9423
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learning rate set as 1 × 10−4, and the training images were
cropped into patches with a size of 128 × 128 for learning
purposes. The experimental environment is listed in Table 7.

Metrics are used to evaluate the loss of radiation, the structure,
and the spectrum. Root-mean-square-error (RMSE)measures the
radiometric error. Structural similarity (SSIM) measures the
similarity of contours and shapes. The Spectral Angle Mapper

(SAM), Erreur Relative Globale Adimensionnelle de Synthese
(ERGAS) (Du et al., 2007), and a Quaternion theory-based quality
index (Q4) (Alparone et al., 2004) measure the spectral
consistency. RMSE and SSIM are calculated band by band,
while ERGAS and Q4 are calculated with the NIR, red, green,
and blue bands as a whole. The ideal values are 1 for SSIM and Q4
while 0 for RMSE, SAM, and ERGAS.

FIGURE 1 | Flowchart of the proposed combination method.

FIGURE 2 | Manifestation of the small region of the NIR, red, and green bands of CIA image 1 for detail observation.
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4.2 Radiometric and Structural Assessment
RMSE and SSIM are calculated band by band. To save space, four
fusion results are listed for each dataset, which are evaluated with
RMSE in Tables 1–3, SSIM in Tables 4–6, SAM in Table 8,
ERGAS in Table 9, and Q4 in Table 10. The best scores are
marked in bold, and the better ones between scores of FSDAF and
Fit-FC are underlined.

Table 1 shows the radiometric error of Landsat-7
reconstruction. It is clear that FSDAF and Fit-FC can produce
more competitive results than dictionary learning– and deep
learning–based methods. Compared with FSDAF, Fit-FC
works better for image 1 but shows equal advantages for
images 2, 3, and 4. The proposed method produces the least
radiometric loss in majority cases.

The radiometric error of Landsat-5 is assessed in Table 2. It
is observed that the performance of FSDAF, Fit-FC, and
STFDCNN is accompanied with large fluctuation in image 3
due to the quick change caused by floods. Fit-FC ranks higher

than FSDAF for the NIR band. STARFM, EBSCDL, and
BiaSTF show better performance than SPSTFM. Again, the
proposed method produces the least radiometric loss in
most cases.

The radiometric error of Landsat-8 is assessed in Table 3.
The two dictionary-learning methods, SPSTFM and EBSCDL,
perform well in the blue and NIR bands. Fit-FC performs
poorly on image 43, making the proposed method slightly
worse than FSDAF. It can also be seen that the method
proposed in this study is suitable for the fusion of two
results with little difference to produce a better result.
When the two results differ greatly, the combination shows
high stability.

The structural similarity is measured in Tables 4–6. The digital
differences between algorithms are small. For Landsat-7 (Table 4),
FSDAF shows strong superiority than Fit-FC, while the advantage is
weak for image 2 of Landsat-5 (Table 5). STFDCNN and dictionary
learning–based methods show good structural reconstruction for

FIGURE 3 | Manifestation of the small region of the NIR, red, and green bands of LGC image 2 for detail observation.
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Landsat-7 and Landsat-8. For Landsat-5, STFDCNN works well for
images 1 and 3 but poorly for image 2. The proposed method works
steadily well in preserving good structures.

4.3 Spectral Assessment
SAM is assessed in Table 8 with the NIR, red, green, and blue
bands as a whole. SPSTFM works well for Landsat-8 but poor for
Landsat-5. FSDAF and Fit-FC can produce better results for
various datasets. The proposed method gives the best scores for
the majority of images.

ERGAS and Q4 for spectral assessment are calculated with the
NIR, red, green, and blue bands as a whole. ERGAS is assessed in
Table 9. The majority of the algorithms work well except for
SPSTFM. FSDAF shows better performance than Fit-FC for
Landsat-7 but poorer for Landsat-5. The proposed method
gives the best scores for all images.

Q4 is listed in Table 10 for spectral observation with the red,
green, and blue bands as a whole. Images 2 and 3 of Landsat-5 are

challenging due to the quick change of ground content, where
dictionary-based and CNN-based methods produce much poor
results. FSDAF and Fit-FC work well for most images. The
proposed method shows competitive performance as it gives
the best scores for the majority of images.

4.4 Visual Comparison
Four groups of images are demonstrated in Figures 2–5 for
visual identification of the NIR, red, and green bands. All
images are linearly stretched with the thresholds by which the
brightest and darkest 2% pixels of the ground truth images are
reassigned band by band. In this way, the color distortion can
be read from the visually enhanced images directly. The
manifested images in Figures 2, 3, 5 illustrate that FSDAF
produces more details while Fit-FC fuses more consistent
colors. Our method adopts both the advantages effectively
to approach the true image. The flood area in Figure 4 shows
that none of the algorithms can reconstruct the quick change

FIGURE 4 | Manifestation of the large region of the NIR, red, and green bands of LGC image 3 for flood observation.
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in a large region yet despite the effort of FSDAF on changed
landscapes.

4.5 Computational Cost
The consumed time in a single prediction is recorded in Table 11,
in which all the Python code used GPUs (nVidia 2080Ti) for

acceleration. It is not fair to compare the time directly because the
codes use various programming languages. For our method, the
integration process takes only 6 s to combine the fusion results of
FSDAF and Fit-FC. Since the fusion algorithms can work in a
parallel way, the consumed time for the proposed method is
recorded as the longest time plus the combination strategy.

5 DISCUSSION

The stability of our method is worthy of noting. On the one hand,
derived from the excellent original methods, our synthetic
method hits the highest score in most cases. By comparing the
digital evaluation, it is concluded that the proposed method is
usually better than the results of FSDAF and Fit-FC, which proves
the complementarity indirectly. On the other hand, when our
method fails to produce the best results, its score is close to the
highest score.

FIGURE 5 | Manifestation of the small region of the NIR, red, and green bands of Landsat-8 image 1 for detail observation.

TABLE 11 | Computational cost.

Algorithm Code language Running time (seconds)

STARFM Python 30
SPSTFM MATLAB 615
EBSCDL MATLAB 5150
FSDAF IDL 660
Fit-FC MATLAB 1300
STFDCNN Python 1430
BiaSTF Python 2200
Proposed MATLAB 1300 + 660 + 6
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The experiment shows that the proposed method may be
improved. The RMSE comparison shows that Fit-FC is weakly
better than FSDAF, but the SSIM comparison gives a contrary
conclusion. Even though our proposed method is much effective,
it does not make full use of the conclusion. To design a more
feasible integration strategy, more tests are required to identify
the unique advantages of spatiotemporal fusion algorithms,
which are prevented in this study by the limited space.

For spatiotemporal fusion, there is no similar method focusing
on integrating the fusion results for better performance. The only
analogous method was proposed by Chen et al. (2020), who
discussed the issue of data selection for performance
improvement. Different kinds of algorithms have different
advantages. Then, a good algorithm can design complex
processes that incorporate multiple kinds for higher quality, or
it can integrate the results through post-processing as the method
in this article did. Intuitively, the idea in this article can be used
for more remote sensing issues, such as pansharpening,
denoising, inpainting, and so on.

The main disadvantage of the method is the increased time. As
can be seen from Table 11, the post-processing time is very short so
we have to run two or more different algorithms that extend the total
time. This can be partly solved by launching algorithms in a parallel
way. Then, the total time is constrained by the slowest algorithm.

The proposed method is usually not sensitive to the data
quality of the input images. Some of the fusion results may be
poor for specific images, while the proposed method tends to
choose the best image block from multiple inputs. For them, the
targeted selection of the fusion result, that is, the merger strategy,
is the key. By performing this operation block by block, the
quality of the whole image is improved.

6 CONCLUSION

Aiming at the insufficient stability of spatiotemporal fusion
algorithms, this study proposes to make use of the

complementarity of spatiotemporal fusion algorithms for
better fusion results. An integration strategy is proposed for
the images fused by FSDAF and Fit-FC. Their fusion results
are decomposed into a strength component, a structure
component, and a mean intensity component, which are
packed to form a new fusion image.

The proposed method is tested on Landsat-5, Landsat-7, and
Landat-8 images and compared with seven algorithms of four
different types. The experimental results confirm the effectiveness
of the spatial fusion strategy. The quantitative evaluation on
radiometric, structural, and spectral loss shows that images
produced by our method can reach or approach the optimal
performance.
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