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We developed a digital water management toolkit to evaluate the importance of the
connections between water bodies and the impacts caused by pollution sources. By
representing water bodies in a topological network, the relationship between point loads
and basic water quality parameters is examined as a labelled network. The labels are
defined based on the classification of the water bodies and pollution sources. The analysis
of the topology of the network can provide information on how the possible paths of the
surface water network influence the water quality. The extracted information can be used
to develop a monitoring- and evidence-based decision support system. The
methodological development is presented through the analysis of the physical-
chemical parameters of all surface water bodies in Hungary, using the emissions of
industrial plants and wastewater treatment plants. Changes in water quality are
comprehensively assessed based on the water quality data recorded over the past
10 years. The results illustrate that the developed method can identify critical surface
water bodies where the impact of local pollution sources is more significant. One hundred
six critical water bodies have been identified, where special attention should be given to
water quality improvement.

Keywords: water quality, topological network, pollution control, water framework directive, digital water
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1 INTRODUCTION

The Water Framework Directive, adopted in 2000, was a pioneering approach to water protection
that provides a good water status at river basin level based on a precise timetable (Directive, 2000).
However, in the case of this ambitious goal, many countries are far from achieving good ecological
statuses. Therefore, the monitoring- and evaluation systems need to be further improved and
integrated (Carvalho et al., 2019). The results of the previous 21 years show a paradigm shift towards
integrated thinking (Voulvoulis et al., 2017). Tools for root cause analysis and integrated strategy
management should focus on effect-based triggers (Brack et al., 2017). In this research, we deal with
the integrated analysis of the status of surface water bodies in Hungary, for which we use the tools of
data- and network science.

Although the deadline of reaching the water policy target issued by the Water Framework
Directive (WFD) wasmodified from 2015 to 2027, in 2019, more than half of the water bodies were in
a degraded condition (Zingraff-Hamed et al., 2020). One of the main culprits of this is nutrient
enrichment (Poikane et al., 2019), which is why we focus on nutrient sources in this study. It should
be added that the assessment and management of diffuse pollution from agriculture is a key
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challenge, but the integration and coordination of effective
measures to combat diffuse pollution remains an ongoing
issue (De Vito et al., 2020). Ecosystems in river floodplains are
particularly vulnerable and need to be given high priority for their
restoration. However, trade-offs between rheophilic and
stagnophilic aquatic organisms may prevent a compromise
between ecological objectives with regard to restoration
(Weigelhofer et al., 2020). This fact also underlines the need
to support existing monitoring efforts with new types of
monitoring tools (e.g., eDNA, impact-based tools, and
functional tools) (Hunting et al., 2017). Monitoring campaigns
designated based on expertise should be reviewed in the light of
new scientific findings. One solution to this is to identify critical
water bodies in water systems using network science tools. In
Section 3, the basics of this methodological development will be
presented. In addition to the trade-offs inherent in water
management, synergistic effects can also be identified, such as
improvements in water quality causing statistically significant,
non-linear changes in recreational property values (Artell and
Huhtala, 2017).

The watershed nutrient model MONERIS (MOdelling
Nutrient Emissions in River Systems) was applied to the
Hungarian part of the Danube River Basin, which examined
the pollution pathways. Despite being a promising approach to
estimating total diffuse load its development requires an overview
of monitoring stations. Although this is a promising approach to
better estimate the total diffuse loads, it requires a review of
monitoring stations due to flow calibration (Jolánkai et al., 2020).
The average annual evaporation rate is expected to increase
slightly over the 21st century (Csáki et al., 2020), while in the
case of runoff, a significant decrease is expected, which will

involve changes in loads from urban areas. The long-term
impacts on river basins, e.g., changes in flood patterns or
ecological consequences and differences in assessment systems
at the national level, justify the need for more integrated
approaches. Following the WFD agenda, an emphasis should
be placed on major impacts such as climate change impact
analysis and resilient ecosystem-based management of water
bodies (Hein et al., 2019).

This research looks for patterns in network data
representation in Big Data on water quality and pollutant
point sources. It is simply not possible to manage the growing
volume/types of data in environmental and water management
using traditional workflows (Sun and Scanlon, 2019). The outline
of our proposed methodological development is summarized in
Figure 1. Big data is already being used successfully in water
management; typically, smart water meters report water quality
and usage as well as alert a water company to leaks or potential
contamination (Nie et al., 2020). In fact, it affects all the data we
currently have and transforms it into knowledge that can be used
directly to better manage treatment facilities. It follows that a Big
data-based link between water quality and pollutant sources helps
to build water management knowledge and develop strategies for
achieving good ecological status according to the WFD.

Figure 1 shows that an integrated water network has been
created that includes surface water bodies (watercourses and
lakes), municipal wastewater treatment plants, and industrial
sources that are analyzed in a system by following a new
holistic approach.

The Water Quality Index (WQI), of which the presented
analysis covers a significant part of the variable set, is often
used to characterize water quality by aggregation methods
(Kachroud et al., 2019). Although aggregation methods
provide concise information for monitoring and controlling
the quality of water bodies, which is understandable as far as
stakeholders are concerned (De Paul Obade and Moore, 2018),
but it must be pointed out that there is a loss of information in the
aggregation step. Reconciling model data into consistent data sets
is an important requirement, as our knowledge of interactions
between river pollutants on the larger scale is limited.
Furthermore, we need to better link the results of multi-
pollutant river modeling with other areas of research and
integrate the results into policy (Strokal et al., 2019). This
recognition and the foundation of multi-pollutant models are
aided by this research, which addresses different water quality
variables in an integrated manner. Romero et al. presented the
possibility of applying big data tools in the water quality sector,
exploring new links between chemicals, the environment and
human health, moreover, it was highlighted that a better
understanding of pollutants (origins, pathways and
persistence) can be achieved by using Big Data (Ponce
Romero et al., 2017), which we also aimed to apply in this
analysis.

Water quality studies highlight the anthropogenic impact
through diffuse loading of streets, domestic as well as
industrial wastewater, and even drainage water from
agricultural areas of the basin as the main drivers of
eutrophication. The results of a study by Oliver et al. (2019)

FIGURE 1 | The workflow of the proposed network science based water
quality evaluation method.
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study confirm that informal settlements without health
infrastructure exacerbate the deterioration of water quality in
urban water resources, thereby posing several risks to public
health (Oliver et al., 2019).

Three different sources of pollution determine the status of
water bodies. Point and/or diffuse pollutants from municipal,
industrial and agricultural activities (General Directorate for
Water Management, 2021). An important factor is missing
from this grouping, namely the pollutant material transport
from adjacent—hydraulically connected—water bodies. In this
research, using the system-level network-based approach,
neighbouring water bodies are also taken into account when
identifying causal relationships, which cannot be achieved with
classical water quality analysis methods.

The proposed method is based on data extracted from
Geographic Information Systems (GIS). GISs have been
utilized in several studies to analyze and monitor surface water
quality networks. GIS coupled with remote sensing has been used
to assess the urbanization impact of surface water bodies (Sridhar
and Sathyanathan, 2020). Furthermore, the quality of
groundwater and surface water regarding its main
hydrochemical features and processes has been characterized
by combining Positive Matrix Factorization with GIS (Zanotti
et al., 2019). Water quality models have recently been combined
with network design methods (Jiang et al., 2020). Spatially
correlated patterns have been defined between water bodies
and the frost risk (Louka et al., 2020), spatial correlations with
epidemiological data about time and the space distribution of
water-borne diseases to support disease monitoring and define
pollution sources and their impacts (Karuppaiah et al., 2021).

Accurate and efficient monitoring point location identification
and selection are required to design water quality monitoring
networks. To improve water quality, the benefits of network-
based integrated management of water bodies and monitoring
points have been demonstrated previously, using multivariate
statistical methods in the Paraopeba River Basin (Calazans et al.,
2018). Alilou et al. recommended a practical methodology for
critical sampling points of the non-point sources (Alilou et al.,
2018), that can be complemented by our network-based point
source impact identification approach.

A spatial autocorrelation-based model has been applied to
study the distribution pattern of pollutants across the catchment
of a river (Ginebreda et al., 2018). Autocorrelation was already
applied for 235 emerging contaminants measured at 55 sampling
sites in the Danube River (Mainali et al., 2019). The study
quantified the spatial autocorrelation of pollutants at a
catchment scale of a river, developed spatial auto-regressive
models for the measured compounds, estimated their
correlation lengths, and assessed the applicability of the
method in terms of monitoring. Geostatistical predictive
models of microbial water quality were also developed based
on spatio-temporal autocorrelation (Holcomb et al., 2018).

Network-based monitoring is essential to resolve the spatial and
temporal variations in water quality (Chen et al., 2012). Studies
have been performed to identify and monitor water quality as well
as pollution sources of natural water bodies in addition to
optimizing sampling points and frequencies (Chen et al., 2012).

An emergency monitoring network for river chemical spills has
been proposed by combining discrete entropy theory and spectral
analysis with contaminant transport modelling (Shi et al., 2018). A
water quality monitoring network was built using a spatially
referenced water quality model and a genetic algorithm to
assess E. coli loads in the basins of the Guadalupe River and
San Antonio Rivers (Puri et al., 2017). The regional connectivity of
surface water bodies inWestern Australia has been analyzed based
on the temporal analysis of water body connectivity using graph
theory to support conservation planning Tulbure et al. (2014).
Furthermore, an ecological network model was established that
identifies the integrity and complexity of the urban water
metabolism system-integrated metabolic process of physical and
virtual water (Cui et al., 2021).

The aim of this work is to provide a framework for the
examination of water quality parameters of surface water
bodies by integrating the benefits of the networked-based and
spatial autocorrelation-based analyses. The key idea of the
proposed method is that the identification of neighbourhood-
type (direct or indirect) relationships in water networks facilitates
the design of optimal monitoring points and water quality
improvement actions. The method explores the impact of the
connections between hydraulically connected water bodies by the
statistical analysis of a labeled directed network, which is one of
the main novelties and benefits of this research.

In the following, the reader is guided through the methodology
of the network-based topological analysis of water bodies in
Section 2. While in Section 3, the proposed approach is
applied for Hungarian water bodies, followed by the analysis
and discussion of the results in Section 4.

2 NETWORK-BASED TOPOLOGICAL
ANALYSIS OF WATER BODIES
This section discusses the developed methodology that enables
the network of water bodies to be analysed systematically. The
network is built as follows:

Nodes represent the network of water bodies and resources, i �
1, . . . , N. The structure of the network is defined by an N × N-
sized adjacency matrix, where ai,j � 1 if water body i flows into
water body j. The structural distance of the water bodies is
included in matrix D, where di,j denotes how many steps it
takes to get from water body i to water body j. The
measurements of the ith water body are in an nt × nm-sized
matrix Xi, where the number of measurements is denoted by ny.

Our study includes annual measurements from 2010 to 2020.
The number of water quality parameters is nm � 11. These
parameters are the following: “Chemical oxygen demand
(CODCr)” “Chlorophyll-a” “Oxygen saturation” “Ammonium
nitrogen (NH4-N)” “Conductivity” “Nitrate-nitrogen (NO3-
N)” “Dissolved Oxygen” “Biological oxygen demand (BOD5)”
“Total phosphorus” “Total nitrogen” “Orthophosphate”.

The measurements of the ith water body taken at a given time
are indicated by xi,t,mth element of its column vector is them � 1,
. . . , nmmeasured data, xi,t,m. Missing data were imputed by linear
interpolation.
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The method is based on the modification of Geary’s C, a
measure of spatial autocorrelation that is used to determine if
adjacent measurements are correlated. The Geary’s C technique
has already been utilized in water management, e.g., it has been
used to identify and monitor areas of river plume caused by heavy
rainfall in Lake Taihu from MODIS 250 m imagery (Zhang et al.,
2016). The measures of spatial autocorrelations, Geary’s C and
Moran’s I were also used between pairs of points of groundwater
levels to identify their spatial and temporal behaviour in Western
India, the study of which underlined that spatial statistics are
efficient tools for geostatistical modeling (Machiwal et al., 2012).

We adopted Geary’s C spatial autocorrelation measure to
handle the proposed water network model as follows:

Ct,m � ∑N
i�1∑

N
j�1wi,j xi,t,m − xj,t,m( )

2
N − 1( )

2W∑N
i�1 xi,t,m − �xt,m( )2

� ∑N
i�1∑

N
j�1wi,jΔ2

i−j,t,m
2W

1
σ2
t,m

, (1)

where Ct,m represents the autocorrelation at the tth time of the mth
variable, �xt,m is calculated by using the average value of the mth
measurement at the tth time, and W � ∑N

i�1∑
N
j�1wi,j is the sum of

the weights of the connection between the i and jth nodes. The wi,j

weights represent the closeness of the water bodies, so we defined
them aswi,j � 1/di,j, ∀i, j, if di,j > 0 andwi,j � 0 if there is no path from
the ith to the jth water body. Ct,m values significantly lower than one
demonstrate increasing positive spatial autocorrelation, whilst values
significantly higher than one illustrate increasing negative spatial
autocorrelation. The main novelty of the proposed measure is that
wi,j integrates distance-based information and the topological
information of the water network. The topological information is
represented by the paths between the water bodies, so not only the
direct flows between the neighboring water bodies are considered.
The weights are inversely proportional to the distances, so we believe
that the selected measure closely reflects how the concentrations of
the water bodies are influencing each other.

Similarly, we also adapted Moran’s I spatial autocorrelation
(Moran, 1950), which assesses the pattern of a data set spatially
and determines if it is dispersed, clustered, or random based on
the locations:

It,m � N

W

∑N
i�1∑

N
j�1wi,j xi,t,m − �xt,m( ) xj,t,m − �xi,t,m( )

∑N
i�1 xi − �xt,m( )2

, (2)

whereN denotes the number of spatial units indexed by i and j,W
stands for the sum of all wij, while �xt,m represents the average of
the mth measurement at the tth time.

TheMoran’s I correlation is inversely related to Geary’s C measure
as It,m values below−1/(N− 1) refer to negative spatial autocorrelations,
while It,m values above −1/(N − 1) indicate positive spatial
autocorrelations. It has to be noted, there is no direct relationship
between the two measures, so it is beneficial to use both information
sources in combination. Geary’s Cmeasures the correlation at the local
level, while Moran’s I provides information at the global level.

Further novelty of the proposed method is that contributions
of the water bodies to the autocorrelation measure are calculated
to evaluate their dependency.

The contribution of the interactions between two water bodies
to the autocorrelation can be calculated based on their
standardized concentration difference:

Δ2
i−j,t,m � xi,t,m − xj,t,m( )

2

2σ2t,m
(3)

where σ2t,m denotes the standard variation of the variablem at the
tth time instant. Therefore, the spatial autocorrelation can be
calculated as a weighted average of the proposed Δ2

i−j,t,m value:

Ct,m � ∑N
i�1∑

N
j�1wi,jΔ2

i−j,t,m
W

(4)

The water network can be evaluated based on the aggregation
of multiple time periods, so the proposed values can be averaged
in time:

Δ2
i−j,m � 1

nt
∑
nt

t�1
Δ2
i−j,t,m, Cm � 1

nt
∑
nt

t�1
Ct,m (5)

The values can also be aggregated according to the studied
water quality measurements, so the general indicators of the
spatial dependence can be calculated as:

Δ2
i−j �

1
nm

∑
nm

m�1
Δ2
i−j,m, C � 1

nm
∑
nm

m�1
Cm. (6)

By sorting the variables Cm, at the beginning of the sequence,
the placed variables will have a greater spatial correlation, which
means that their values are less influenced by external factors.
Going backwards in this specific order, this correlation decreases,
which shows that the effect of local external factors is increasing
or indicates a crisp water body type boundary.

The dependence of the water bodies can also be evaluated by
calculating the local spatial autocorrelation around them:

Δ2
j �

∑N
i�1wi,jΔ2

i−j
∑N

i�1wi,j

(7)

when there is no inflow, and ∑N
i�1wi,j is zero so we define Δ2

j � 0.
The water bodies can be ranked according to this value. Our

assumption is that this value represents how the water body is
isolated, as Δ2

j near to one represents that the water body has an
inlet flow, but the water quality is not affected by its neighbours.

In this work, we study the position of these water bodies in the
network. Our assumption is that these nodes will be closer to the
pollution sources, especially they are the recipient water bodies
of them.

3 FORMATION OF THE NETWORK OF
HUNGARIAN WATER BODIES
The applicability of the proposed method is tested based on a
network of Hungarian water bodies. The number of analysed
watercourses, lakes, wastewater treatment plants and industrial
pollution sources are indicated in Figure 2. 18,373 watercourses
are found in Hungary, of which 1,117 water bodies have been
designated in the River Basin Management Plan (General
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Directorate for Water Management, 2021). At the time of
designation, 10 km2 was the lower limit of the catchment area.
The length of the designated water bodies covers 27% of the
length of all watercourses. In this analysis, 923 watercourses are
analyzed based on the data available in the water management
map (General Directorate for Water Management, 2015).

With regard to lakes and wetlands, 9,123 registered elements
can be identified in Hungary with a total area of 2,100 km2, of
which 188 water bodies with a cumulated water surface of
1,190 km2 were formed after the mergers. An interesting
hydrogeographical feature is that Lake Balaton—the largest
natural shallow lake in Central Europe—alone accounts for
596 km2 (Sebestyén et al., 2017). In this analysis, 188 stagnant
water bodies are examined in detail based on the data available on
the water management map (General Directorate for Water
Management, 2015).

For problems and challenges concerning water quality in
Hungary to be comprehensively assessed, in our digital science
approach, the water bodies are evaluated in the form of a network.
Based on the water management map database (General
Directorate for Water Management, 2015), surface water
bodies (watercourses and stagnant waterbodies) can be
described by a directed acyclic graph (DAC). The nodes of the
network i � 1 . . . , N are represented by different surface water
bodies. The water quality measurement data in the National
Environmental Information System (NEIS) database are assigned
to the nodes. Physical-chemical water quality parameters such as
Ammonium Nitrogen (NH4-N), Biochemical Oxygen Demand
(BOD5), Chemical Oxygen Demand (CODCr), Electrical
Conductivity, Dissolved Oxygen, Nitrate Nitrogen (NO3-N),
Orthophosphate (PO4-P), Oxygen Saturation, Phytoplankton
(Chlorophyll-a), Total Nitrogen, Total Phosphorus and
Turbidity will be evaluated from the last 10 years to establish
the robustness of the relationships.

As one of the main causes of water quality deterioration,
eutrophication is the manifestation of toxic cyanobacteria
blooms, and it is mainly driven by nitrogen and phosphorus
forms. In the modern interpretation, a great emphasis is placed
on diffuse sources and treatment across the entire continuum (Le

Moal et al., 2019). Climate change is not conducive to
eutrophication management, as precipitation changes alone
can significantly increase the nitrogen load in rivers.
According to the analysis of Sinha et al., 2017) of the
continental United States, this increase could be 19 ± 14% by
the end of the century (Sinha et al., 2017). Climate change is
accelerating eutrophication, and vice versa, as lakes and
impoundments are important sources of methane (CH4), a
powerful greenhouse gas. With increased eutrophication, CH4

emissions from these systems are expected to increase by 30–90%,
corresponding to 18–33% of annual C O 2 emissions resulting
from the burning of fossil fuels. (Beaulieu et al., 2019). Nitrogen
exports are growing faster than the global nutrient load of
phosphorus and this needs to be controlled based on an
integrated approach, where the broader complexity of nutrient
effects must be interpreted on a scale ranging from physiology to
ecology (Glibert, 2017).

Although dissolved oxygen (DO) is one of the most commonly
measured water quality parameters, its sources and sinks

FIGURE 2 | The number of analyzed watercourses, lakes, municipal
wastewater treatment plants and industrial pollution sources.

FIGURE 3 | The three largest subnetworks of the Hungarian surface
water bodies and pollution sources. The nodes of the directed graphs are
coloured according to the node-types. Cyan blue nodes represent the
watercourses, the dark blue nodes denotes the standing water, nodes
marked in green are the municipal wastewater treatment plants (WWTPs) and
grey nodes are the industrial emission sources.
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(atmospheric exchange, photosynthesis, respiration, etc.) are often
unknown (Mader et al., 2017). The water quality parameters
influencing dissolved oxygen, e.g., temperature, pH, BOD and
phosphorus concentrations, are usually the most significant,
however, under extreme conditions, the importance of alkalinity
and bicarbonates increases (Tomić et al., 2018). According to future
climate scenarios, an increase in the average surface water
temperature of 4 °C will lead to a decrease in DO of 1mg/L,
which will be important in terms of managing fish habitats
(Missaghi et al., 2017). Waterflow DO concentrations are affected
by upstream environmental conditions, where an adequate upstream
water quality has improved downstream conditions and vice versa
(Null et al., 2017). Therefore, the interconnection with adjacent
water bodies, which we also cover in this research, is an apparent
analytical aspect. Water turbidity is an important parameter that
influences the surface temperature of lakes, and thus the surface
energy balance (Potes et al., 2012), which is closely related to changes
in DO.

604 industrial pollution sources (point sources) and 772
municipal wastewater treatment plants (WWTP) are
integrated into the model to identify the effects influencing the
water quality of the Hungarian surface water bodies. The complex
water management network model is shown in Figure 3.

In Figure 3, the cyan blue nodes indicate the watercourses, and
the dark blue nodes are the standing water bodies. Municipal
WWTPs are marked in green and industrial emissions in grey.
One of the main novels approaches in the Water Framework
Directive takes into consideration natural river basins. It follows
that water bodies have also been designated according to specific
basins. As the network of water bodies and pollution sources
shown in Figure 3 is divided into three subnetworks, there is not
always a direct relationship between water bodies located in
separate river basins in the case of surface waters. This feature
of the approach is crucial for water quality management.

Point sources and water bodies can be described by a total of
2,487 nodes. Given taht WWTPs or industrial sources whose

primary recipient is not a surface water body but, for example,
are discharged directly into the soil were neglected in the analysis;
32 wastewater treatment plants and 13 industrial sources were
deleted. The three subnets shown in Figure 3 represent 1,090,
1,085, and 179 nodes. The remaining 67 nodes form an additional
nine small detached subnetworks that are neglected in this
comprehensive analysis. As a result, our proposed network-
based water quality planning tool is presented through 2,354 nodes.

The spatial location of surface water bodies, wastewater
treatment plants, and industrial sources examined in this
analysis is shown in Figure 4.

Figure 4 shows that water quality monitoring points cover the
entire territory of the country, so the proposed methodological
approach facilitates decision support at the national basin level,
sub-basin level and sub-unit level. The entire territory of Hungary
lies in the Danube River Basin, the second largest river basin in
Europe. The Danube River Basin is shared by 19 countries. The
total area of the Danube River Basin District is 807, 827 km2, of
which 11.52% belongs to Hungary (General Directorate for Water
Management, 2021). Extending the water network topology to
include international river basin districts would significantly
support the unified management of transboundary river basins
as well as the coordination of measures and monitoring activities.

As a result of our work, an integrated water management
network is identified, where the 10-year time series of physical-
chemical water quality data from 923 watercourses and 189 lakes
(62,121 measurement point data) are compared with the
emissions data of 772 municipal wastewater treatment plants
and 604 industrial point sources according to the official data of
the Hungarian River Basin Management Plan (RBMP).

4 RESULTS AND DISCUSSION

Figure 5 shows the distribution of measurement data for
watercourses and lakes. This overview contains all the time

FIGURE 4 | The location of the monitoring points and pollution sources - cyan blue nodes represent the monitoring points of watercourses, dark blue nodes refer to
the location of monitoring points of lakes, nodes marked in green denote the location of the municipal wastewater treatment plants (WWTPs), and grey nodes show the
locations of industrial emission sources.
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series data for each water body, thereby providing a
comprehensive picture of the range and frequency of water
quality parameters in Hungarian surface waters, which is a
good indication of our remaining Water Framework Directive
good ecological status tasks.

Figure 5 shows that Ammonium-nitrogen (NH4-N) occurs in
most cases at concentrations below 0.001 g/L, with a Biological
Oxygen Demand (BOD5) below 0.015 g/L in the majority of
cases, followed nicely by the distribution of the Chemical Oxygen
Demand (CODCr). The concentration of Chlorophyll-a is
typically around 1 mg/L. The Nitrate-nitrogen (NO3-N) load
of water bodies is below 0.01 g/L in most cases. However, the
values of Oxygen saturation and Dissolved oxygen vary as can be
seen in Figure 5. Orthophosphate (PO4-P) is found in very low
concentrations, while Total phosphorus and Total nitrogen
follow each other in a similar pattern according to the
differences in their orders of magnitude. In terms of
conductivity, the condition of water bodies varies from very
low to high (> 2000 μS/cm).

The exploratory analysis of the network topology of
Hungarian water bodies (lakes and watercourses) according to
water quality parameters is summarized in Figures 6, 7. In this
representation, the difference in water quality between water
bodies can be examined on the basis of their neighbourhood
(hydraulically connected water bodies), from which the causal
questions of the different pollution can be answered.

In Figure 6, the physical-chemical water quality parameters of
the Hungarian water bodies were sorted in ascending order from
left to right based on their Geary’s C measure of spatial
autocorrelation. Values close to one denote no spatial
autocorrelation, while those above one indicate a negative
spatial autocorrelation. Therefore, from left to right, values
become more independent from the local effects. The boxplot
indicates the standard deviation over the last 10 years. Based on
the network of time series data, it can be seen that the dynamics of
the Nitrate-nitrogen (NO3-N), Chemical oxygen demand

(CODCr) and Total phosphorus parameters differ the most
from the network as a whole, i.e. these water quality
parameters are determined mainly by the local environment.
In contrast, the Total nitrogen, Ammonium-nitrogen (NH4-N)
and Orthophosphate (PO4-P) parameters were least influenced
by local effects, i.e., their dynamics match those observed in other
water bodies. Differences in the dynamics of water quality
parameters are crucial with regard to the design of water
quality monitoring systems, as one monitoring point that
observes several water bodies is sufficient for consistent
sections of the water network (exploratory monitoring), while
more detailed or continuous monitoring activities are
recommended for inconsistent sections.

In Figure 7, the physical-chemical water quality parameters of
the Hungarian water bodies were sorted in ascending order from
left to right based on their Moran’s I measure of spatial
autocorrelation as well. The values of I were usually between
-1 and +1. Values closer to one refers to positive spatial
autocorrelation, while lower ones indicate more negative
spatial autocorrelation. Since Moran’s I and Geary’s C are
inversely related but not identical, from left to right, values
become more dependent on external factors. Based on
Figure 7, Ammonium-nitrogen (NH4-N), Orthophosphate
(PO4-P), and Chemical oxygen demand (CODCr) are the least
dependent parameters, while the parameters of Dissolved oxygen,
Oxygen saturation and Conductivity are more determined by
local factors. The boxplot indicates the standard deviation of the
measured immission values over 10 years.

In Figure 8, the interconnectedness of Moran’s I and Geary’s
Cmeasures of spatial autocorrelation are visualized. The Moran’s
I-based spatial autocorrelation is on the horizontal axis, while the
Geary’s C-based spatial autocorrelation is on the vertical axis.
Water quality parameters approaching the bottom right-hand
corner indicate positive spatial autocorrelation. Note that
Moran’s I is a measure of global spatial autocorrelation, while
Geary’s C is more sensitive to local spatial autocorrelation. It

FIGURE 5 | The distribution of the water quality parameters in the Hungarian surface water bodies.
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should be noted that Dissolved oxygen, and Oxygen saturation
are local features. Similar environmental effects, which affect
larger areas spatially correlates better according to Moran’s I than
Geary’s C. However, Geary’s C is more sensitive to local spatial
autocorrelation parameters such as Total phosphorus and
Chemical oxygen demand (CODCr).

The spatial correlation of point pollution sources on water
quality parameters of hydraulically connected water bodies
(neighborhood) has been explored in researches. Water quality
parameters are evenly related to the water bodies’ structure and
connectivity (Deng, 2019). At the same time, areas with different
degrees of pollution affect the extent and range of water quality
concentration in varying degrees (Zhang et al., 2018). A study on
the water quality monitoring of Western Bug River (Ukraine)
identified points of pollution loads and pollution pathways
(Hagemann et al., 2014). It shows that the inflow of water
bodies with different water quality parameters significantly
impacts its physical-chemical parameters. The inflow of the

Poltva River (lowest quality) decreased the oxygen content to
40% or less at the confluence and increased Phosphate
concentration which indicates the pollution load from the
wastewater treatment plant near the Poltva River. However,
self-purification processes were observed along Dobrotvir
Reservoir, which on the other hand, is the most significant
discontinuity in the hydromorphology of the Western Bug
River. It resulted in a decrease in Ammonium-nitrogen,
Nitrate-nitrogen, Orthophosphate phosphorous, while the
concentration of, e.g., Biochemical oxygen demand increased
(Hagemann et al., 2014). The study of Kuczynska et al. also
underlines that external pollution sources, e.g., wastewater
treatment plants and drainage systems located close to the
river, highly affect the concentration of nitrate and
ammonium at the inflow and also downstream (Kuczyńska
et al., 2021).

Figure 9 represents the distribution of the spatial dependence
of surface water bodies. On the horizontal axis, the Geary’s

FIGURE 7 | The Moran’s I neighbouring dependence of the water quality parameters of Hungarian water bodies. Higher values indicate higher global spatial
autocorrelation.

FIGURE 6 | Geary’s C neighbouring dependence of the water quality parameters of Hungarian water bodies. Smaller values indicate higher local spatial
autocorrelation.
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C-based Δ2
j value is indicated, while the vertical axis shows the

number of water bodies. Δ2
j represents how the water body is

isolated and affected by its neighbours. The higher the value, the
more influenced a water body is by local external factors. Our
proposed methodological development supports the use of
integrated tiered water quality monitoring frameworks, as
monitoring the status of identified critical water bodies
requires multiple real-time monitoring technologies (O’Grady
et al., 2021). Water bodies with greater local influence can be
identified in the water network as shown in Figure 10.

In Figure 10, the labeled directed-graph of Hungarian surface
water bodies and pollution sources is represented. Furthermore,
water bodies with Δ2

j > 1.5 are highlighted in red, indicating water
bodies where the local spatial dependence is greatly influenced by
external factors. The cyan blue nodes denote the watercourses, the

dark blue nodes represent the lakes, the nodes marked in green
are the municipal wastewater treatment plants (WWTPs), and
grey nodes refer to the industrial emission sources. Figure 10
indicates that the most dependable water bodies (red nodes) are
located close to pollution sources (grey and green nodes).

In the case of water bodies with a higher local impact identified
by the proposed methodology, it is advisable to examine the
sources in their immediate vicinity, which are summarized on the
map (Figure 11).

In Figure 11, red circles denote water bodies that exhibit
different dynamics by analysing time series data for water quality
parameters. As the analyses also take into consideration the status
of neighbouring nodes, it is appropriate to examine the pollution
sources for which these water bodies are the recipient water
bodies. In Hungary, the distance between the polluting point

FIGURE 8 | The integrated interpretation of the Moran’s I and Geary’s C spatial autocorrelation measures of the water quality parameters of Hungarian surface
water bodies (spatial autocorrelation decreases from darker green to light brown in the bivariate representation, taking into account the different characteristics of the
proposed new combined Geary’s and Moran’s measures).

FIGURE 9 | Distribution of the proposed local dependency measure for the improvement and monitoring planning of surface water bodies.
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sources and the recipient water bodies is usually less than 5 km, so
the range of sources within 5 km of the inconsistent water bodies
has been filtered out. Within this 5 km radius of the 106 critical
monitoring points shown in Figure 11, 101 WWTPs and 61
industrial sources are found.

Based on the physical-chemical classification intervals defined
in the River Basin Management Plan (General Directorate for
Water Management, 2021), the physical-chemical statuses of
water bodies according to the Water Framework Directive
were assessed for the entire time series, which is summarized
in Figure 12 for each water quality parameter.

Figure 12 represents the global annual change in physical-
chemical water quality parameters. The labelling of each water
quality parameter is indicated in this figure. On the upper plot,
the vertical axis shows how good the parameters are. Four
categories are distinguished: 1-Excellent/Good, 2-Good/
Moderate, 3-Moderate/Weak, 4-Weak/Bad. Generally, in the
case of water bodies, the best status observed is the
Ammonium-nitrogen (NH4-N) water quality parameter, which
has not changed significantly over the last 10 years. In terms of
Chemical oxygen demand (CODCr), Total nitrogen and
Conductivity, water bodies are found among the good and

FIGURE 10 | The location of the critical water bodies in the network according to their influent dependencies.

FIGURE 11 | The critical nodes of the water network and their pollution sources within the 5 km buffer area.
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excellent quality classes. Dissolved oxygen and Oxygen saturation
are the two water quality parameters that most hinder the
achievement of good a ecological status according to the WFD
at the national level. The lower coordinate system denotes the
annual change in the average of the total water quality parameters
with a blue line. The red dashed line shows the average change in
the aggregated state of the identified 106 critical water bodies,
which is better determined by local effects. As is shown in
Figure 12, the status of these water bodies typically lags
behind that of the national trend, thereby supporting our
assumption that identifying the impact of neighbouring nodes
(water bodies and pollution point sources) is an important task in

achieving the good ecological status set by the Water Framework
Directive. Since the WFD classification is based on the weakest
class, the role of oxygen balance indicators in the physical-
chemical status of water bodies is prominent, as is shown in
Figure 12. Therefore, the aggregated quality class follows the
pattern of these parameters. In addition to the characteristic
changes in the physical-chemical status of water bodies, it is also
important to identify their current status, which is shown in detail
in Figure 13.

In Figure 13, the monitoring points of the water bodies were
classified based on the measurement results recorded in 2020,
thereby providing an overview of the latest physical-chemical

FIGURE 12 | The annual average quality of watercourses (1-Excellent/Good, 2-Good/Moderate, 3-Moderate/Weak, 4-Weak/Bad) according to the Hungarian
RBMP.

FIGURE 13 | The quality classes of water bodies based on the physical-chemical parameters in 2020.
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status of surface watercourses using the classification of the
Hungarian River Basin Management Plan. Based on the 2020
measurement data, 13 water bodies belong to the quality class
Excellent/Good, 83 can be classified as Good/Moderate, 308 fall
into the quality class of Moderate/Weak and 300 are categorized
as Weak/Bad.

As the physical-chemical status of water bodies is typically
determined by oxygen balance parameters (Figure 12), it is
important to consider the “ex-ante” impacts of climate change
on water quality improvement strategic planning. The amount
of dissolved oxygen decreases as the temperature increases
(Stefan and Fang, 1994), which is not expected to favour the
improvement of these water quality parameters. Potential
impacts of climate change on surface water quality and water
bodies have been studied considering the average increase in
global temperature, extreme events, heavy rainfall and floods,
sea-level rise, droughts, etc. Changes in water quality
parameters can reflect the effects of climate change on
chemistry and water ecology (Salila et al., 2020). Extreme
heat and increased global temperatures will likely cause an
increase in the water temperature and biochemical reactions
in streams (Yang et al., 2019), (Nguyen et al., 2017) as well as a
reduction in Dissolved oxygen leading to the disappearance of
some microspecies (Du et al., 2019), (Mehdi et al., 2018). In
addition to the extreme heat, heavy rainfall and floods,
hurricanes, wildfires, droughts cyclones as well as
superstorms are likely to lead to an increase in Chlorophyll-a
concentrations, as well as change the dynamics of nutrient
loading, e.g. Total nitrogen and Total phosphorous, in water
bodies (Yang et al., 2019), (Nguyen et al., 2017), (Mehdi et al.,
2018), (Wang et al., 2018). Furthermore, these extreme events
may accelerate the sedimentation process in water bodies,
leading to an increase in Biochemical oxygen demand
(BOD5), Chemical oxygen demand (CODCr), Dissolved
organic carbon (DOC) and other pollutants. Due to
dissolution processes, these pollutants can affect water quality
and facilitate the spread of waterborne diseases (Yang et al.,
2019), (Nguyen et al., 2017), (Mehdi et al., 2018), (Moshtaghi
et al., 2018). Therefore, efficient design for water management
must be designed efficiently to address the impacts of climate
change on water quality parameters, which requires sectoral and
institutional cooperation across the board (Whitehead et al.,
2009). Furthermore, water quality monitoring protocols,
environmental standards, compliance and reporting must
take into consideration climate change scenarios (Crane
et al., 2005). Greater emphasis should be placed on
enhancing the simulation and optimization of future water
resources management and planning in the context of
climate change and socio-economic development (Phan et al.,
2021), in particular the biological quality elements (Molina-
Navarro et al., 2020), one of the supporting tools of which is the
methodological development presented in this research.

In the future planning of surface water quality monitoring
networks (WQMN), cost-effective solutions are needed for
sustainable operation, which requires the rethinking of the
existing stations. Identifying critical parameters is crucial for
data-driven model development (Chen et al., 2020). The

impacts of climate change must also be considered in the
planning of WQMNs. Gamma Test theory (GTT) can be used
to simplify the water quality monitoring network (Azadi et al.,
2021); however, the identification of critical water bodies is
essential, which this methodological development proposes by
defining a new type of indicator. The proposed algorithm can
support the development of WQMN at the selection of the
measurement places and the critical parameters, but the details
of the system, like sampling frequencies, should be determined
based on design experiences and model-based analysis and
optimization (Jiang et al., 2020).

5 CONCLUSION

This research has laid the foundations of a network analysis-
based water quality assessment framework. The applicability of
the method was demonstrated through a comprehensive analysis
of surface water bodies in Hungary. The Water Framework
Directive (WFD) has set a tight Agenda for achieving a good
ecological status, which requires an understanding of water
quality contexts and targeted water quality improvement
measures.

The time series physical-chemical water quality parameters of
Hungarian surface water bodies were integrated in the form of a
network with the pollution point sources identified by the River
Basin Management Plan (RBMP), where the impact of municipal
wastewater treatment plants and industrial point sources were
analyzed.

The results highlight that with the help of the proposed
network-based autocorrelation measure, it is possible to
identify the sensitivity of the water quality to the neighbouring
pollution sources, for which most of the applied water quality
assessment methodologies are unsuitable.

Since the integrated pollutant-reachability-water quality
representation reveals system-level inconsistencies in water
quality, the developed approach supports the targeted review
of monitoring points. In the case of the Hungarian water network,
106 critical water bodies were identified based on this approach.
The results confirmed that the water quality of the identified
water bodies is more critical than the average.

Based on the physical-chemical quality classes of the River
Basin Management Plan, the classification of water bodies was
performed over time, indicating that one of the main obstacles
to achieving a good ecological status is oxygen homeostasis.
Furthermore, the average deterioration in the status of water
bodies that are more dependent on the identified local impacts
draws attention to the importance of the systemic
identification of impacts, which may be further hampered
by the effects of climate change. Therefore, this should be
given high priority in the planning of water quality
improvement measures.

This proposed method contributes to the design of water
quality monitoring networks (WQMN), which will need to be
addressed in the future through the integration of modern sensor
technologies, modeling, machine learning, big data, and remote
sensing solutions.
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