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Maintaining indoor environmental (IEQ) quality is a key priority in educational buildings.
However, most studies rely on outdoor measurements or evaluate limited spatial coverage
and time periods that focus on standard occupancy and environmental conditions which
makes it hard to establish causality and resilience limits. To address this, a fine-grained, low-
cost, multi-parameter IOT sensor network was deployed to fully depict the spatial
heterogeneity and temporal variability of environmental quality in an educational building in
Sydney. The buildingwas particularly selected as it represents amulti-use university facility that
relies on passive ventilation strategies, and therefore suitable for establishing a living lab for
integrating innovative IoT sensing technologies. IEQ analyses focused on 15 months of
measurements, spanning standard occupancy of the building as well as the Black Summer
bushfires in 2019, and the COVID-19 lockdown. The role of room characteristics, room use,
season, weather extremes, and occupancy levels were disclosed via statistical analysis
including mutual information analysis of linear and non-linear correlations and used to
generate site-specific re-design guidelines. Overall, we found that 1) passive ventilation
systems based on manual interventions are most likely associated with sub-optimum
environmental quality and extreme variability linked to occupancy patterns, 2) normally
closed environments tend to get very unhealthy under periods of extreme pollution and
intermittent/protracted disuse, 3) the elevation and floor level in addition to room use were
found to be significant conditional variables in determining heat and pollutants accumulation,
presumably due to the synergy between local sources and vertical transport mechanisms.
Most IEQ inefficiencies and health threats could be likelymitigated by implementing automated
controls and smart logics to maintain adequate cross ventilation, prioritizing building
airtightness improvement, and appropriate filtration techniques. This study supports the
need for continuous and capillary monitoring of different occupied spaces in educational
buildings to compensate for less perceivable threats, identify the room for improvement, and
move towards healthy and future-proof learning environments.
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INTRODUCTION

It is widely acknowledged that, in developed countries, people
spend the majority of their time indoors. In the United States, it
is estimated that 87% of the time is allocated to indoor activities
(Klepeis et al., 2001), while in Australia, the percentage reaches
90% (Australian Government, 2020). These figures are expected
to soar in the next decades as a consequence of the progressive
dispossession of outdoor public spaces caused by 1)
deterioration of urban liveability, 2) escalation of overheating
episodes, and 3) intensification of weather extremes (IPCC Fifth
Assessment Report (AR5), 2013; Santamouris, 2020). This poses
an urgent need for providing adequate indoor environmental
quality (IEQ), specifically in buildings that host vulnerable
populations and a high density of users, or those whose
occupants require long-lasting preservation of attention,
productivity, and health. Educational buildings feature all
these criteria and thus represent a priority target for IEQ
assessments (Eide et al., 2010; Simons et al., 2010; Mendell
et al., 2013).

In educational facilities, such as schools and universities,
maximizing students’ and staff’s performance while preventing
absenteeism is a basic, yet challenging requirement particularly
due to the wide range of possible metabolic rates, clothing levels,
and activities that typify the user category (Havenith, 2007; Kim
et al., 2009). These variables arbitrate whether a defined indoor air
quality and thermal condition can negatively impact the
occupants’ cognitive performance by altering the decision-
making ability (Satish et al., 2012) or productivity (Wyon,
2004; Ebenstein et al., 2016). Beyond comfort and efficiency,
multiple studies on educational facilities indicate that failure to
manage indoor air quality could increase the risk of acute and
chronic effects on students’ physical and mental health (Loh and
Andamon; Annesi-Maesano et al., 2013; Andualem et al., 2019).
Indoor air pollution impairs cognitive functions, damages the
nervous system, increases ischaemic stroke risk, depression, and
mood disorders in adult populations (Calderón-Garcidueñas
et al., 2015; Taylor et al., 2015) and even more in infants and
youngsters (Gent et al., 2003). Further, extensive evidence
demonstrates the negative health impacts of different
pollutants indoors, such as ozone (O3) and fine particles (Mi
et al., 2006; Zhao et al., 2015), as well as nitrogen dioxide (NO2),
carbon monoxide (CO), volatile organic compounds (VOCs) and
benzene, toluene, ethylbenzene, xylenes (BTEX) (Chen et al.,
2000; Evrard et al., 2006). An overview of challenges and impacts
can be found in (Chatzidiakou et al., 2012).

Comparatively underexplored are the damaging effects of
extreme ambient environmental stressors, such as heatwaves
or wildfires. These further exacerbate the range and severity of
health deterioration (Saggu et al., 2018; Reid et al., 2019), but the
topic-specific literature is sparse. The risk assessment of human
exposure to health-threatening indoor environmental conditions,
and consequently the choice of containment measures and risk
prevention, are critical tasks that need to be adequately informed
(Rocca et al., 2020). This further motivates a fine-grained, site-
specific monitoring of exposure to environmental stressors
(Nazarian and Lee, 2021) as well as smart control of rooms,

such that we compensate for less perceivable threats, passive
ventilation inefficiencies, and excessive energy consumption.

A variety of studies reveals that occupants are rather
insensitive to most Sick Building Syndrome (SBS) drivers. For
instance, in Haverinen-Shaughnessy et al. (2015), ventilation rate,
temperature, and hygiene of high contact surfaces manifested as
health- and performance-threatening IEQ parameters in
classrooms. A 70-school district in the United States was
monitored during two academic years in terms of ambient air
temperature (T), relative humidity (RH) and carbon dioxide
(CO2). Settled dust and cleaning effectiveness, as well as
student data (socioeconomic background, absenteeism,
performance, and number of visits to school nurse) was
recorded. Significant associations were stricken between high
academic grades and levels of T and CO2 as well as between
CO2/culturable bacteria and medical visits due to respiratory or
gastrointestinal symptoms. Furthermore, IEQ measurements and
perception analyses in nine naturally ventilated schools in
Athens, Greece (Dorizas et al., 2015) revealed that PM and
CO2 levels were significantly and positively correlated with
SBS symptoms, scholastic performance, and health symptoms.
However, the personal perception of IAQ degradation was rather
insensitive to increased levels of particulate matter, while being
strongly correlated with temperature variations. This is in line
with (Stazi et al., 2017), according to which temperature was the
key driver for students’ control actions on ventilation, while CO2

increments went unnoticed.
Other studies highlight that passive buildings, even those built

upon sustainability principles, are prone to inadequate
ventilation. Almeida and de Freitas (2014) verified the IEQ
impacts of the rehabilitation of school buildings via retrofitting
in Portugal. They monitored annual T, RH, CO2, and ventilation
rates in 24 classrooms across nine school buildings, out of which
seven were retrofitted. Non-retrofitted buildings were compared
against retrofitted schools with HVAC or natural/mechanical
ventilation systems. Statistical analyses and simulations
confirmed that 1) the ventilated schools were the best-
performing, 2) non-retrofitted schools provided inadequate
IEQ throughout the year, and 3) retrofitted classrooms were
affected by the limited use of mechanical ventilation, thus
experiencing serious overheating episodes. Further IEQ
analyses in a secondary school Germany (Ortiz Perez et al.,
2018) demonstrate the complexity of maintaining adequate
IEQ levels in passively ventilated classrooms even in case of
high frequency of ventilation, pointing towards the need for
capillary monitoring and control of rooms, also for energy
minimisation. The same inefficiency was found in passively
ventilated school buildings in Italy (Schibuola and Tambani,
2020). An experimental campaign was carried out in
wintertime in four classrooms having similar shape, size,
occupancy pattern, windows type, and dimensions and the
interlink between IAQ, ventilation rate, Hazard Index, and
Cancer Risk was investigated. It was found that 1) in absence
of appreciable internal pollution sources, the indoor
concentrations of chemical pollutants were correlated to the
corresponding outdoor concentrations and 2) manual
operation of ventilation controls was insufficient to guarantee

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 7259742

Ulpiani et al. IoT Living Lab for Enhanced IEQ

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


acceptable IAQ levels over 24 h. To tackle such a need for smart
ventilation in schools, a sense-and-act approach in a secondary
school is proposed in (Stazi et al., 2017) where an automatic
system opens and closes the hopper windows based on
Humphreys’ adaptive algorithm (Humphreys et al., 2013) with
coefficients adjusted to the specific climate and CO2 levels. The
research was carried out in two similar and adjacent classrooms,
one equipped with the automatic system, one left to manual
operation. Results proved that CO2 and T comfort levels easily
surpassed the acceptable range in both classrooms, however, the
automated system promptly restored acceptable levels, while
control actions in the manually-operated classroom
(particularly associated with CO2 levels) were typically
untimely. A similar approach was proposed in Sydney,
Australia (Haddad et al., 2021), where two adjacent classrooms
were characterized in terms of infiltration and ventilation rate,
and were monitored to measure thermal comfort and air quality
during the school year. One room only was equipped with a
cloud-connected, demand-controlled mechanical ventilation
system. Under automatic control of air extraction, CO2 levels
were largely maintained within comfortable and attention-
preserving levels. Peak values were shaved by nearly 70% as
compared to the free-running twin classroom.

Previous studies support the need for high spatial and temporal
resolution monitoring of IEQ in educational buildings to track its
distinctive variability, which can then feed into human-centric and
automated control actions for enhanced air quality and thermal
comfort. So far, however, limited studies have deployed expansive
sensor networks that also provide a long-term assessment of
educational buildings for different environmental conditions and
occupancy patterns. The emergence of low-cost, internet-enabled
environmental sensors aims to address this shortcoming,
establishing educational buildings as living labs for integrating
innovative sensing, data analytics, and automated control
methods that enhance IEQ. An example of such large-scale
Internet-of-Things (IoT) sensor deployment in schools is seen in
(Palacios Temprano et al., 2020), where 280 classrooms hosting
nearly 10,000 children are continuously monitored for 5 years.
Preliminary results reveal how indoor climate conditions differ
considerably across classrooms and throughout the academic
year, indicating that sensors need to be installed in each
individual classroom and for at least one academic year to build
up accurate, longitudinal IEQ assessments and capture causal links.
The heterogeneity of IEQ is further exacerbated in university
buildings - where occupants are more diverse (encompassing
students, academic, professional, and management staff, and
visitors) and follow a less-regulated occupancy schedule
compared to primary and secondary schools. IoT environmental
sensing can be used to detect this distinctive variability and
transform it into tailor-made local control actions. An example is
described in (Luo et al., 2021), where the authors demonstrate that
IoT networks implemented locally can help determine the natural
ventilation potential and its optimal utilization throughout the year.

The present study aims to address the need for comprehensive
and continuous monitoring of IEQ, and is novel in three main
aspects. First, it applies a fine-grained IoT monitoring approach
by setting up a capillary indoor sensor network in a designated

university building, looking not just at classrooms and offices but
at all occupied spaces including labs, meeting rooms, and print
rooms. By profiling the IEQ behaviour of different room types on
account of orientation, floor level, A/C provisions, and access to
environmental controls, this approach makes it possible to strike
associations between microenvironmental characteristics and
IEQ preservation, thus eradicating the misconception of one-
fits-all IEQ solutions for highly variegated educational
environments. Second, it investigates not only seasonal
variabilities, but also behavioural and weather extremes by
comparing the statistical behaviour of the monitored building
under standard occupancy against that under the 2019/2020
catastrophic bushfire season in Australia as well as the
COVID-19 lockdown period. Lastly, this study targets an IEQ-
sensitive subclass of educational buildings: low-tech university
buildings, designed based on natural ventilation and novel design
practices committed to sustainability principles. Despite these
intentions, a post-occupancy user satisfaction survey revealed
that the building (the Red Centre, University of New South
Wales, Sydney) ranked third from the bottom amongst 30
institutional and commercial buildings throughout 11
countries (Baird, 2013). Understanding the reasons behind its
poor IEQ performance is key to delivering good practices and
strategies for other buildings alike. Furthermore, COVID-19
pandemic has prompted renewed interest in the assessment of
deficient indoor air quality conditions, especially in educational
buildings. Notably, recent studies point to the need for indoor air
quality monitoring and prediction solutions based on IoT and
machine learning capabilities (Mumtaz et al., 2021) as well as
reassessing ventilation protocols (Alonso et al., 2021; Meiss et al.,
2021). Accordingly, we further discuss the insight gathered from
the data collected during the COVID-19 pandemic.

In the following section (Materials and Methods section),
the case study is presented and critically analysed, followed by
a detailed description of the experimental method, the sensor
network and the research framework in light of relevant
international and Australian standards. The outcomes are
presented in the Results section, broken down into general
time trends, site characterization, and distinct patterns under
non-nominal conditions (bushfires, lockdown). By means of
statistical analysis, including mutual information analysis of
correlation, we investigate the site-specific IEQ performance
across different seasons and quantify the proclivity to extreme
events. We use the Heat Index to merge the effects of
temperature and humidity and delineate heat safe
conditions. We further perform mutual information analysis
to look into linear and nonlinear correlations and to
interrogate the role of indoor and outdoor parameters in
establishing heterogeneous IEQ conditions. Discussion and
Design Guidelines and Conclusion sections discuss and
summarize the main findings.

MATERIALS AND METHODS

This section introduces the case study characteristics and the
Internet-of-Things (IoT) strategy adopted to investigate its
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spatio-temporal variability of indoor thermal comfort and air
quality. IEQ metrics adopted for determining the performance of
monitored spaces are also detailed.

Case Study and Background Climate
This study is focused on establishing a living lab in the Red Centre
building located in the Kensington campus of the University of
New South Wales, Sydney, Australia (Figure 1A). The climatic
subtype of Sydney is classified as temperate with warm summer
and cold winter, according to the modified Köppen-Geiger
classification system used by the Australian Bureau of
Meteorology and based on a standard 30-years climatology
(1961–1990) (BOM, 2021a, Australian Government). The
campus area is largely influenced by moist, maritime airflows
from subtropical anticyclonic cells to the west. Located in the
Southern Hemisphere, the coldest month is July, with a mild
average temperature (mean maximum temperature around 16°C
and mean minimum temperature of 8°C) and sporadic frosts. The
hottest month is January (mean maximum temperature around
26°C and mean minimum temperature just below 20°C), with

generally high daytime temperatures, quite distinctive diurnal
oscillations (>7°C) and frequent warm, oppressive nights (BOM,
2021). Winter rainfall is derived primarily from frontal cyclones
along the polar front, whereas summer precipitation is driven by
convectional thunderstorm activity and enhanced by tropical
cyclones. Statistically significant increasing tendency of average
temperatures and extreme heat events have further been reported
in recent years as compared to the beginning of the XXI century
(Livada et al., 2019; Yun et al., 2020).

The Red Centre building is particularly selected as it was
constructed considering a variety of natural ventilation strategies
- including cross ventilation and air updraft by solar chimneys -
that aim to integrate passive environmental control and energy
efficiency principles during the design stage (Figure 1D). Air-
conditioning (A/C) was restricted, except for high internal load
areas like computer labs, meeting rooms, studios and for occupied
areas in the basement (Baird and Marriage; Baird, 2003) where
A/C was provided by single-split air conditioners. In absence of
A/C provisions, a number of ceiling fans was installed,
proportional to the floor area. The building stretches across 6

FIGURE 1 | The case study: (A) geolocalization of the University Campus and the Red Centre Building (red marker) with reference to Sydney’s center to the north-
west, the coastline to the east and the outdoor data reference station (see Sensor Network section); (B) North-West view of the building including the vertical shading on
the western facade; (C) frontal (north) view of the building where the terracotta tiles and the solar chimneys are implemented; (D) schematics of the ventilation strategy
comprised of internal passages and discharge through the solar chimneys.
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levels, on top of basement, ground level and mezzanine, each
connected to the lower levels by complex architectures of air
passages aimed at verticalized exhaust air expulsion. The building
is 150 m long and 15.7–19.3 m wide, with a total internal area of
about 16,000 m2 (Baird, 2003) and an almost perfect alignment

with cardinal directions (<10° mismatch). Its strategic exposure to
the north/south axis, and its limited depth along the east-west axis
allows for a high proportion of natural lighting. Other passive
sustainability principles include the protection of the west glazed
facade with operational vertical shading devices (Figure 1B), and

FIGURE 2 | GIS representation of monitored rooms across the different levels of the Red Centre. The three colormaps correspond to room use, presence of air
conditioning systems, and fans. The numbers on the maps correspond to the MyAir identification number, as reported in Supplementary Appendix Table A1.
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the localized increase in thermal mass by making use of terracotta
tiles on the northern facade (Figure 1C). The southern side is
typically characterized by glazed facades with louvres, while the
northern side typically features twin glazing “slots” to avoid glare
and sunlight overexposure.

Despite the technical adroitness and the number of awards
received for sustainable design, the Red Centre building largely
fails at preserving IEQ. In 2015, a post-occupancy user
satisfaction survey was conducted on 30 highly sustainable
institutional and commercial buildings across 11 countries (Baird,
2013). Respondents were asked to rate 45 factors on a 7-point scale,
including 1) operational aspects (e.g., space use, furniture, facilities),
2) environmental aspects (e.g., temperature and gradients, humidity,
air quality), 3) lighting (e.g., natural/artificial light, glare), 4) noise
(e.g., source and magnitude, frequency of undesired interruptions),
5) personal control (e.g., access to HVACs controls, to windows
operation, to noise source switches), and 6) user satisfaction (e.g.,
comfort, health, productivity). The Red Centre building ranked 27th
overall, 27th in terms of comfort, 23rd in terms of health
preservation, and 25th in terms of perceived productivity and
was noted as being excessively cold in winter, hot in summer
and noisy. Most penalties were associated with excessively intense
ventilation and wind whistling across the building. The survey
emphasized that, with exception of image and lighting which
scored well, most other IEQ aspects were poorly addressed and
ventilation was substantially misapplied.

Sensor Network
To investigate the reasons behind poor IEQ performance, a fine-
grained IoT sensor network was established across the building
from the basement to level 6, distributed in offices, classrooms,
computer labs, studios, meeting rooms, print rooms, media
rooms, and multilevel study areas. Figure 2 shows a GIS
representation of room locations on different floors and sensor
locations within each surveyed room. Supplementary Appendix
Table A1 provides additional quantitative and qualitative
information used to characterize the different rooms, including
HVAC provisions (e.g., A/C units, fans), and window
characteristics (e.g., facade coverage, shadings, operability).
Sensor numbering in Figure 2 corresponds to that in
Supplementary Appendix Table A1.

The MyAir sensors deployed in this study represent an in-
house, low-cost multi-parameter detector that includes an
Arduino board with twin full-colour LEDs and three onboard
sensors developed based on IoT paradigms. The sensors monitor
four parameters: CO2 (Non Dispersive Infrared sensor, T6713
Amphenol), TVOCs (metal oxide semiconductor sensor, CCS811
AMS), and T/RH (thermistor, BME280 Adafruit). All
components are open source, including hardware schematics,
firmware, server back-end, front-end and sensor data. The
sensors were calibrated against the LST Heat Shield
(ELR610M) and Aeroqual (Series 500) Portable Indoor
Monitor, which are scientific grade sensor solutions for
microclimate and air quality analysis. During calibration, the
MyAirs returned reliable and stable measurements under a
variety of thermodynamic conditions with recorded accuracy
of ±0.9°C for T, ± 3.5% for RH, ± 3% for CO2 and ±30 ppm

for TVOCs. Additionally, to inform the occupants’ activities and
decision making in real time, a LED-coloured indicator was
added on the front side to reflect the indoor CO2 level. The
readings are sent to the real-time visualisation dashboard and
stored in the cloud-based storage server (UNSW, 2021). 65MyAir
devices were originally installed in the Red Centre building in
December 2018, at 1.5 m above the floor, away from doors,
windows and A/C units. The sampling time was set to 15 s.

The monitoring campaign discussed in this paper represents
the period between February 18th, 2019 and May 31st, 2020. This
window is selected to analyse IEQ not only in a period with
standard occupancy, but also the Black Summer bushfire season
(peaking between November 2019 and January 2020) and the
COVID lockdown period (March 31 - May 30, 2020). This
extended analysis offers a unique opportunity for comparison
and identification of IEQ anomalies associated with extreme
natural hazards and occupancy patterns.

Within the first 2 weeks of monitoring, several sensors were
deemed faulty (with regards to connection to the cloud server),
vandalized, or stolen in public locations. Accordingly, compared
to 65 sensors initially set up, a smaller number is used in each
analysis presented, based on either having >75% readings across
the whole monitoring campaign (38 sensors) or having >90%
readings within comparative periods (23–42 sensors). The
comparative periods last 1 month each and are hereinafter
referred as 1) Term 1 (1–30 April 2019), Term 2 (1–31 July
2019), Bushfire (1–30 November 2019), and COVID-19 (1–31
May 2020). Term 1 and Term 2 indicate the academic terms with
hottest and coldest outdoor conditions and are representative of
standard occupancy levels. Bushfire is representative of late
spring conditions exacerbated by catastrophic bushfires all
around the city of Sydney. “Safer-at-home” orders were issued
during this period. COVID-19 is representative of the pandemic
“stay-at-home” period in autumn 2020. Supplementary
Appendix Table A2 collects the list of sensors used for the
analysis of each considered time period.

Over the same period, outdoor data was taken at a NATA-
accredited meteorological and air quality monitoring station less
than 2 km away from the Red Centre building, established by the
New South Wales (NSW) Department of Planning, Industry and
Environment (DPIE) network. The outdoor measurements are
included to 1) investigate the indoor-outdoor inter-parameter
correlations, and 2) identify which rooms were more responsive
to outdoor variations.

IEQ Metrics
Here, we focus on indoor thermal comfort and air quality as
metrics for IEQ. Thermal comfort is one of the most common
metrics in IEQ analyses and found to be strongly correlated with
occupants’ working performance and productivity (Abdul
Rahman et al., 2014), health and morbidity (Quinn et al.,
2014) as well as perception of indoor air quality (Fang et al.,
1998).

Comfort indices customarily account for six parameters
affecting human thermoregulation (air temperature, air
velocity, humidity, mean radiant temperature, metabolic rate
and thermo-physical properties of clothing) and are
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commonly calculated based on the heat balance of the human
body (Potchter et al., 2018). In indoor environments, however,
low wind speed and solar radiation is assumed, leading to the
estimations of thermal comfort based on temperature and
humidity measurements. Several temperature-humidity
indices are well established internationally for indoor
environments or in shade and have been extensively used in
literature: the Heat Index (HI), the Thom’s Discomfort Index
(DI), and the Humidex (HD). Thom’s DI fails under cold
conditions, and climate-specific variants are better used when
available (Moran et al., 1998; Chernev et al., 2012). HI is used
operationally by the US National Weather Service (NOAA,
2021), while HD is the standard Canadian index
(Government of Canada, 2021). Previous research proved
that HD very often leads to the underestimation of
workplace heat-related dangerousness and a poor reliability
of comfort prediction when it is used in indoor situations
(Alfano et al., 2011). Accordingly, in this study, we applied
HI analysis for the summer (Rothfusz and Headquarters, 1990)
and referred to existing thermal comfort Standards for the
winter given the available microclimate data and information.

Beyond microclimatic parameters, CO2 and VOCs are two
common indoor air pollutants associated with indoor ventilation
rates, SBS symptoms and health risks (Apte et al., 2000; Apte and
Erdmann, 2002; Norbäck and Nordström, 2008; Gallego et al.,
2011). CO2 is a typical indirect metric of occupancy levels,
amount of ventilation, and electronic appliances use, whereas
VOC emissions are in the form of gases released from common
furniture materials and appliances, such as wood products,
photocopiers, printers and cleaning products. These
compounds are extremely sensitive to both occupancy and
pollution episodes, which makes them especially meaningful in
comparing the control period of standard occupancy (Term 1)
with natural (Bushfire) and anthropogenic (COVID-19)
extremes. Besides, the locally dominating arboral genus,
Eucalyptus, is a major natural polluter of biogenic volatile
organic compounds (BVOCs) such as isoprene and
monoterpenes, whose normal emission rate gets amplified
during bushfire events (Bolan, 2020).

In this study, we adopted standardized thresholds to identify
different health risk levels for each of the considered IEQ indexes.
The United States NationalWeather Service classifies HI into four
categories including Caution, Extreme Caution, Danger and
Extreme Danger, associated with a range of potential health
effects under prolonged exposure (Nws, 2021). Indoor CO2 is
classified based on commonly-used international guidelines, into
6 categories ranging from Good to Hazardous, (Saad et al., 2017).
The impacts on cognitive performance and health (e.g.,
headaches, dizziness, vomit) soars when CO2 reaches
1,000 ppm (Loh and Andamon; Satish et al., 2012), which is
the commonly accepted threshold for indoor CO2 concentration
in literature and regulations (Daisey et al., 2003; ANSI/ASHRAE,
2016; Abcb, 2018). Finally, the German Federal Environmental
Agency has expanded the World Health Organization (WHO)
guidelines for TVOCs classification (World Health Organization,
2000) to incorporate 5 classes of increasing health impact from
Excellent to Unhealthy (Umweltbundesamt, 2007). The different

classes and their corresponding class limits are listed in
Table 1 below.

RESULTS

General Descriptive Analysis
Figure 3 depicts all measured variables across the 15-months
monitoring period, based on available MyAir sensors (coloured
dots in the background). The daily means of all sensors in the
occupied hours (9am–6pm) are overlapped as black lines with the
yellow shade indicating the standard deviation range. The grey
vertical blocks in the background identify weekends, while the
arrow-like annotations on top of the figure locate the comparison
periods across the timeline. For pollutants, the health
classification is displayed as well in the form of dashed
horizontal lines and is labelled according to Table 1. For T
and RH, the blue lines with diamond-shaped markers denote
outdoor measurements. Table 2 complements the trends in
Figure 3 by reporting general statistics on minima, means and
maxima among the whole set of MyAir sensors, considering the
15-min time-averaged data.

On average, the hottest and coldest months in the indoor spaces
wereMarch (average of 30.2°C) and August (average of 13.6°C), yet
extreme hot days also occurred in April. The most humid time of
the year was January, February, and November (average of ∼85%),
while the driest occurred between June and August (average of
∼37%). CO2 and TVOCs typically hit higher concentrations in
summertime (November-December) and October-November, and
reached lower concentrations in October and April, respectively.
Over the period of analysis, the hourly mean outdoor T was 18.1°C,
hitting a maximum of 41.7°C in the middle of the bushfire season
(late January 2020) at peak hours, and a minimum of 4.2°C in mid-
winter (August 24, 2019) in the early morning. The corresponding
values in terms of relative humidity were 70.3%, 100% and 7.3%
with both maximum and minimum occurring between November
and December 2019, in the morning and afternoon respectively.
These trends impacted on different rooms in the building in a
distinct way.

The absolute maxima of indoor T, RH, CO2, and TVOCs
observed in sensor measurements were 38.0°C, 100%, 4,688 ppm,
and 1,156 ppb, respectively, and were recorded over occupied
hours on workdays. Notably, the Tmaximumwas observed in the
morning during summer term, while the CO2maximumwas seen
in March 2020 right before the beginning of COVID-19
lockdown at about 3pm. Both RH and TVOCs maxima were
measured on the same day (Aug 12, 2019) between 5 and 6 pm. T,
RH and TVOCs maxima were all measured in individual offices,
located on Level 2 (T) or Level 4 (RH and TVOCs). In sharp
contrast, the CO2 absolutemaximumwas recorded in a classroom
located on the mezzanine. All maxima occurred in north-oriented
rooms featuring no A/C. The maximum averages were 27.8°C,
76.3%, 675 ppm and 109 ppb, with all values (but RH’s) higher
than measurements averaged for the entire week (including
weekends and nights). The maximum of average T (for all
sensors) was measured in an individual office on Level 2,
facing north, whereas the maximum RH mean was measured
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in a studio on Level 1, facing south. In both cases, no A/C was in
use. Conversely, air-conditioned rooms were conducive to higher
average pollutant concentrations: the maximum CO2 mean was
recorded in the print room on Level 1, while the maximum
TVOCs mean was recorded in a staff office in the basement.

Interestingly, the room use associated with most absolute
maxima (individual offices) was also associated with most
absolute minima, at 10.3°C, 17.3%, 232 ppm and 0 ppb.
Indeed, RH, CO2 and TVOCs minima were all measured in
individual offices on different levels (2 north-side,4 north-side
and 5 south-side respectively), with no A/C. The absolute T
minimum was reached in a classroom located on the ground
floor, western-oriented and air-conditioned, and not in colder
months. Minima in T and CO2 were aligned in time as both
occurred in March 2020 early afternoon, but even more aligned
were the minima in RH and TVOCs both recorded on June 24,
2019 at around 5:30 pm. The minimum averages were 19.3°C,
43.6%, 432 ppm and 23 ppb, with all values (but RH’s) higher
than those measured for the entire week. The minimum T and
RH averages were measured in non-air-conditioned rooms on
Level 2, the former in a south-exposed classroom, and the latter in
a north-exposed individual office. Conversely, both CO2 and
TVOC minimum averages occurred in meeting rooms, located
in the basement and Level 2 and featuring A/C and ceiling fans
respectively.

Overall, the absence of an air-conditioning system was
conducive to greater indoor extremes. North-exposure was
associated with both T maxima and maximum means. In the
southern hemisphere, north-facing windows receive twice the
winter Sun than east and west facing windows, allowing light and
warmth into the building. Relative humidity peaks are associated
with the availability of moisture and latent heat which depends on
people and their activities, construction materials, and presence
of cold surfaces, water sources (e.g., kitchens), and rain
penetration. Windows, walls, and doors that lack proper
insulation and tightness and have limited exposure to Sun
radiation are common cool surfaces. This explains why
maximum RH mean levels were measured in high-occupancy
rooms potentially featuring a variety of moisture sources
(studios), located close to the ground and facing south, where
shading from neighbouring elements (e.g., building, trees) is most
effective and sunlight penetration is weakest. In terms of room
use, individual offices exhibit a distinctive behaviour. Indeed, they
represent the smallest rooms on average and thus accumulate
heat, moisture, and pollutants more easily and more promptly.
Having a small air volume with one longitudinal, highly

transmitting windowed side, these rooms respond very quickly
to outdoor variations too. On the other side, as one single person
is typically the greatest source of all measured parameters and
controls all ventilation adjustment actions, these rooms are
extremely susceptible to occupancy patterns and comfort-
restoring actions, which explains the variability range.
Maximum means in pollutants concentration are associated
with the room use and ventilation rates, which justifies the
poor air quality in print rooms and the accumulation in the
basement. Cleaning and renovation activities also occurred
during the monitoring period which are mostly associated
with TVOCs peaks.

Site Characterization
Room use, level, orientation, HVAC provisions, and window
extent and operability are key actors in arbitrating IEQ levels
across an educational building. As such, the following analysis is
focused on spotting spatial heterogeneity and inter-parameter
associations conditioned over room characteristics. The analysis
is performed using the hourly dataset over occupied hours,
focusing on workdays only.

Role of Room Use Under Standard Occupancy
To get an understanding of how room use is associated with
higher or lower IEQ levels, we focused on the time period with
standard occupancy and warm-to-hot outdoor conditions (Term
1). Figure 4 shows a combined box and swarmplot of hourly and
daily averages respectively, grouped by room use. Only sensors
with more than 90% data over the studied time interval are
considered (Supplementary Appendix Table A2). All room
types are represented here except for the print room, which
was monitored by only one sensor and will be discussed later.
The average is further displayed as a green horizontal line and
used to order the boxplots (decreasing mean).

During Term 1, rooms exhibited distinct behaviors,
summarized in Table 3. Computer labs and individual offices
exhibited the highest T mean (24.6°C). High local production of
heat from local appliances, typical elevation, exposure, presence
of partially glazed facade and absence of solar shadings are major
triggers and further explain why computer labs, together with
classrooms, exhibit the highest mean CO2 (527.0 ppm) and
TVOCs (82.0 ppb) concentrations with significant extreme
episodes. As observed in General Descriptive Analysis section,
individual offices tend to experience high variability and the most
extreme high-temperature events. This is demonstrated by the
wide interquartile (IQR) range (4.6°C) and the dense cloud of

TABLE 1 | IEQ Classification based on Heat Index and measured pollutants.

HI [°C] CO2 [ppm] TVOCs [ppb]

Caution 26.7–32.2 Good <380 Excellent <65
Extreme Caution 32.2–39.4 Moderate 380–450 Good 65–220
Danger 39.4–51.1 Unhealthy for Sensitive 450–1,000 Moderate 220–660
Extreme Danger >51.1 Unhealthy 1,000–5,000 Poor 660–2,200

Very Unhealthy 5,000–30,000 Unhealthy 2,200–5,500
Hazardous 30,000–40,000
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recordings above 26.7°C. Reasons include the low air volume and
the presence of portable heating devices which also result in drier
air (mean of 55.0%, typical range � 46.6–64.0%). In terms of

pollutants, individual offices had the lowest CO2 and TVOCs
means (470.5 ppm and 51.7 ppb), mainly due to lower internal
gains. While heat cannot be efficiently controlled due to the

FIGURE 3 | Time trends of temperature, relative humidity, CO2 and TVOCs between February 2019 and JuneMay 2020. Outdoor measurements are taken from
the DPIE station located in Randwick. A blackout period occurred between the 14th and the December 21, 2019, causing all MyAirs to stop recording.
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TABLE 2 | Statistical analysis across all MyAir sensors and over the entire observation period (Feb 2019–Jun 2020).

Minima Mean values Maxima

T RH CO2 TVOCs T RH CO2 TVOCs T RH CO2 TVOCs

mean 16.0 25.6 328.9 0.4 23.1 60.6 464.7 66.9 31.3 93.5 1589.2 1091.4
Std 2.5 7.3 34.5 0.9 1.7 6.1 29.3 28.4 2.6 6.3 692.9 135.7
Min 9.3 15.0 204.0 0.0 19.5 46.1 432.1 21.5 24.5 74.0 514.5 301.0
25% 14.6 21.4 320.0 0.0 21.9 57.2 445.3 46.9 29.7 89.5 975.1 1109.8
50% 16.0 24.0 329.5 0.0 23.4 59.4 452.9 59.8 31.2 95.0 1416.8 1129.5
75% 17.4 28.0 344.3 0.5 24.5 63.1 481.8 90.3 32.6 100.0 2008.3 1148.8
max 23.5 59.0 391.0 4.0 26.4 82.2 588.3 129.7 38.0 100.0 2950.0 1156.0

FIGURE 4 | Different IEQ behaviour across different room types under standard occupancy (Term1). The y-axis limits are adjusted for a better visual comparison of
results. The swarmplots show daily mean observations and complement the representation of the underlying hourly distribution (boxplots).
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considerable solar gains (due to exposure, insufficient shading
provisions), the combination of operable windows and ceiling
fans proved sufficient in limiting the accumulation of pollutants.
Meeting rooms experienced fairly comfortable thermo-
hygrometric and pollution levels, likely caused by the irregular
occupancy pattern, scattered in time and short-lasting.
Temperatures were lower compared to individual offices and
computer labs, yet higher than rooms having even higher
occupancy density (e.g., classrooms) but better ventilated. This
also explains the amount of outliers in CO2 and TVOCs charts,
with both reaching unhealthy levels during closed-door meetings.
In staff offices (encompassing shared and open-plan areas), the
mean T is at 23.1°C, and the mean RH around 60.0% due to the
local presence of latent heat sources. While very limited health-
threatening events were recorded in terms of CO2, frequent
extreme TVOCs episodes occurred which can be imputed to
major renovations, re-painting and cleaning activities. The media
room (a multipurpose space outfitted for video-making and
media releases) exhibited limited temperature variability
(within ±1.5°C of the mean 22.8°C) but comparatively high

RH (46.9–71.1%). TVOCs never crossed unhealthy levels and
CO2 very rarely. The CO2 mean (475.6 ppm) was the second-to-
last across all room uses. This pattern is mostly related to its
sporadic and time-framed use. Multi-level study areas, located
across Level 5 and 6, exhibited medium-low T levels (mean of
22.7°C), yet high RH, CO2 and TVOCs (means of 62.1%,
493.8 ppm and 75.4 ppb). Despite benefitting from both
horizontal and vertical cross ventilation, this proved sufficient
only at removing heat, but not moisture and pollutants which
tended to accumulate on lower levels, gathering the contributions
of multiple floors. Further, these rooms are typified by non-
openable fully glazed facades, thus limiting the intake of outdoor
air. Classrooms were fresher (with T typically in the 20–25°C
range) and experienced limited TVOCs accumulation (levels
below 73.2 ppb) thanks to their south-exposure and operable
shading provisions, however mean CO2 was the highest
(527.3 ppm) and frequently crossed the unhealthy threshold
and high humidity levels (mean of 63.0%) occurred, both
likely caused by the high internal gains. Studios exhibited the
lowest T levels (mean of 22.1°C), and a relatively comfortable RH

TABLE 3 | Typical IEQ pattern per room use under standard occupancy.

Room use Main observations Causes

Computer lab - highest mean temperature
- highest mean CO2 and TVOCs
- relative humidity typically maintained between 50
and 66%

- located between the 2nd and the 3rd floor, south-exposed, with a partially glazed facade
having no solar shadings

- under standard occupancy, these rooms are densely occupied (exceeding 1.5 people/
m2) and affected by a considerable production of sensible heat and pollutants from local
appliances such as computers and personal electronic devices

- usually locked and used for lectures and tutorials which typically prevent or delay
occupants’ comfort-restoring actions not to interrupt the lesson (Stazi et al., 2017)

Individual office - highest mean temperature
- lowest mean relative humidity
- lowest CO2 and TVOCs means

- low air volume which increases the sensitivity to both outdoor- and indoor-generated heat
- north-facing rooms that tend to easily accumulate heat due to the higher thermal mass of
terracotta tiles on the outside

- no A/C in place
- partial shading provisions
- likely presence of portable heating devices, such as radiant units and extra emitting
equipment (multiple computers)

- low internal production of pollutants, ceiling fans combined with operable windows

Meeting room - generally comfortable thermo-hygrometric and
pollution levels

- pollution and heat peaks during closed-door meetings

- irregular occupancy pattern, scattered in time and short-lasting
- mostly located centrally and in the basement, with nowindows and direct outdoor air inlet.
Those exposed to the outdoors are completely shaded or mostly shaded. Half of them are
equipped with split systems, the other half with ceiling fans

- noise and privacy concerns are likely the key factors promoting closed-door meetings
resulting in adverse thermal comfort and air quality

Staff office - generally comfortable thermo-hygrometric and CO2

levels
- frequent extreme TVOCs episodes

- partially glazed facades, complete shading available, low occupancy density
- major renovations, re-painting and cleaning activities performed between 2019/2020
throughout the admin sector in the Red Centre

Media room - limited variability in T, CO2, and TVOCs - irregular occupancy pattern, scattered in time and short-lasting
- local humidity sources and reduced ventilation

Multi-level study
areas

- medium-low T levels, high RH, CO2 and TVOCs - efficient heat removal by horizontal and vertical cross ventilation
- humidity and pollutants accumulation at user level
- non-openable fully glazed facades, limiting the intake of outdoor air

Classrooms - high humidity and CO2 levels
- low T and TVOCs

- south-exposed with shaded and operable partially glazed facades
- high latent heat and carbon dioxide release from people
- no A/C in place

Studio - low T, but significant extremes
- comfortable RH and TVOCs levels
- moderate-high CO2 levels

- south-exposed
- fully glazed facades
- almost all located on Level 1
- no A/C in place
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range (50–71%). However, temperature levels were skewed
towards the upper quartile with extremes over 30°C, likely
caused by the presence of fully glazed facades, although south-
exposed. CO2 could surpass the unhealthy threshold, while
TVOCs stayed within moderate levels. Because CO2 is heavier
than air, it sinks to the lower floors across the building. Almost all
studios are located on Level 1 and feature no A/C that could
extract the excess CO2 or facilitate its removal.

The effect of seasonality is explored in Figure 5, where the
warmest (Term1) and coldest (Term2) periods of standard
occupancy are compared, based on sensors having more than
90% of data in both the time windows (Supplementary
Appendix Table A2). During Term 1, the outdoor
temperature was 18.9 ± 3.3°C with a maximum of 27.8°C and
a minimum of 9.8°C. Relative humidity ranged within 75.9 ±
14.9%, reaching a maximum and minimum of 98.6 and 23.4%,
respectively. During Term 2, the outdoor temperature was 6°

lower (13.0 ± 3.3°C) while relative humidity was nearly 13% lower
on average (62.5 ± 18.1%). The outdoor temperature is
consistently lower than indoor throughout the whole year.
This is attributed to the weather station location (green, open
area, closer to the coastline) and the internal gains.

In both Terms, the indoor temperature was 1–2°C warmer and
<5%more humid as compared to outdoor conditions, due to high
thermal transmittances, extensive glazed surfaces and emission of
latent heat from occupants. Some exceptions occurred. The
indoor temperature difference was much more limited in
computer labs and multilevel study areas, where the internally-
generated heat outweighed the heat loss through the building
envelope and to unconditioned indoors. Classrooms could reach
significantly lower temperatures having extensive shaded
windowed sides on the north facade. The relative humidity
difference was close to 15% on average, with multilevel study
areas touching a major gap of more than 20%. Generally
speaking, the humidity levels tended to equalize across
different rooms in the colder Term with medians within a 5%
range, compared to more than 10% in Term1. The reasons are to
be found in the extensive use of portable heaters that efficiently
dried the air down to a RH of about 45% on average. As for CO2,
mild discrepancies are observed between Term 1 and Term 2,
which entails that CO2 levels are not governed by seasonal cycles.
A standalone behaviour is that of classrooms where considerably
higher CO2 levels are recorded. The reason is likely behavioural:
while classes tend to start and go on with open windows during

FIGURE 5 | IEQ behaviour across different room types: comparison between warm and cold standard occupancy periods. The y-axis limits are adjusted for better
visualization. The swarmplots show all mean observations, on hourly scale, and complement the representation of the underlying distribution.

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 72597412

Ulpiani et al. IoT Living Lab for Enhanced IEQ

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


the warm Term, this is hardly the case during wintertime, when
windows and doors are kept closed to maintain the warmth
inside. As such, people’s respiratory emissions were not dispersed
as efficiently as in Term 1 and accumulated over unhealthy levels,
with the mean being nearly 200 ppm higher. Finally, the offset in
terms of TVOCs was negligible regardless of the room use.

The print room on Level 1 lacked enough data in Term 1,
however its IEQ pattern is of special interest due to a combination
of aggravating factors. Beyond the presence of printing devices,
the room is exposed to the outdoors on three sides, with the
northern being the longest. A single unshaded window of about
1 m2 stretches along the western side. No cross ventilation occurs
given that the door is spring-loaded to automatically close and
even though air conditioning is in place, ventilation is very
limited. The sensor continuously recorded from the April 14,
2019 on, as such a month period up to the May 15, 2019 was used
to characterize its behaviour in Term 1. The results over occupied
hours and workdays only are summarized in Table 4.
Temperature and TVOCs stayed very low, at levels
comparable to those of multilevel study spaces in Figure 4,
while relative humidity stayed high at levels comparable to
those of the media room. The most critical observation is
made in CO2 concentration: the average exceeded 937.8 ppm
which is 410 ppm higher than the highest level recorded by any
other room type during the same period, with an IQR of
482.4 ppm which is 10-fold that of other rooms. This suggests
that the average conditions inside the print room are unhealthy
for the sensitives and cross the health-risk threshold of 1,000 ppm
more than 25% of the time. Only a negligible improvement is
recorded in Term 2. This calls for major redesign measures in
order to meet minimum liveability levels.

Proclivity to IEQ Deterioration
In this section, statistical analysis is performed to identify which
rooms were more prone to seasonal IEQ extremes and
criticalities. Only sensors having more than 90% recordings
over each season were included (Supplementary Appendix
Table A2). Upper and lower outliers are those exceeding the
75th percentile or falling below the 25th percentile by 1.5 times
the interquartile range. For each sensor and each parameter, the
percent occurrence of upper and lower outliers was computed.
Figure 6 is a summary GIS representation of the 4 most critical
extremes in terms of IEQ deterioration: summer upper outliers
for T and TVOCs, winter lower outliers for RH, and winter upper

outliers for CO2. It allows immediate visualization of the locations
most prone to extreme conditions.

Most high extreme temperature events occurred in
summertime, with 22% of the sensors recording outliers. The
maximum percent occurrence was 4.5% in the north-oriented
meeting room at Level 5. Comparatively, 16.7, 7.9, and 12.1% of
the sensors recorded outliers in autumn, winter, and spring with a
maximum of 3.6% of the time. Lower outliers mostly occurred in
springtime with 36.4% of the sensors measuring up to 28% of the
time below the threshold. Most extreme dry events took place in
winter, with 78.9% of the sensors measuring outliers. In an
individual office on Level 2, extreme dry events occurred for
41% of the time, likely caused by an overuse of portable heaters.
Dry events were recorded at almost all locations also in other
seasons but rarely surpassed 10% of time. Conversely, extreme
humid episodes concentrated in summertime but over limited
time periods (<1%). CO2 extreme events exacerbated in
wintertime, with 84.2% of the sensors recording poor air
quality, typically for more than 20% of the time. As
mentioned in Role of Room Use Under Standard Occupancy
section, the print room recorded the worst conditions with an
astonishing 74.1% of the time under extreme CO2 levels. Further
a computer lab on Level 2 and a studio on Level 1, both south
exposed, recorded outliers for more than 50% of the time. Almost
all sensors recorded extreme CO2 levels in any other season,
however the time coverage was typically lower than 20%. In terms
of TVOCs, summer was by far the worst season: all sensors
recorded outliers and most for more than 10% of the time. The
greatest time coverage was 38.3% and occurred in a centrally
located staff office in the basement.

The above analysis suggests that the most critical conditions to
moderate not to pose a risk on occupants’ health and productivity
are wintertime CO2 levels.

Heat Index
Heat stress occurs out of the boundaries of the zone of
homeothermy, namely the range of environmental conditions
in which humans maintain heat balance and thereby a steady core
temperature by minimal thermal adjustments (comfort zone) or
mild thermoregulating reactions like shivering and sweating
(Lacetera et al., 2003). Here, the hottest average indoor
temperatures were recorded in March 2019, while the highest
extremes were recorded in April 2019. Consequently, the heat
index analysis was performed contemplating both months.
Figure 7A shows the result, based on sensors having more
than 90% of data only (coloured dots in the background). The
daily means in the occupied hours (9 am–6pm) are overlapped as
salmon-shaded, red lines with the shade indicating the one
standard deviation span. The health classification thresholds
are displayed in the form of dashed horizontal lines and
labelled according to Table 1.

The mean HI ranged between 24.2 and 32.2°C, with the lower
limit measured in a north-oriented studio in the basement and
the upper limit in a north-oriented individual office on Level 2.
The maximum HI ranged between 26.4 and 41.7°C with the
absolute peak recorded in a centrally located studio in the
basement. Conversely, the minimum ranged between 14.3 and

TABLE 4 | Statistical analysis for the print room over Term 1 and Term 2.

Term 1 Term 2

T RH CO2 TVOCs T RH CO2 TVOCs

mean 23.3 61.7 937.8 43.1 23.2 43.9 898.2 54.9
Std 0.5 10 338.4 45.7 0.7 7 303.6 65.6
min 21.9 38 354.4 7 20.6 32.2 414.8 7.3
25% 22.9 51.4 654.1 17.1 22.6 39.3 620.5 15.8
50% 23.3 66.2 906.2 27.5 23.2 42.8 904.6 25.3
75% 23.6 69.2 1136.5 47.2 23.7 46.7 1097 60.6
max 24.8 74 2296.3 396.6 24.5 58.7 1782.3 346.5
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FIGURE 6 | GIS localization and categorization of rooms according to their proclivity to extreme events. From top to bottom: occurrence of summer upper T
outliers, winter lower RH outliers, winter upper CO2 outliers, and summer upper TVOCs outliers (percent time). Upper and lower outliers are those exceeding the 75th
percentile or falling below the 25th percentile by 1.5 times the interquartile range.
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24.5°C with the absolute low observed again in the north-oriented
studio in the basement. Maxima typically occurred in the 12–1
pm and 3–4 pmwindows. In contrast, minimamostly occurred in
the morning. Figure 7B shows the percent time spent into
increasing levels of health risk in the form of a boxplot. Heat
safe conditions were largely dominant, with two offices in the
basement never experiencing any sort of risk (possibly due to A/C
access). The lowest percent time in heat safe conditions (9.8%)
pertains to the individual office on Level 2 typified by extremely
dry air (which also scored the maximum percent time in the
Extreme Caution zone, 53.2%), followed by 29.2% in a west-
oriented studio on Level 4 (that also scored the maximum percent
time in the Caution zone, 68.5%). All rooms having significant
percentages (9–16%) in the Extreme Caution zone and even
above it are located in the basement. We observe that rooms
located in the basement may experience the best and worst HI
conditions depending on the efficiency of air conditioning and on
the ability to dissipate excess humidity. In terms of room use
(Figure 7C), individual offices hit the worst HI conditions, having
mean above the heat-safe upper threshold (27.4°C versus 26.7°C)

and 75th percentile close to the Caution threshold. Computer labs
follow closely with mean HI at 27°C, but much lower variability
(IQR equal to 2.1°C versus 3.4°C) and much less frequent
extremes. The media room in the basement and studios also
exists on the borderline of heat safe conditions (mean of 26.9 and
26.6°C) with HI distribution significantly skewed towards upper
values. As for the print room whose IEQ was deteriorated by CO2

levels, this analysis reveals how major redesign measures are
required for individual offices, computer labs, studios, and media
rooms in order to maintain heat safe conditions, on average.
Health-preserving strategies should target both temperature and
humidity as both contribute to establishing heat stress conditions
in the warm season (compare Figure 4). Meeting rooms, staff
offices and classrooms behave very similarly with mean levels in
the 25.9 ± 0.2°C range. Meeting rooms exhibit the least IQR
(2.1°C), comparable to that of computer labs. Maxima reach or
slightly exceed 40°C, thus trespassing the Extreme Caution
threshold. Minima typically stay around 20°C. Studios show
the widest variability by far, ranging between the absolute
minimum (14.3°C) and the absolute maximum (41.7°C). Much

FIGURE 7 | Heat index analysis: (A) time trends between March and April 2019; (B) boxplot of occurrences under different health risk levels and (C) box and
swarmplots of HI level broken down by room type, both showing mean observations, on hourly basis.
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safer conditions pertain to classrooms, whose variability range is
completely contained within the Heat Safe bounds, to the benefit
of students’ productivity and comfort.

Inter-parameter Correlations and Key Variables
In this section, the correlation among indoor and outdoor
parameters is investigated by means of Mutual Information
(MI) analysis. MI is a statistical metric that measures the
degree of “shared information” between time series x, y by
quantifying the difference between marginal and joint
entropies (Fraser and Swinney, 1986; Cellucci et al., 2005;
Frenzel and Pompe, 2007). It is typically normalized to range
between 0 and 1, where 0 connotes mutual independence, and
expressed as:

MI(X;Y) �
�������������������
1 − exp( − 2 · I(X: Y)√

(1)

where I is calculated based on the probability density p as follows:

I(X;Y) � ∫
R2

p(x, y)log( p(x, y)
p(x)p(y))d(x, y) (2)

MI is a powerful correlation measure for exploratory analysis
of variable pairs for three main reasons: 1) it captures both linear
and non-linear relationships, being equivalent to Pearson
correlation in the linear case, 2) it can be conditioned on a
third, possibly multidimensional, variable, being analogous to
partial correlation, and 3) it is invariant under monotonic
transformations of variables, including linearization.
Conditioned MI returns the degree of association with the
effect of a given controlling variable removed. For instance,
conditioning over the day of the year removes the effect of
seasonal cycles. MI has been applied in atmospheric science
(Zaidan et al., 2018, 2019) and urban analysis (Li et al., 2014;
Ryu et al., 2018; Ulpiani et al., 2021), revealing strong non-linear
associations especially when wind-related and air quality
parameters are concerned. In this study, we applied MI
correlation to look for the inter-parameter associativity under

standard occupancy (Term 1) via k-nearest neighbour search.
The correlation matrices for the rooms where maxima MI were
computed are shown in Figure 8. We also investigated if and
which site-specific parameters (e.g., altitude, orientation, A/C
provisions, window types and shadings) govern the strength of
correlation by applying conditional MI (Laarne et al., 2021). We
included outdoor parameters measured at the DPIE station in
Randwick, which comprised wind speed (ws), wind direction
(wd) and four outdoor pollutants (NO2, O3, PM10 and PM2.5),
outdoor temperature (Tout) and relative humidity (RHout).
Supplementary Appendix Table A3 collects the list of
parameters that were significantly correlated to the four MyAir
measurements. The significance threshold was set to 0.5, namely
midway between mutual independence and full correlation.

Relative humidity was, by far, the most correlated parameter,
followed by temperature, CO2 and TVOCs. The absolute
maximum correlation coefficient for T was with RH and
reached 0.88. It was recorded in a studio in the basement.
Temperature tended to be most correlated to RH (86.0% of
cases), Tout (7.0%) and CO2 (7.0%) while it exhibited mild
correlation with all other outdoor parameters and with
TVOCs. In terms of RH, the absolute maximum correlation
coefficient was the same as for T, measured in the basement
studio. Relative humidity was typically correlated with T (79.1%
of cases), equally followed by CO2 and wd (9.3%) and then by
RHout (2.3%). Indeed, in Sydney, the wind direction dictates
whether humid fresh air is entrained by the sea breeze from the
east or dry warm air is advected by desert winds coming from the
western fringe. This dualism has been largely investigated and
governs the magnitude and spatial heterogeneity of urban heat
island and outdoor heat stress (Santamouris et al., 2017; Yun
et al., 2020). As for CO2, the absolute maximum correlation
coefficient was with RH and reached 0.83. It was recorded in an
air-conditioned, west-exposed staff office on the mezzanine. CO2

tended to be most correlated to RH (74.4% of cases), T (20.9%)
and both Tout and TVOCs equally (2.3%). A strong linear and
positive correlation between carbon dioxide and relative
humidity was also found in other naturally ventilated school

FIGURE 8 | Inter-parameter correlation coefficients for MyAir #59, #51, and #25 (shown respectively from left) where maximum MI correlations were observed.

Frontiers in Environmental Science | www.frontiersin.org November 2021 | Volume 9 | Article 72597416

Ulpiani et al. IoT Living Lab for Enhanced IEQ

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


buildings elsewhere in the world (Lazović et al., 2016). Finally, the
absolute maximum correlation coefficient for TVOCs was with
RH and reached 0.67. It was recorded in a non-conditioned,
north-oriented individual office on Level 3 that underwent
extensive cleaning during the time of observation (MyAir
#25). TVOCs were most typically correlated with CO2 levels
(34.9% of cases) and RH (32.6%), but in some cases significant
correlation was found with T (16.3%), wd (7.0%) and outdoor T,
ws, NO2, O3 parimerito (2.3%).

Floor level, orientation, room use, air volume, A/C and ceiling
fan provisions, cross ventilation, type of windows, level of
shadings and windows operability (refer to Supplementary
Appendix Table A1) were codified and included in the
dataset to verify whether knowing the room characteristics
could lead to stronger associations and thus better
predictability. We iterated across the different conditional
parameters and calculated the difference in correlation
coefficients between conditional and unconditional matrices.
Interestingly, only the floor level was associated with higher
correlation coefficients. The average increase was 0.09. Above
average increments are those in the mutual correlation between
T-CO2 (+0.17), RH-CO2 (+0.15), RH-TVOCs (+0.15), T-RH
(+0.14), T-wd (+0.14), T-ws (+0.11), T-Tout (+0.11), and
T-NO2 (+0.10). Hence floor level is a major trigger for inter-

parameter associations, especially in terms of pollutants. Since
CO2 and TVOCs are heavier than air, they travel all the way down
from the upper levels to the ground. At the same time warmer,
drier air tends to move upwards convectively, especially in
naturally ventilated buildings provided with vertical air
communication. This explains why the strength of correlation
between thermo-hygrometric and air quality parameters
significantly depends on the elevation.

Weather Extremes and Occupancy
Anomalies
This section is dedicated to the impacts of microclimatological
and occupancy anomalies on IEQ preservation by comparing the
control period of standard occupancy (Term 1) with the Bushfire
and COVID-19 subsets, respectively. The analysis is conducted by
considering the records of sensors having more than 90% data in
the paired time windows (Supplementary Appendix Table A2).

Figure 9 shows the impact of 2019/2020 Black Summer,
during which hundreds of bushfires ravaged the urban fringe
causing extreme pollution, heat waves and droughts. Themultiple
microclimatic impacts in the city of Sydney have been analysed
elsewhere and include 1) health-threatening PMs accumulation
due to long-transport mechanisms and complex interactions

FIGURE 9 | IEQ behaviour across different room types: comparison between warm standard occupancy period and bushfire. The y-axis limits are adjusted for a
better visual comparison. Boxplots and overlapped swarmplots show mean observations, on hourly basis during occupied hours and workdays only.
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between prevailing and local winds, 2) strongly attenuated UV
radiation and radiative forcing impairment, and 3) exacerbated
urban heat island intensity and absence of cool island events
(Ulpiani et al., 2020). In November 2019, a dense plume of smoke
blanketed the city and safer-at-home orders were put in place,
thus altering standard occupancy patterns. The outdoor
temperature was 19.7 ± 4.0°C (higher than Term 1 by less
than 1°C) with a maximum of 35.5°C and a minimum of
10.3°C. Relative humidity ranged within 63.9 ± 21.7% (lower
than during Term 1 by more than 10% and much more
fluctuating), hitting a high of 96.1% and an extreme low of
7.3%. These trends were closely reflected indoors, although
extreme events were all strongly exacerbated. The following
exemptions stood out. Computer labs are electronically locked
thus acting as hermetically sealed sinks for heat, moisture and
pollutants under periods of unoccupancy. Furthermore, extra
heat may have also been released by remotely controlled
computers as coarse dust from the bushfires amassed.
Computer overheating is most commonly caused by the heat
sink and fans being clogged with dust and debris. Indeed, the
mean T was 4.0°C above the mean of most other rooms and was
1.0°C above the mean in Term 1. Meetings, conferences, and
gathering stopped during the bushfires critical phase, thus
causing a significant decrease in internal heat gains in meeting
rooms as mirrored both in terms of sensible (T) and latent (RH)
heat balance. The Tmean was 0.5°C lower than in Term 1, and the
25th percentile was 21.3°C, 2.5°C less than in Term 1. A
standalone behaviour is that of the media room in the
basement, where humidity equalled Term 1 levels while
temperature dropped, suggesting intense evaporative cooling.
The T mean and maximum, 22.4 and 24.4°C respectively, were
nearly 2.4 and 6°C less than in Term 1. The reasons for this
specific trend require further investigation and might have been
caused by A/C failures and water leakages.

In terms of pollutants, very interesting and distinctive patterns
emerge in the comparison with Term 1. CO2 levels dropped
everywhere caused by the altered occupancy pattern. The
maximum offset was again recorded in computer labs and
amounted to −122.1, −115.9, and −336.4 ppm in terms of
mean, IQR, and maximum, respectively. The following largest
mean decrease pertained to the media room and the multilevel
study areas, hitting −87.8 and −18.5 ppm respectively, with
multilevel study areas showing also a significant drop in IQR
and absolute maximum (−51.3 and −130.9 ppm). The reduction
in means was around 5–20 ppm also in the other room types, but
milder in terms of IQR and maxima. The greatest drops were
recorded in rooms with high standard occupancy density (e.g.,
computer labs, classrooms) or receiving the contributions from
multiple floors (multilevel study areas), as those were most
impacted by the reduced flow of people. In sharp contrast,
TVOCs increased everywhere because of biogenic emissions
from biomass burning. The offset with respect to Term 1 was
greatest in computer labs, multilevel study areas, and meeting
rooms, reaching a maximum of 30.0, 14.5, and 58.9 ppb (mean,
IQR and maximum) in computer labs. The increase in meeting
rooms was comparable (26.7, 17.1, and 263.3 ppb), followed by
23.1, 23.5, and 668.7 ppb recorded in multilevel study areas.

These rooms remained locked with no A/C during the safer-
at-home orders and thus could not disperse air pollutants as
efficiently as during standard occupancy. Smart logics should be
put in place to control the A/C and door opening/closing cycles in
electronically operated rooms of these types to avoid generating
highly health-threatening indoor environments during bushfire
events. Such results suggest an urgent need to prioritize building
air tightness improvement, appropriate filtration techniques, and
emergency strategies to expel excess dust towards future-proof
buildings in Sydney and similar regions in the world, as also
stressed elsewhere (Rajagopalan and Goodman, 2021).

The role of occupancy levels and patterns emerges even more
vividly when comparing Term 1 with COVID-19 lockdown
period, as displayed in Figure 10. In May 2020, the outdoor
temperature was 14.9 ± 3.3°C (exactly 4°C lower than during
Term 1) with a maximum of 25.5°C and a minimum of 7.6°C.
Relative humidity ranged within 69.1 ± 17.1% (less than 10%
lower than during Term 1), hitting a high of 96.2% and an
extreme low of 29.1%. While during Term 2 the outdoor T offset
with respect to Term 1 was mitigated by 1–2°C indoors, during
the lockdown it got amplified in most room types by about 0.5°C.
Statistically significant gaps were recorded everywhere, with
reductions in the 75th percentile reaching 7°C under the
lockdown, given the concerted fall in heat gains from both
people and equipment. The only exception to this pattern is
represented by multilevel study areas whose temperature stayed
low in Term 1 too. Interestingly, the absence of people flattened
out the differences across room types with all T means lying
within a 1°C range across 20°C. This indicates that occupants and
their actions (including central A/C or portable devices
activation, windows/doors opening and closing) are pivotal in
driving room-specific average temperature levels. In sharp
contrast, the humidity levels in Term 1 and during the
lockdown show marginal differences (<5% for almost all room
types) as the loss of latent heat was largely compensated by higher
relative humidity under lower temperatures. This also explains
why the gap was especially narrow in studios and especially wide
in multilevel study areas.

Similar to the bushfire period, CO2 levels dropped everywhere.
The maximum offset was again recorded in computer labs and
reached −138.7, −136.8, and −445.3 ppm in terms of mean, IQR
and maximum, respectively, which closely resemble the values
recorded during the bushfire when the labs were closed as well.
The following largest decrease pertained to multilevel study areas,
whose corresponding drops amounted to −130.8, −69.2, and
−359.8 ppm larger than during the bushfire as a result of the
complete absence of people. The reduction in means was around
30–40 ppm also in the other room types, but milder in terms of
IQR and maxima. It is thus confirmed that greatest drops occur
where the occupancy density is typically higher or where multiple
floors are interconnected. Looking at TVOCs, the pattern is less
clear, with most room uses showing negligible changes. The only
rooms that experienced significantly higher TVOCs were
multilevel study areas, staff offices and studios. Notably, the
offset with respect to Term 1 reaches a maximum of 133.0,
147.5 and 858.0 ppb (mean, IQR, and maximum) in multilevel
study areas, again due to the vertical contribution from
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interconnected floors and the greatest air volume. All multilevel
study areas and staff offices on Level 5/6 underwent major
renovations and cleaning during the lockdown period which
explains the increase in TVOCs associated with the use of
cleaning products, paints and varnishes.

To further investigate the perturbing actions of bushfires and
COVID lockdown on the inter-parameter equilibria, we
performed mutual information analysis on the subset of
sensors having more than 90% of reading over Term 1,
Bushfire and COVID-19 periods. Then we calculated the
difference in correlation coefficients with respect to Term 1, to
determine which associations got stronger or weaker under
extreme events. We focused the analysis on 4 locations per
each period, where the absolute maximum, maximum average,
absolute minimum and minimum average difference was
recorded. The results are displayed in Figure 11. During the
bushfires, the absolute maximum difference (0.60) occurred in a
non-conditioned, north-oriented individual office on Level 4 and
affected the relationship between indoor CO2 and outdoor PM10.
The maximum mean difference (0.09) was recorded at the same
location, where the temperature was more correlated with O3, RH
with both PMs and TVOCs with wd. This suggests that, under
bushfire conditions, temperature-triggered photochemistry as
well as wet deposition phenomena are critical in defining the

IEQ conditions with a major role played by temperature,
humidity, and wind-related parameters. The absolute
minimum difference (−0.46) was detected in a north-oriented
individual office on Level 3 and affected the TVOCs-PM2.5

relationship, again induced by cleaning works. The minimum
mean difference (0.003) was recorded in a south-oriented
individual office on Level 5, where T was much less correlated
with NO2, RH with TVOCs and NO2, CO2 with TVOCs and O3,
and TVOCs with RH, CO2 and PM2.5. Such a wide decrease in
associativity is likely caused by the transient effects of pollutants
intake from the outdoors and the tendency to accumulate towards
lower floors. All major differences occurred in individual offices,
as their limited air volume was more responsive to short-lived
variations.

During COVID-19 lockdown, the correlations tended to get
stronger as more stable conditions were established across the
building. The absolute maximum difference (0.73) occurred in
a non-conditioned, south-oriented staff office on Level 4 and
affected the relationship between indoor CO2 and wind speed.
As people’s contribution to CO2 emissions disappeared, the
relative weight of outdoor carbon dioxide transported by the
wind increased. The maximum mean difference (0,17) was
recorded in a computer lab on level 3, where almost all
correlations increased by more than 0.5. This suggests that

FIGURE 10 | IEQ behaviour across different room types: comparison between warm standard occupancy period and COVID-19 lockdown. Boxplots and
overlapped swarmplots show mean observations, on hourly basis during occupied hours and workdays only.
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occupancy dictates the IEQ level in spaces of standard high-
density, on all counts. The absolute minimum difference
(−0.42) was detected in the centrally located studio in the
basement and affected the TVOCs-PM2.5 relationship. This
location experienced also the minimum mean difference
(0.08), since the correlations across indoor parameters were
strongly attenuated. This decrease in associativity is partly
compensated by the increase in associativity with outdoor
parameters, which, in the end, is the overarching effect of
the lockdown.

DISCUSSION AND DESIGN GUIDELINES

A public health imperative exists for educational buildings to
be heat- and pollution-safe, particularly on account of
escalating heatwaves and tropical nights events that impair
night flush cooling (Gershunov et al., 2009; Dengel and
Swainson, 2012). To achieve these objectives, results from
fine-grained and long-term measurements can be used in
identifying priority areas and emerging patterns, which can
inform re-design strategies for IEQ preservation. These
insights can be further useful for other buildings with
similar building types, usage, and characteristics.

Focusing on room characteristics, we find that:

• the absence of an air-conditioning system was conducive to
greater heat stress, while its presence triggered higher average
pollutant concentrations. This is particularly due to the fact
that passive ventilation systems - such as louvres that are
embedded to assist with air circulation in the building - entirely
rely on manual interventions that are not commonly used.
Accordingly, the optimum natural ventilation of the building
envisioned in the design is hardly achieved. This results in
significantly higher CO2 levels in rooms with high occupancy,
as users tend to be less sensitive to CO2 levels, further
supporting the need for automated demand-driven controls
that can be actioned informed by real-time data;

• north-exposure was associated with the hottest conditions,
suggesting a non-efficient use of thermally massive
materials, ineffectiveness of solar shading devices, and
limited natural ventilation;

• insufficient thermal insulation and air tightness result in
excessively humid episodes in high-occupancy rooms close
to the ground and facing south, where shading was most
effective;

• rooms located in the basement, which lack windows and
mostly rely on air conditioning, experienced the best and
worst heat stress conditions depending on manual
interventions to condition the air and dissipate excess
humidity.

FIGURE 11 | Significant inter-parameter correlation coefficient variation between Bushfire and Term 1 (upper row) and COVID-19 and Term 1 (lower row).
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Focusing on room use, we find that:

• individual offices (mostly north-facing) exhibited most
absolute maxima and minima, owing to the small air
volume, the highly transmitting windowed side, and the
extreme variability associated with occupancy patterns.
These rooms also represent the highest user autonomy and,
therefore, likelihood for implementing manual interventions.
The use of portable A/C devices and the amount of electronic
equipment should clearly be considered in individual offices to
enhance heat index and IEQ levels;

• computer labs exhibited the highest mean temperature,
CO2, and TVOCs, with significant extreme episodes.
Being densely occupied, electronically closed, and prone
to untimely comfort-restoring actions, these rooms, on
average, act as sinks for heat and pollutants and fail at
maintaining heat safe conditions. Particularly during
extreme events such as bushfires, these rooms should be
closely monitored and intensively ventilated to avoid
unhealthy conditions for occupants. This further extend
the service life of the electronic equipment from dust
clogging;

• studios exhibited HI conditions requiring caution and
significant pollution episodes, with CO2 crossing the
unhealthy thresholds. These rooms were mostly located
on lower floors, likely leading to the accumulation of
pollutants from upper levels in addition to local
emissions from typical equipment used on site.
Relocation of studio-like environments with higher
occupancy to upper floors should be considered;

• multi-level study areas benefited from better air circulation,
but were prone to extreme pollutant accumulation due to
the presence of fully glazed facades that cannot be opened;

• meeting rooms succeeded in maintaining the comfort zones
on average, but exhibited very high-risk events during
closed-door meetings. Both CO2 and TVOCs could reach
unhealthy levels in short periods of use. Due to concerns
regarding noise levels, doors are often kept shut which leads
to extremely unhealthy conditions particularly during
extreme weather events. Large, acoustically-insulated
grids or automated controls could be implemented to
maintain adequate cross ventilation while addressing
concerns regarding noise;

• staff offices were typically heat-safe, thanks to extensive
shading, very low occupancy, and AC provisions. Similar to
individual offices, these spaces are also more likely to be
subject to manual interventions. However, the presence of
TVOC-emitting equipment and major renovations
exacerbated TVOCs levels;

• classrooms outperformed all other environments in terms of
thermo-hygrometric conditions with no A/C in place,
particularly due to their south exposure, the extensive
provision of shadings and operable windows, and the
efficient cross ventilation. The temperature typically lied in
the 20–25°C range, theHI stayedwithin the heat-safe zone, and
TVOCs never crossed the unhealthy threshold in warm

periods. However, mean CO2 levels could put sensitive
people at risk and frequently crossed the unhealthy
threshold, with further accumulation in wintertime when
windows and doors were typically closed, thus stressing the
need for year-round ventilation strategies;

• Utility rooms (such as the print and media rooms) further
exhibited unique characteristics. The print room reached CO2

levels so high that health-threatening levels (even for short
exposure) were the norm. Major redesign measures are
imperative in order to meet minimum advised levels. On
the other hand, the media room in the basement, which is
sporadically used for media content production, frequently
experienced extreme HI episodes due to unusually high
humidity levels and equipment in use. This further suggests
that utility rooms, even if not regularly occupied, require active
control actions or redesign to avoid adverse IEQ conditions.

On top of this, the mutual information analysis revealed that
1) relative humidity is especially correlated with carbon dioxide
levels, hence a better control over RH is expected to be extremely
impactful on IAQ preservation; 2) during bushfire events, a major
role is played by temperature and wind-related parameters,
whereas during lockdown periods (i.e., in the absence of
occupants) the influence of outdoor parameters becomes
dominant; 3) elevation arbitrates the strength of correlation
between thermo-hygrometric and air quality parameters.
Future-proof re-design strategies should be built upon these
associations.

Pertaining to the application of fine-grained IoT networks
for assessing environmental quality, we note that in addition to
insights gathered in this analysis, certain challenges and
limitations should be considered. First, not only the spatial
and temporal distribution of data collection but also the
parameters monitored have a big impact on drawing
insights from results. For instance, behavioural parameters -
such as occupancy and manual interventions - are not
commonly recorded in the environmental networks, but
have a significant impact on IEQ particularly in educational
buildings on university campuses. Here, room types are used as
a proxy for determining occupancy patterns, but future
measurement campaigns should consider collecting detailed
behavioural data that focus the analyses solely on occupied
hours. Similarly, detailed metadata on room characteristics are
extremely hard to obtain and rarely incorporated in the IoT
environmental data platforms. Here, exhaustive and manual
surveys of rooms were conducted to determine room
characteristics in the studied research (summarized in
Supplementary Appendix Table A1). Future research
should focus on automated integration of fine-grained
building information with real-time sensor data,
establishing a digital twin of buildings to effectively
integrate, communicate, and analyze environmental quality.
More importantly, such integration with building data can
inform automated control actions that enhance IEQ. Lastly,
larger deployment of sensors often dictates that sensors are
lower cost which can have an impact on sensor accuracy and
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lifetime. Quality controls are applied in these analyses (before
sensor installation and after data collection), but longer-term
data collection likely requires recalibrations to account for
sensor drifts and faulty devices. This is in addition to
maintenance challenges regarding theft and vandalism that
have been experienced in this project.

On a conclusive note, the proposed monitoring design departs
from conventional data collection methods, relying on
controlled-environment testing or short-term monitoring. It
captures the IEQ nuances in a realistic and unbiased fashion.
Accordingly, we did not intend, nor had the ability, to control for
environmental/occupancy conditions that the building was going
to be subject to in the long term. This non-invasive approach
makes it harder to disclose clear patterns and run comparative
assessments, yet it gives us the chance to appreciate the
complexity of a living environment without data degradation
or alteration.

CONCLUSION

In this study, we targeted an educational building in Sydney,
whose proclivity to IEQ deterioration is aggravated by design
inefficiencies and local weather extremes. A novel, low-cost,
multi-parameter IOT sensor network was deployed to fully
depict the spatial heterogeneity and temporal variability in
terms of thermal comfort and air quality. The data has been
analysed through a variety of statistical methods including
unconditioned and conditioned mutual information analysis
and through established comfort metrics on account of room
characteristics, room use, season, weather extremes and
standard versus atypical occupancy patterns as those
recorded during the bushfire season and the COVID-19
pandemic. By merging the results presented in Results
section, a variety of redesign strategies could be delineated
(Discussion and Design Guidelines section) thanks to the fine-
grained, site-specific monitoring of each room type across

different floors and orientations. Such a detailed analysis
compensates for less perceivable threats, pinpoints passive
ventilation inefficiencies, identifies the room for
improvement, and suggests an urgent need to prioritize
building air tightness improvement, appropriate filtration
techniques and smart logics. This study offers a roadmap
for other campaigns alike in order to verify climate
dependencies and general patterns and move towards more
resilient and healthy educational buildings. However, future
directions in IoT environmental sensor networks should focus
on not only covering spatial heterogeneity of IEQ, but also
consider comprehensive data collection (encompassing
environmental and behavioural factors), integration of
building metadata, and dynamic quality controls to provide
most comprehensive insights.
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