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Greenhouse gases, especially carbon dioxide (CO2) emissions, are viewed as one of the
core causes of climate change, and it has become one of the most important
environmental problems in the world. This paper attempts to investigate the relation
between CO2 emissions and economic growth, industry structure, urbanization, research
and development (R&D) investment, actual use of foreign capital, and growth rate of energy
consumption in China between 2000 and 2018. This study is important for China as it has
pledged to peak its carbon dioxide emissions (CO2) by 2030 and achieve carbon neutrality
by 2060. We apply a suite of machine learning algorithms on the training set of data,
2000–2015, and predict the levels of CO2 emissions for the testing set, 2016–2018.
Employing rmse for model selection, results show that the nonlinear model of k-nearest
neighbors (KNN) model performs the best among linear models, nonlinear models,
ensemble models, and artificial neural networks for the present dataset. Using KNN
model, sensitivity analysis of CO2 emissions around its centroid position was conducted.
The findings indicate that not all provinces should develop its industrialization. Some
provinces should stay at relatively mild industrialization stage while selected others should
develop theirs as quickly as possible. It is because CO2 emissions will eventually decrease
after saturation point. In terms of urbanization, there is an optimal range for a province. At
the optimal range, the CO2 emissions would be at a minimum, and it is likely a result of
technological innovation in energy usage and efficiency. Moreover, China should increase
its R&D investment intensity from the present level as it will decrease CO2 emissions. If R&D
reinvestment is associated with actual use of foreign capital, policy makers should prioritize
the use of foreign capital for R&D investment on green technology. Last, economic growth
requires consuming energy. However, policy makers must refrain from consuming energy
beyond a certain optimal growth rate. The above findings provide a guide to policy makers
to achieve dual-carbon strategy while sustaining economic development.
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INTRODUCTION

Greenhouse gases, especially carbon dioxide (CO2) emissions, are viewed as one of the core causes of
climate change, and it has become one of the most important environmental problems in the world
(Rehman et al. (2021a)). At the press conference onWMO State of the Climate 2019 Report, António
Guterres, UN Chief, reported that 2019 was the second hottest year on record during his opening
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remarks. According to the World Meteorological Organization’s
(WMO) flagship State of the Global Climate report, the global
average temperature in 2020 was about 1.2°C above
preindustrial level.

To mitigate the threat of runaway climate change, the
Paris Agreement calls for limiting global warming to well
below 2 and preferably to 1.5°C, compared to preindustrial
levels. This requires global emissions to peak as soon as
possible, with a rapid fall of 45 percent from 2010 levels
by 2030, and to continue to drop off steeply to achieve net
zero emissions by 2050 (Bertram et al., 2021). The world is
way off track in meeting this target at the current level of
nationally determined contributions. Global greenhouse gas
emissions of developed countries and economies in
transition have declined by 6.5 percent over the period
2000–2018. Meanwhile, the emissions of developing
countries are up by 43.2 percent from 2000 to 2013. The
rise is largely attributable to increased industrialization and
enhanced economic output measured in terms of GDP.

Carbon dioxide emissions have been the primary source of
extreme environmental pollution (Rehman et al. (2021a)). With
the rapidly growing agriculture and farm mechanization,
agricultural sector has become a factor in the surge in CO2

emissions and other greenhouse gases in the globe (Rehman
et al. (2021b)).

Economic, social, and environmental suitability are the three
core pillars of the UN’s Sustainable Development Goals (SDG)
declarations (Rehman et al. (2021a)). In September 2019, Heads
of State and Government gathered in the SDG Summit at the
United Nations Headquarters in New York to follow up and
comprehensively review progress in the implementation of the
2030 Agenda for Sustainable Development and the 17 Sustainable
Development Goals (SDGs). The summit resulted in the adoption
of the Political Declaration and its core message is to take action
to respond to climate emergencies. Relevant research shows that
if economic growth and climate and environmental sustainability
are achieved at the same time, emission reduction policies need to
be incorporated into the economic growth policies of various
countries (Murshed et al. (2020), Li et al. (2021), Rehman et al.
(2021a)).

As the world’s second largest economy, the Chinese
government strives to achieve environmental sustainability
through a series of policies and measures. At the General
Debate of the 75th session of the United Nations General
Assembly on 22nd September 2020, President Xi Jinping of
China announced that China will scale up its Intended
Nationally Determined Contributions by adopting more
vigorous policies and measures. It also aims to have CO2

emissions peak before 2030 and achieve carbon neutrality
before 2060.

Generally speaking, various economic activities will affect
carbon emissions, Liu et al. (2021). They include industrial
structure (Shen et al., 2021), energy consumption, trade, and
urbanization (Kasman and Duman, 2015), consumption
structure of fossil fuel and cleaner fuel (Murshed et al., 2020),
foreign investment (Elliott and Sun, 2013), and technology
advancement (Yu and Du, 2018).

Based on this background, this paper studies the relation
between China’s economic growth, industrial structure,
urbanization, R&D investment, foreign investment, energy
consumption growth, and CO2 emissions from 2000 to 2018
and predicts it.

Choosing China as an ideal case to study driving factors on
CO2 emissions is because China has accounted for the highest
level of CO2 emissions across the globe in 2017 (Ma et al., 2021).
President Xi Jinping addressed the General Assembly of United
Nations and declared China’s national goal of turning carbon
neutral by 2060. China is an important country to play a key role
in achieving the 2030 Sustainable Development Agenda of the
United Nations. In order to achieve the 2030 Sustainable
Development Agenda of the United Nations and the Paris
Agreement at the same time, China must achieve the carbon
emissions peak by 2030 and the carbon neutrality by 2060 while
sustaining a certain economic growth. To this end, China has
formulated a “dual-carbon” strategy. Therefore, it is vital to study
the drivers that influence CO2 emissions. Economic growth and
CO2 emissions go hand in hand as economic activities give rise to
CO2 emissions. Therefore, economic growth is the core factor
affecting CO2 emissions. Industrialization and urbanization are
the two main lines of China’s economic and social development
that includes the CO2 emissions of the production side and the
consumption side, respectively (Cao et al, 2016; Han et al., 2019).
Industrialization and urbanization are compound factors
affecting carbon emissions. It is because the process of
industrialization and urbanization includes the factors driving
CO2 emissions and limiting CO2 emissions. Industrialization has
brought the change of industrial structure, and the CO2 emissions
of different industries are different. On the one hand,
urbanization has an impact on the CO2 emissions caused by
residents’ consumption, which is quite different between urban
residents and rural residents. On the other hand, urbanization is
the movement of industries and population in different areas.
Therefore, urbanization also reflects the different performance of
carbon emissions in urban area and rural area. Technological
progress, foreign investment, and energy consumption are the
specific factors of CO2 emissions, technological progress reduce
CO2 emissions by exploring and usage of clean energy, foreign
investment reflects the pollution haven (tax environmental
regulation, good market access to high-income countries, and
corruption opportunities) (Candau and Dienesch, 2017), and
energy consumption determines the quantity of CO2 emissions.

This paper contributes to the literature in two ways. 1) This is a
comprehensive research; we try to build a framework which
includes three levels of six driving factors on CO2 emissions as
shown in Figure 1. The most important factors include economic
growth, industrialization, urbanization, technology progress,
foreign direct investment, and energy consumption. 2) Most of
the existing studies are based on OLS framework to explore the
relation between carbon emissions and related factors. It is
difficult to avoid the omission of variables or endogeneity
issues, Kasman and Duman (2015). An increasing number of
recent studies (Li et al., 2021; Liu et al., 2021) have been using
cross-sectionally augmented autoregressive distributed lag (CS-
ARDL) approach developed by Chudik and Pesaran (2015) for
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short- and long-term CO2 emissions forecast. This research
applies a suite of machine learning algorithms in predicting
CO2 emissions using the factors discussed. Machine learning
avoids omission of variables and endogeneity issues. In addition,
the trends and relation between CO2 emissions and various
factors are predicted.

The rest of this paper is organized as follows. Literature Review
provides a literature review on CO2 emissions. Data and the
Variables describes the data and variables under study.
Methodology describes the machine learning algorithms
deployed for predicting the level of CO2 emissions. Results
compares the accuracy of predictions among various machine
learning algorithms. Discussions discusses the results using the
best performing model, while Conclusion and Policy Implications
concludes the paper.

LITERATURE REVIEW

Economic scale, economic structure, and technological level are
the three major factors affecting the environment (Grossman and
Krueger, 1995). Economic scale is the output of the economy;
more economic output means more pollution. It is because that
economic growth needs more resources investment and more
energy consumption. Economic structure is industry structure.
The change of industry structure will reduce the pollution. With
economic developing, percentage of secondary industry,
especially energy-intensive industry, will reduce percentage of
tertiary industry, and energy consumption will increase, so the
pollution will be reducing. Technology progress will realize the
usage of resource efficiency and reduce the energy consumption.
So, technological level is an important factor which influences the
energy intensity and pollution. Many research studies are based
on these three environment factors and extend them accordingly.
The research can be classified into relation between economic
growth and CO2 emissions, industry structure, technology, and
CO2 emissions, and urbanization and CO2 emissions. But results
differ from research focus, theories, and methods. There are three
parallel literatures on factors what will influence CO2 emissions.

The first group of studies has investigated the relation between
CO2 emission, economic growth, and energy consumption.

Environmental Kuznets Curve (EKC) is often used to discuss
the relation between environmental pollution and economic
growth, which is also the main method to analyze the relation
between CO2 emissions and economic growth (Lin and Jiang,
2009). Grossman and Krueger (1991) found the U-shaped
relation between economic growth and CO2 emissions. But the
result is opposite if CO2 is used as the environmental indicator.
Holtz-Eakin and Selden (1995), Sachs et al. (1999), Friedl and
Getzner (2003), and Galeotti et al. (2006) found that the relation
between CO2 emission and economic growth is inverted U-shape.
It is opposite in the study of Shafik (1994), Martin (2008) and
Murshed and Dao (2020) which find that per capita CO2 emission
increased in parallel with per capita income, and there is no
turning point. Moomaw and Unruh (1997), Martinez-Zarzoso
and Bengochea-Morancho (2004), Friedl and Getzner (2003), and
Akpan and Chuku (2011) found that the relation between CO2

emission and economic growth is N-shape. Saidi and Hammami
(2015) examined the effect of energy use and the CO2 emissions
on economic growth for 58 countries, and their empirical results
showed that CO2 emissions negatively affected economic growth.
Rahman et al. (2020), Liu et al. (2012), and Lantz and Feng (2006)
found that per capita GDP has no relation with CO2 emission.

Environmental Kuznets Curve describes the economic growth
in developed countries and the inverted U-shaped relation
between environmental pollution, consciously or
unconsciously, as for the developed countries to adjust
economic structure and the energy consumption structure and
achieve a faster pace of the inverted U-shaped path, the overall
environmental quality as economic growth accumulation showed
a trend of deterioration before improvement (Lin and Jiang,
2009). Acheampong (2018) found that energy consumption
has a negative impact on economic growth in global level,
economic growth has a negative impact on CO2 emission, and
CO2 emission has positive impact on economic growth. In the
Asia-Pacific region, economic growth does not cause CO2

emissions. But in Caribbean-Latin America, there is a feedback
causality between economic growth and carbon emissions.

The second group of studies has investigated the relation
between CO2 emissions, industry structure, and technology
progress. Bernardini and Galli (1993) found that the decline in
energy intensity shows a decline trend with the increase in

FIGURE 1 | The framework of driving factors on CO2 emissions.
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income. The three reasons behind the relationship descent are the
following. First of all, with the development of the economy, the
final demand structure changes with changes in the stage of
industrialization. In the preindustrial stage, agriculture is the
leading industry in economic development, and economic growth
is driven by basic needs, which can be met with low energy
intensity. In the stage of industrialization, the infrastructure
network needs to be built up to facilitate large-scale
production and consumption. The primitive accumulation of
capital stock related to industrialization can increase energy
intensity, but it eventually reached the saturation point. At
this time, the consumption of materials tended to replace
durables rather than create durables. In the postindustrialized
stage, the decline of manufacturing industry in relation between
services and energy intensity in service-based economies is
smaller than that in manufacturing-oriented economies.
Shahbaz et al. (2018) and Khan et al. (2019) found that
financial development helps control CO2 emissions in both
France and China. However, Liu et al. (2021) found that with
1% financial development, CO2 emissions increased 0.17–0.52%.

Technology progress is the dominant factor of long-run
economic growth with scarce resources. Technology change has
a positive influence on energy efficiency and negative influence on
energy intensity (Lin andDu, 2014; Sadorsky, 2013; Yu et al., 2021).
Ang (2009) used the framework to combine modern growth
theoretically, which can analyze the role of R&D activity and
technology progress in reducing pollution. Technology progress
is the result of R&D investment, which contributes to energy
intensity reduction (Young, 1998). Wei et al. (2010) extended
Antweiler’s model (Antweiler et al., 2001) to analyze the influence
factors of CO2 emissions. The study found that GDP,
industrialization, and free trade have positive influence on CO2

emissions, but independent research and development and
technology import contribute to reducing CO2 emissions.

One source of technology progress is independent innovation;
another source is FDI and trade. FDI and trade are latecomer
advantage of countries, which develops later. Elliott and Sun
(2013) found that FDI has negative influence on energy intensity.
The last study (Khan et al., 2021) investigates the roles of export
diversification and composite country risks in carbon emissions
abatement. The researchers found that lowering country risks,
undergoing renewable energy transition, and enhancing
environmental-related technological innovations assist in
reducing CO2 emissions in the long run.

The third group of studies has investigated the relation
between CO2 emissions and urbanization. At present, there are
a large number of literatures on urbanization and its impact on
carbon dioxide (CO2) emissions for reference. A lot of research
have directly investigated the positive impact of urbanization on
carbon dioxide emissions (Behera and Dash, 2017; York et al.,
2003; Zhang and Lin, 2012). Shahbaz et al. (2017) provided
evidence showing that the development of urbanization leads
to higher demands for food, housing, transportation, land usage,
and energy consumption and causes serious environmental
degradation problems. For instance, traffic congestion, waste
management, and poor sanitation could cause pollution and
health problems in most urban areas.

A number of studies have tested the linear impact of
urbanization on global carbon dioxide emissions. You can
find contributions that support it, such as those by York et al.
(2003), Cole and Neumayer (2004), Liddle and Lung (2010),
Wang et al. (2012), and Behera and Dash (2017), or those that
refute it, such as those by Hossain (2011) and Liu and Bae (2018).
Specifically, York et al. (2003) used panel data from 143
countries to record the positive impact of urbanization on
CO2. Cole and Neumayer (2004) and Liddle and Lung (2010)
reached similar findings using panel data and Stochastic Impacts
by Regression on Population, Affluence, and Technology
(STIRPAT). Wang et al. (2012) applied PLS with STIRPAT
model in Beijing, China, and concluded that urbanization is
the most influential factor that has adverse impact on
environmental quality. Subsequently, Wang et al. (2013)
found that urbanization, industrial growth, income levels, and
population stimulate CO2 emissions during a provincial study.
Behera and Dash (2017) used panel cointegration test to study
the positive impact of urbanization on carbon emissions in South
and Southeast Asian countries. Conversely, several studies
proposed uncertain results and reported the negligible impact
of urbanization on CO2 emissions (Hossain, 2011; Liu and Bae,
2018).

To a large extent, the level of economic development of the
country may alleviate the nature of the relation between
urbanization and pollution (Fan et al., 2006; Li and Lin, 2015;
Poumanyvong and Kaneko, 2010). However, higher urbanization
growth rates and development rates can improve the
environment by promoting technological innovation in energy
usage and efficiency, increasing awareness of environmental
issues, and using green technologies, Bekhet and Othman
(2017). Urbanization has an inverted U-shaped relation with
CO2 emissions in Asia (Fan et al., 2020). However, Zhu et al.
(2012) found there is limited support for inverted U-shaped
relation between CO2 emissions and urbanization in 20
emerging economies. There was a long-run bidirectional
positive relation between CO2 emissions, urbanization, and
energy consumption in MENA countries. However, the long-
run relation is based on the countries’ income and development
(Al-mulalia et al., 2013). Urbanization has a positive influence on
CO2 emissions; in the stage of urbanizing, it needs more energy
consumption which will increase CO2 emissions (Lin and Du,
2013). CO2 emissions are higher in big cities or urban
agglomeration areas, because of the high energy consumption
on residential electricity consumption, residential gas
consumption, residential heating consumption, and residential
transportation energy consumption (Bai et al., 2019). In east and
central China, the center and surroundings featured high levels
(high-high cluster) of total CO2 emissions and low levels (low-
low-cluster) of per-unit-GDP CO2 emission in urban
agglomerations. The Yangtze-River-Delta, the Beibu-Gulf, and
the Guangdong-Hong Kong-Macao UAs were more efficient at
emission reduction with the cities’ rising scales, while cities of the
Beijing-Tianjin-Hebei UA and the Chengdu-Chongqing UA
performed less efficiently (Cui et al., 2020).

Two main methodologies are used by three groups of studies.
One of the methodologies is econometrics. Econometric methods
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include spatial autocorrelation analysis, semiparametric fixed
effect (Zhu et al., 2012), panel threshold regression (Zi
et al., 2016), panel threshold regression (Du and Xia,
2018), autoregressive distributed lag model and vector-
error correction model (Bekhet and Othman, 2017), two-
stage least squares (2SLS) and augmented Stochastic Impacts
by Regression on Population, Affluence, and Technology
(STIRPAT) model (Bai et al., 2019), and autoregressive
distributed lag (ARDL) (Ang, 2009). Econometric methods
have been used to estimate the long-run relationship and the
short-run dynamics for environmental pollution and its
determinants. To address the issues of multicollinearity
and overfitting, a recent study introduced the least
absolute shrinkage and selection operator (LASSO)
regression model which can pinpoint the most important
determinants to investigate the driving factors influencing
household carbon emissions (Shi et al., 2020). Another study
on methods called cross-sectionally augmented
autoregressive distributed lags (CS-ARDL) can account for
cross-sectional dependency, slope heterogeneity, and
structural break issues in the data (Li et al., 2021; Ma
et al., 2021). The other methodology is calculating the
quantity of CO2 emissions. Many research studies are
based on Kaya identity and Logarithmic Mean Divisa
Index (LMDI) (Ang and Zhang, 2000). Using these
methods, researchers calculate the industrial CO2

emissions, regional CO2 emissions, and national CO2

emissions (Yang and Li, 2017). Based on LMDI, index
decomposition analysis (IDA) is developed and becomes
one of the most popular methods. However, IDA
calculates the technology efficiency of economy system,
not the efficiency of energy usage (Lin and Du, 2013).
Wang (2011) developed the method based on production-
theory decomposition approach (PDA), which is based on
output-oriented distance function to decompose the energy
production to technology efficiency, technology program,
and input alternative. Lin and Du (2014) gave a complex
framework (L-D framework) of index decomposition and
production theory. Then, Yang et al. (2019) used L-D
framework to calculate CO2 emissions of major industries.

There are two gaps in the above literature. Factor choice is
confused by economic methods which do not support all factors
(Shi et al., 2020). So, the studies always try to select one or two
important factors. Actually, factors framework is a hierarchical
structure, and they inevitably influence each other.
Methodologies reviewed above are very useful and have been
adopted with many successes. However, there are many
restrictions such as collinearity and causality issues of
variables. On the other hand, it is not necessary to consider
these issues in machine learning. Machine learning is a method of
data analysis that automates analytical model building. It is a
branch of artificial intelligence based on the idea that systems can
learn from data, identify patterns, and make decisions with
minimal human intervention. Machine learning aims to
develop algorithms that can learn and create statistical models
for data analysis and prediction. The ML algorithms should be
able to learn by themselves, based on data provided, and make

accurate predictions, without having been specifically
programmed for a given task.

DATA AND THE VARIABLES

CO2 Emissions
The International Panel on Climate Change (IPCC) had
introduced three methods of calculating CO2 emissions (Y)
from fossil fuel combustion in both stationary and mobile
sources. “Method 1” is based on the amount of fuel burned
and the emission factor, and it is achievable (Wang et al., 2010).
Thus, this method is adopted by this paper accordingly. The
method is specified as follows:

CO2 � ∑14

i�1CO2,i � ∑14

i�1Ei · NCVi · CEFi (1)

In Eq. 1, CO2 represents the amount of carbon dioxide emissions
to be estimated; i represents various energy fuels, including coal,
coke, coke oven gas, blast furnace gas, converter gas, other gas,
crude oil, gasoline, kerosene, diesel, fuel oil, and liquefied
petroleum, natural gas, and liquefied natural gas; Ei represents
the combustion consumption of various energy sources; NCVi is
the average low calorific value of various energy sources, used to
convert various energy consumption into energy units (TJ); CEFi
represents carbon dioxide emission factor of the energy
consumption, which is calculated by Eq. 2:

CEFi � CCi · COFi · (44/12) (2)

In Eq. 2, CCi is the carbon content of energy sources. COFi is the
carbon oxidation factor of energy sources; usually, the value is 1,
which means that the energy is completely oxidized. In this
paper, coal and coke are set to 0.99 and the rest is 1 (Chen,
2011). (44/12) is the molecular weight ratio of carbon dioxide to
carbon. The CO2 emissions related data are derived from China
Energy Statistical Yearbook (2001–2019) and Report of IPCC
(2006).

Industrial Structure Rationalization Index
Industrial structure rationalization (X1) reflects the coordination
of different industries; moreover, it reflects the efficiency of
energy usage (Gan et al., 2011). The Theil index measures the
industrial structure rationalization (Gan et al., 2011). The Theil
index is defined as the equation below:

TL � ∑n

i�1(
Yi

Y
) ln(Yi

Y
/Y
L
) (3)

TL is the Theil index, Y is GDP, L is employment, i represents
industries, and n represents industry sectors. When economy is
equilibrium, TL � 0, industrial structure is rational. The industrial
structure rationalization index related data are derived from
Chinese Statistical Yearbook (2001–2019).

Other Variables and Data
This paper also includes other important variables. They are
GDP, urbanization, research and development (R&D)
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investment, actual use of foreign capital, and growth rate of
energy consumption. Data for GDP (X2) and actual use of
foreign capital (X5) are derived from Chinese Statistical
Yearbook (2001–2019) and statistical yearbook of 30 provinces
from 2000 to 2018. Data on urbanization (X3), the share of urban
population, is derived from Statistical Yearbooks (2001–2019) for
the 30 provinces. Data for R&D reinvestment intensity (X4) are
from Statistical Communique on National Science and
Technology Expenditures (2000–2018). Data for growth rate of
energy consumption (X6) are from China Energy Statistical
Yearbook (2001–2019). In summary, there are one output
variable and six input variables and annual data of these seven
variables of 30 provinces are obtained for 2000–2018 from the
sources stated above.

METHODOLOGY

This study uses a number of machine learning algorithms, or
function, f, to map the output variable (Y) from input variables
(X1, X2, . . . , X6) so that Y � f(X1, X2, . . . , X6). Several types of
algorithms have been adopted in this study, and they are briefly
described here.

Linear Models–Linear Regression, Lasso,
and ElasticNet
Whenwemake assumptions to the learning process, we can simplify
the process a lot. However, they can also limit what can be learned.
Algorithms that simplify the function to a known form are called
linear models. Examples of this class include linear regression and
logistic regression. In this study, we tested three linear models, and
they are linear regression (LR), least absolute shrinkage and selection
operator (LASSO), and Elastic Net (EN) that adds regularization
penalties to the loss function during training. Linear models provide
the benchmark to measure other machine learning algorithms.
However, it is expected that linear models would not provide
good prediction because CO2 emissions are complicated and
depend on many factors. Furthermore, it is not expected that
those factors relate to CO2 emissions linearly.

Nonlinear Models: Classification and
Regression Tree, Support Vector
Regression, and k-Nearest Neighbors
Regression
When we do not make strong assumptions about the form of the
mapping function, the algorithms are called nonlinear models.
Examples of this class include Classification and Regression Tree
(CART), Support Vector Regression (SVR), and k-Nearest
Neighbors (KNN). These models are useful for problems
involving datasets with large number of features, many of
which may be correlated. As the name implied, CART works
for both classification and regression problems. For SVR, as the
name suggests, it is a regression algorithm, and it should not be
confused with Support Vector Machine (SVM) which is for
classification. The major difference between the two is there is
only one slack variable in SVM and there are two slack variables
in SVR during its optimization for locating the hyperplane. For
KNN algorithm, it can be applied for both classification and
regression problems. In classification, the algorithm tries to
predict the class to which the output variable belongs by
computing the local probability, while it tries to predict the
values of the output variable by using a local average in
regression. One of the strengths of machine learning is that it
can work with nonlinear data. If a system is nonlinear (i.e., a
system that contains CO2 emissions and its six input variables),
nonlinear models would be more appropriate.

Ensemble Methods
Traditionally, machine learning application consisted of a single
learner (say, a Decision Tree). Then, ensemble methods were
born, which involve using many learners to enhance the
performance of any single one of them individually.

Bagging Methods: Random Forest and Extra Trees
Bagging is a method of merging the same type of predictions. The
idea of bagging is then simple: we want to fit several independent
models and “average” their predictions in order to obtain a model
with a lower variance. In bagging, weak learners are trained in
parallel using randomness, and each model receives an equal

FIGURE 2 | Histogram of data between 2000 and 2015.
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weight. Bagging decreases variance, not bias, and solves
overfitting issues in a model.

Boosting Methods: XGBoost, AdaBoost, and Gradient
Boost
Boosting models fall inside this family of ensemble methods.
Boosting is a method of merging different types of predictions.
Boosting decreases bias, not variance. In boosting, models are
weighted based on their performance. Boosting should not be

confused with bagging. In boosting, the weak learners are trained
sequentially.

AdaBoost is a specific boosting algorithm developed for
classification problems. The weakness is identified by the weak
estimator’s error rate.

Gradient boosting approaches the problem a bit differently.
Instead of adjusting weights of data points, Gradient boosting
focuses on the difference between the prediction and the
ground truth.

XGBoost builds the model by calculating similarity scores
between the observations that end up in a node. Also, XGBoost
allows for regularization, reducing the possible overfitting of
individual trees and therefore of the ensemble model.

Artificial Neural Networks
Neural networks consist of nodes connected by links. They have
three types of layers: an input layer with a node for each input,
hidden layers where learning occurs in training and inputs are
processed on trained nets, and an output layer with a node for
each target variable, which passes information outside the
network. Learning takes place in the hidden layer nodes, each
of which consists of a summation operator and an activation
function. Note that for neural networks, the inputs should be
scaled (i.e., standardized) to account for differences in the units of
the data. This is important as scaling could improve the
performance by a considerable margin (Chaudhari, 2019).

In recent times, ANNs have become popular and helpful
model for classification, clustering, and pattern recognition in
many disciplines (Abiodun et al., 2018). With its versatility, one
would expect it will work well. However, neural networks usually
require much more data than traditional machine learning
algorithms. In fact, the amount of data required depends both
on the complexity of the problem and on the complexity
of chosen algorithm. Given that the present study has only
400 + rows of panel data, whether this would impose any
limitation on the accuracy of this method remains to be seen.

RESULTS

To get the best results, it is necessary to understand the data first
by inspecting their descriptive statistics and plotting their
histograms. The descriptive statistics and histogram of the

TABLE 1 | Descriptive statistics for original data between 2000 and 2015.

X1 X2 X3 X4 X5 X6 Y

Min 0.2332 2.6368 0.2035 0.0014 167.44 −0.2503 8.1842
First quartile 0.8301 30.0985 0.4012 0.0052 4,483.90 0.0280 100.8598
Average 1.0510 87.9108 0.4962 0.0070 34,974.14 0.0703 242.2765
Third quartile 1.2636 109.9589 0.5686 0.0081 47,477.80 0.1008 322.9348
Max 2.5528 536.8455 0.8650 0.0206 225,732.22 0.9356 948.0496
Std. Dev. 0.3345 88.6889 0.1387 0.0031 43,286.63 0.0798 193.4006
Median 1.0437 62.6338 0.4850 0.0061 17,956.95 0.0644 188.0715
Skew 0.6604 2.2506 0.5403 1.6093 1.8672 3.1862 1.4709
Kurtosis 2.3140 6.0578 0.2066 3.1208 3.3609 30.1929 2.1163

TABLE 2 | Descriptive statistics for Ln(X2), Ln(X4), Ln(X5), and Ln(Y) between
2000 and 2015.

Ln(X2) Ln(X4) Ln(X5) Ln(Y)

Min 3.2722 −6.5673 5.1206 2.1022
First quartile 5.7070 −5.2645 8.4082 4.6137
Average 6.3101 −5.0470 9.5258 5.1545
Third quartile 7.0027 −4.8216 10.7680 5.7775
Max 8.5883 −3.8839 12.3271 6.8544
Std. Dev. 1.0522 0.4131 1.6125 0.8935
Median 6.4399 −5.1012 9.7957 5.2368
Skew −0.5121 −0.0282 −0.4972 −0.6515
Kurtosis 0.1566 1.5317 −0.5375 0.5463

FIGURE 3 | Linear models comparison.
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original data between 2000 and 2015 are shown in Figure 2A;
Table 1, respectively.

Looking at the data, it is revealed that better results could
be obtained by taking the logarithm of X2, X4, X5, and Y.
The descriptive statistics and histograms of the logarithms
of X2, X4, X5, and Y are shown in Figure 2B; Table 2,
respectively.

Data scaling is important for some machine learning
algorithms, e.g., KNN and ANN, and less critical for some
others such as linear regression. For consistency and easy
comparison, the second step of data preparation is
standardization of data with its mean and standard deviation
rather than normalization of data with its maximum and
minimum vales. It is because the data are Gaussian-like than
bounded by a maximum and minimum as shown in the
histograms.

Linear Models: Linear Regression, Lasso,
and ElasticNet
Three linear models have been applied to the scaled dataset using
k-fold cross validation. There is no formal rule for the choice of k.
In the present study, we set k � 5 so that the length of the

validation data match that of the testing set (i.e., 2016-2018). The
box-and-whisker plot of mean and standard deviation of each
validation for the three models are shown in Figure 3. It can be
seen that the mean and standard deviation for linear regression
model is tighter than the other two linear models. However, after
Lasso and ElasticNet models are tuned for their hyperparameters
and used to fit the whole set of training data (i.e., without k-fold
cross validation), the rmse between the prediction and the actual
data of the training set (2000–2015) are all the same at 0.5482.
Furthermore, when they are applied to the testing set
(2016–2018), the rmse among the three models are practically
the same at 0.6732. To show how good the models are, we plot the
actual against the prediction in Figure 4. For a good fit, the points
should be close to the dotted line. As it can be seen, we can hardly
describe that linear models are able to predict CO2 emissions.
This prompts us to apply non-linear models accordingly.

Nonlinear Models: Classification and
Regression Tree, Support Vector
Regression, and k-Nearest Neighbors
Regression
Similar to linear models, we applied k-fold cross validation to the
three nonlinear models. The box-and-whisker plot of the three
models is shown in Figure 5. It can be seen that the performance
of SVR and KNN is better than that of CART. The graphs of
actual against prediction for SVR and KNN are shown in Figures
6, 7, respectively. It can be seen in Figures 6, 7 that nonlinear
models, especially KNN, have done much better in predicting
CO2 emissions. In particular, if you compare the actual against
prediction graph, you can see the points are much tighter and
closer to the dotted lines. The rmse are 0.1750 and 0.3641 for the
training set and testing set of data when the number of neighbors
is set to 2. This is a remarkable improvement over the linear
models.

Ensemble Methods
In this study, five ensemble methods, 2 bagging and 3 boosting
algorithms, are applied. As k-fold cross validation randomly
divided the dataset, the box-and-whisker plots change every
time we run. Figure 8 shows the typical results for four
runs. It can be seen that Extra Trees consistently

FIGURE 4 | Actual vs. prediction of Linear models comparison.

FIGURE 5 | Non-linear models comparison.
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outperformed the other four models in the present study. If we
apply Extra Trees algorithm to fit the combined training and
validation dataset, we can see it can fit the prediction almost
perfectly with the actual data as shown in Figure 9A. However,
when it is applied to the testing data in Figure 9B, it gives a
rmse of 0.4128 when the number of trees (or estimators) is 20.
One thing to note for ET model is that the rmse are relatively
stable with respect to the number of trees: the values of rmse
are 0.4370, 0.4128, and 0.4155 when the number of trees is 10,
20, and 50, respectively. Though ET model the best among the
five ensemble models under study, its performance is not as
good as the KNN model discussed above.

Artificial Neural Network
As mentioned in Artificial Neural Networks, there are three
types of layers in ANN. To apply ANN, one needs to determine
the number of layers and number of neurons used in each layer.
On top of the k-fold cross validation that introduces
randomness, the stochastic nature of the model results in
different output every time we run the model. Therefore, it is
necessary to experiment the combination of these parameters to
get the best results. As the number of instances of our dataset is
only slightly over 400, one hidden layer is sufficient after
experimentation. After random search, it is found that the
number of neurons should be between 6 and 15 in both
input layer and hidden layer. Then, we run the model at
least 10 times for each combination of neurons in the input

layer and hidden layer. It is found that the best combination is
six neurons in the input layer and 10 neurons in the hidden
layer. With this configuration of the network, we run the model
30 times. Then, we take the average of the results, which is
shown in Figure 10. The values of the rmse of the training and
testing data are 0.2430 and 0.4849, respectively. It can be seen
that though ANNmodel performs better than linear models, it is
not as good as nonlinear models. Comparatively, its accuracy is
only a distant second to KNN model.

Based on rmse for model selection, the results presented above
shows that KNNmodel performed the best, ANNmodel achieved
a distant second and ET came third in predicting CO2 emissions
with the dataset described in Data and the Variables. In the next
section, we shall make use of KNNmodel and perform sensitivity
analysis that would enable policy makers in setting policies to
reduce CO2 emissions.

DISCUSSIONS

Having established that KNN model performs the best in the
dataset, we attempt to use KNN model to perform sensitivity
analysis of independent variables on CO2 emissions. We would
like to determine how the target variable, CO2 emissions, is
affected based on changes in other input variables. As there
are six input variables, we need to select a base case before we
conduct sensitivity analysis. The base case consists of the input

FIGURE 6 | Actual vs. prediction of SVR (rbf, auto) model.

FIGURE 7 | Actual vs. prediction of KNN (2) model.
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variables with the most common values. The procedure is
described below.

From the histograms, we have divided each variable into 10
bins of equal width that cover the minimum and maximum. For
each variable, say X1–Industrial Structure Rationalization,
we pick the midpoint value, X1M, of the bin that contains the
highest number of data. With six variables, we have X1M, X2M, . . .

and X6M accordingly. Let us call this the “centroid” of input
variables.

Now, we can vary the value of one variable, say X1—Industrial
Structure Rationalization, from minimum to maximum while
keeping the values of other five variables constant at their
midpoint values of the highest bin. In this way, we can inspect
the sensitivity of variable, X1—Industrial Structure

FIGURE 8 | Ensemble models comparison–four runs.

FIGURE 9 | Actual vs. prediction of ET (20) model.
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Rationalization around the centroid. We can repeat this analysis
to other input variables and form a more complete picture about
the six variables affect the CO2 emission around the centroid. The
result is shown in Figure 11.

First, when all the six variables are at centroid, the predicted
Ln(CO2 emissions),Y, is 5.4960 (or equivalent to 543.70 million
tonnes CO2 emissions), shown with symbol ○ in Figure 11.
Then, when we adjust one of the variables, the change of Ln(CO2

emissions), Y, is summarized in the following.
Industrial Structure Rationalization, X1: The effect on industrial

structure rationalization on CO2 emissions is shown in
Figure 11A. It can be seen that their relationship is nonlinear
and nonmonotonic. It exactly demonstrates the strength of
machine learning is able to pick up the nonlinearity of the
variables and make better predictions. It can be seen that when
the industrial structure rationalization increases from 0.7486 to
1.6507, CO2 emissions increase. Beyond that range, its effect is the
opposite. It can be interpreted that industrial structure is not the
only target for the policy makers. Industrial rationalization index is
the equilibrium in economy; it includes output value, sectors of
branch of industry employment, and industrial rationalization. If
the industrial structure is rationalized, the industry, especially the
output of second and third industry, should be in equilibrium, and
the regional disparity should be continuously decreased. But the
negative influence of industrialization will lead to the increase of
CO2 emissions. It means that the CO2 emissions decreasing not
only need economic equilibrium but also need the balance between
the industrialization and harmful gas emission. Therefore, policy
makers should develop economy of each province as rapid as
possible. It is because the CO2 emission will eventually decrease
after the saturation point at the postindustrialization stage as
explained by Bernardini and Galli (1993). On the other hand,
the industrial structure rationalization should stay at 0.7486 for
some provinces as their CO2 emissions would be at minimum.

GDP on a natural log scale, X2: The effect on GDP on CO2

emissions is shown in Figure 11B. It can be seen that CO2 emissions
are the most sensitive when the range of GDP is from exp(5.0442) to
exp(5.6349) (or equivalent to 155.12 billion dollars to 280.03 billion
dollars). As mentioned at the beginning ofMethodology, X2 is taken
logarithmically. Each interval of the x-axis represents 1.8 times of the
previous level. Every country would like to develop their economy.
Therefore, it would be unlikely that a country would sacrifice

economic growth to curb CO2 emissions. Figure 11B shows that
CO2 emissions will increase when economy grows. It will definitely
harm the environment. Furthermore, China cannot simply grow its
economy without considering CO2 emissions. It is because one of the
pledges China has committed in Paris Accord is to peak CO2

emissions by 2030. However, with the advancement of technology,
it is possible to reduce emissions without economic sacrifice. One
thing that must be noted is that in Figure 11B, there is no inverted
U-shaped relation between CO2 emissions and economic growth as
found by Galeotti et al. (2006). However, we can see that when GDP
grows beyond exp(8.5883) (or equivalent to 5,368 billion dollars),
CO2 emissions would level off and they could even come down. It
means China can fulfill its Paris Accord’s pledges.

Urbanization, X3: The impact of urbanization on CO2

emissions is very mixed and complicated as shown in
literature reviewed in Literature Review. While most of the
previous studies indicate a positive relationship between
urbanization and CO2 emissions, in this study, it is found
that a flanged U-shape is observed as shown in Figure 11C.
Given that the urbanization is 0.4975 at centroid now, policy
makers of China can aim to reduce its CO2 emissions by
increasing urbanization to the trough region of 0.571 and
0.6445. This decrease is likely a result of technological
innovation in energy usage and efficiency, increasing
awareness of environmental issues, and using green
technologies (Bekhet and Othman, 2017).

R&D Reinvestment Intensity on a Natural Log Scale, X4: R&D
reinvestment intensity stimulates technological advancement,
and it also affects economic growth. It can be seen from
Figure 11D that CO2 emissions increase mildly when
reinvestment intensity increases from −6.5673 to its centroid
position of −4.4802. Afterwards, it decreases mildly. Looking at
the figure, the reinvestment intensity is at critical moment now at
its centroid position. If it decreases from its current position, CO2

emissions would decrease too. But it is likely to be accompanied
by a decrease of economic growth. The implication is that China
should increase its reinvestment intensity so that it could advance
technology more rapidly, increase energy usage and efficiency,
and make contribution in reducing CO2 emissions accordingly.

Actual Use of Foreign Capital on a Natural Log Scale, X5: The
impact of actual use of foreign capital on CO2 emissions is shown
in Figure 11E. It is observed that CO2 emissions increase rapidly

FIGURE 10 | Actual vs. prediction of ANN (first layer: six inputs, six neurons; second layer: 10 neurons).
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FIGURE 11 | Sensitivity analysis of variables around the centroid of KNN (2). represents the centroid of the data ‒ the most populated bin of the data Only one
variable varies while keeping the other variables unchanged at centroid values.
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when actual use of foreign capital increases from 5.1206 to 5.9213.
Then, it levels and even decreases gradually, afterwards. According
to pollution haven hypothesis, foreign firms in dirty sectors are
more likely to relocate pollution activities from developed countries
to poorly regulated developing countries to avoid domestic
environmental control cost, which directly undermines the
environmental interests of recipient countries like China. This
implies that the higher the actual use of foreign capital (FDI), the
higher the CO2 emissions, termed “direct” mechanism. However,
there is “indirect” mechanism that affect the CO2 emissions.
Foreign capital could act as a channel for environmentally
friendly technologies, more stringent environmental regulations
can be designed and implemented in low-emissions provinces to
attract clean foreign capital. So the two mechanisms have the
opposite effect on CO2 emissions. In China, actual use of foreign
capital of most of the provinces has well passed 5.9212 and reached
its centroid position of 10.7257 already. The implication is that the
impact of actual use of foreign capital is not significant as the CO2

emissions is quite stable around that position.
Growth Rate of Energy Consumption, X6: When the economy

is robust and growing, more energy is consumed. Therefore, it will
result in higher CO2 emissions. Energy consumption is in an
interesting situation now. It is because CO2 emissions are at a
local maximum when the growth rate of energy consumption is at
0.0132 as shown in Figure 11F. Interestingly, when the growth rate
was higher than 0.0132 during the period under study, CO2

emissions decreased unless the growth rate was too rapid
beyond 0.145 level. It could be explained that China has made
good use of foreign capital and R&D investment. Therefore, it is
expected that cleaner and greener energy such as hydropower and
nuclear power have been used when the growth rate increases from
0.0132 to 0.145. Last, but not least, policy makers should refrain
from consuming energy beyond a growth rate of 0.145. It is because
it can be seen that CO2 emissions increases sharply beyond 0.145
level. Also, the results between 0.5403 and 0.9356 can be ignored as
there are only one or two (or even zero) pieces of data of that range.

Noting that the above analysis applies to the centroid position,
it provides an overall picture for China as a whole. This approach
can also be applied to other position that might be more relevant
to individual province.

CONCLUSION AND POLICY
IMPLICATIONS

Following the pledges China has committed in Paris Accord is to
peak CO2 emissions by 2030 and the declaration of the 2060 carbon-
neutrality goal of Chinese government; it requires proactive measures
to be undertaken to reduce carbon emissions while maintaining
continuous economic growth and improving in living standards.
Against this background, this paper analyzed the effects of industrial
structure rationalization index, GDP, urbanization, R&D
reinvestment, actual use of foreign capital, and growth rate of
energy consumption on forecasting CO2 emissions.

Data across 30 provincial administrative regions of China
from 2000 to 2018 are used for the study. Data from 2000 to 2015
are used as training set, and data from 2016 to 2018 are used as

testing set. We apply a suite of machine learning algorithms on
the testing set and predict the levels of CO2 emissions for the
testing set. Machine learning algorithms include linear and
nonlinear models, ensemble methods with boosting and
bagging, and artificial neural networks. Employing rmse for
model selection, results show that k-nearest neigbors (KNN)
model performs the best when the number of neighbors is set
to two for the present dataset.

Using KNN model, we conducted a sensitivity analysis of CO2

emissions around its centroid position on its dependent variables.
The overall findings revealed that economic growth measured by
GDP, X2, contribute to higher CO2 emissions. As China needs to
maintain its economic growth to continuously improve living
standards, it brings several implications for policy makers when
setting policies concerning other variables. First, in terms of
industrial structure rationalization, X1, not all provinces should
develop its industrialization. Some provinces should stay at
relatively mild industrialization stage that their CO2 emissions
would be at minimum. For other provinces, they should develop
their economy as rapidly as possible. It is because CO2 emissions
will eventually decrease after saturation point. Therefore, the
duration of high CO2 emissions that comes with
industrialization would be as short as possible. Second, in
terms of urbanization, X3, there is an optimal range for a
province. To minimize CO2 emissions, provinces should try
to achieve urbanization around 0.571 and 0.6445. With the
range, the CO2 emissions would be at minimum and the
decrease is likely a result of technological innovation in
energy usage and efficiency. It also suggests that a province
should not be too densely populated. Third, the result of R&D
reinvestment intensity, X4, suggests that China should increase
its reinvestment intensity further. At present, there is a positive
relationship between CO2 emissions and reinvestment intensity.
Therefore, it seems that monies for R&D reinvestment have not
been put, or not enough, into green technology yet. Only when
there is a further increase of R&D reinvestment intensity into
green technology, there will be a decrease of CO2 emissions.
Fourth, it is found that the impact of the actual use of foreign
capital, X5, on CO2 emissions is insignificant, relatively
speaking, when compared with other variables. If we assume
that R&D reinvestment is associated with actual use of foreign
capital, policy makers should prioritize the use of foreign capital
for R&D investment on green technology. That would reduce
CO2 emissions while maintaining economic growth. Last, it is
possible to increase the growth rate of energy consumption, X6,
gradually if R&D reinvestment and use of foreign capital are
directed towards cleaner and green energy sources such as
hydropower and nuclear power. Policy makers must refrain
from consuming energy beyond a growth rate of 0.1450 for
economic growth. Otherwise, CO2 emissions would increase
rapidly and may jeopardize the pledges China committed in
Paris Accord and the 2060 carbon-neutrality declaration. In
summary, the above policy implications provide a blueprint for
policy makers for ensuing environmentally sustainability
economic development in China.

It is worth noting that the approach applied in this study can
easily be replicated for other countries to make better forecasting
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of CO2 emissions for the future. The major constraint of this
approach is the data limitation. For successful application of
machine learning, the number of data required is usually more
than traditional econometric models. With more data, more
advanced machine learning algorithms can be applied to
further check the robustness of the findings.

DATA AVAILABILITY STATEMENT

Publicly available datasets were used and analyzed in this study.
The sources of data are listed in Data and the Variables section of
this paper in details.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

The paper is supported by Program for Innovation Research in
Central University of Finance and Economics and by General Project
of Beijing Social Science Foundation Research Base (18JDLJB001),
Research on Beijing Urban Governance Path Based on the
Optimization of Urban Multi-dimensional Spatial Structure.

REFERENCES

Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and
Arshad, H. (2018). State-Of-The-Art In Artificial Neural Network Applications:
A Survey. Heliyon 4, e00938. doi:10.1016/j.heliyon.2018.e00938

Acheampong, A. O. (2018). Economic Growth, CO2 Emissions and Energy
Consumption: What Causes what and where? Energ. Econ. 74, 677–692.
doi:10.1016/j.eneco.2018.07.022

Akpan, U. F., and Chuku, A. (2011). Economic Growth and Environmental
Degradation in Nigeria: Beyond the Environmental Kuznets Curve. Mpra
Paper 8 (5), 568–577. doi:10.1108/14777830710778328

Al-mulali, U., Fereidouni, H. G., Lee, J. Y. M., and Sab, C. N. B. C. (2013). Exploring
the Relationship between Urbanization, Energy Consumption, and CO2
Emission in MENA Countries. Renew. Sustain. Energ. Rev. 23, 107–112.
doi:10.1016/j.rser.2013.02.041

Ang, B. W., and Zhang, F. Q. (2000). A Survey of index Decomposition Analysis in
Energy and Environmental Studies. Energy 25 (12), 1149–1176. doi:10.1016/
s0360-5442(00)00039-6

Ang, J. B. (2009). CO2 Emissions, Research and Technology Transfer in China.
Ecol. Econ. 68 (10), 2658–2665. doi:10.1016/j.ecolecon.2009.05.002

Antweiler, W., Copeland, B. R., and Taylor, M. S. (2001). Is Free Trade Good for the
Environment? Am. Econ. Rev. 91, 877–908. doi:10.1257/aer.91.4.877

Bai, Y., Deng, X., Gibson, J., Zhao, Z., and Xu, H. (2019). How Does Urbanization
Affect Residential CO2 Emissions? an Analysis on Urban Agglomerations of
China. J. Clean. Prod. 209, 876–885. doi:10.1016/j.jclepro.2018.10.248

Behera, S. R., and Dash, D. P. (2017). The Effect of Urbanization, Energy
Consumption, and Foreign Direct Investment on the Carbon Dioxide
Emission in the SSEA (South and Southeast Asian) Region. Renew. Sustain.
Energ. Rev. 70, 96–106. doi:10.1016/j.rser.2016.11.201

Bekhet, H. A., and Othman, N. S. (2017). Impact of Urbanization Growth on
Malaysia CO2 Emissions: Evidence from the Dynamic Relationship. J. Clean.
Prod. 154, 374–388. doi:10.1016/j.jclepro.2017.03.174

Bernardini, O., and Galli, R. (1993). Dematerialization: Long-Term Trends in the
Intensity of Use of Materials and Energy. Futures 25, 431–448. doi:10.1016/
0016-3287(93)90005-e

Bertram, C., Keywan Riahi, K., Hilaire, J., Bosetti, V., Drouet, L., Fricko, O., et al.
(2021). Energy System Developments and Investments in the Decisive Decade
for the Paris Agreement Goals. Environ. Res. Lett. 16 (7). doi:10.1088/1748-
9326/ac09ae

Candau, F., and Dienesch, E. (2017). Pollution haven and Corruption paradise.
J. Environ. Econ. Manage. 85, 171–192. doi:10.1016/j.jeem.2017.05.005

Cao, Z., Wei, J., and Chen, H. B. (2016). CO2 Emissions and Urbanization
Correlation in China Based on Threshold Analysis. Ecol. Indicators 61,
193–201. doi:10.1016/j.ecolind.2015.09.025

Chaudhari, P. (2019). Importance of Feature Scaling for Artificial Neural Networks
and K-Nearest Neighbors. Available at: https://medium.com/@piyush.kailash.
chaudhari/importance-of-feature-scaling-for-artificial-neural-networks-and-
k-nearest-neighbors-4b7aa618d5ea. (Accessed June 5, 2021).

Chen, S. (2011). The Fluctuation and Decrease Mode of China’s Carbon Emission
Intensity and its Economic Explanation. The J. World Economy 34 (04),

124–143. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode�CJFD&
dbname�CJFD2011&filename�SJJJ201104009&v�PKVIHlLP1q%25mmd2FhF%
25mmd2FkK6z80YIy5msaiQr1ZOQco3gj65bo4cCpLmeL1cPGQf9VKfY9q.
(Accessed June 5, 2021). doi:10.1111/j.1467-9701.2011.01370.x

Chudik, A., and Pesaran, M. H. (2015). Common Correlated Effects Estimation of
Heterogeneous Dynamic Panel Data Models with Weakly Exogenous
Regressors. J. Econom. 188 (2), 393–420. doi:10.1016/j.jeconom.2015.03.007

Cole, M. A., and Neumayer, E. (2004). Examining the Impact of Demographic
Factors on Air Pollution. Popul. Environ. 26, 5–21. doi:10.1023/b:
poen.0000039950.85422.eb

Cui, C., Cai, B., and Wang, G. Z. (2020). Decennary Spatial Pattern Changes and
Scaling Effects of CO2 Emissions of Urban Agglomerations in China. Cities 105,
102818. doi:10.1016/j.cities.2020.102818

Du, W. C., and Xia, X. H. (2018). How Does Urbanization Affect GHG Emissions?
A Cross-Country Panel Threshold Data Analysis. Appl. Energ. 229, 872–883.
doi:10.1016/j.apenergy.2018.08.050

Elliott, R. J. R., Sun, P. S., and Chen, S. (2013). Energy Intensity and Foreign Direct
Investment: A Chinese City-Level Study. Energ. Econ. 40, 484–494. doi:10.1016/
j.eneco.2013.08.004

Fan, H., Hashmi, S. H., Habib, Y., and Ali, M. (2020). How Do Urbanization and
Urban Agglomeration Affect CO2 Emissions in South Asia? Testing Non-
linearity Puzzle with Dynamic STIRPAT Model. Chin. J. Urban Environ. Stud.
08 (01), 205000308. doi:10.1142/s2345748120500037

Fan, Y., Liu, L.-C., Wu, G., and Wei, Y.-M. (2006). Analyzing Impact Factors of
CO2 Emissions Using the STIRPATModel. Environ. Impact Assess. Rev. 26 (4),
377–395. doi:10.1016/j.eiar.2005.11.007

Friedl, B., and Getzner, M. (2003). Determinants of CO2 Emissions in a Small
Open Economy. Ecol. Econ. 45, 133–148. doi:10.1016/s0921-8009(03)00008-9

Galeotti, M., Lanza, A., and Pauli, F. (2006). Reassessing the Environmental
Kuznets Curve for CO2 Emissions: a Robustness Exercise. Ecol. Econ. 57
(1), 152–163. doi:10.1016/j.ecolecon.2005.03.031

Gan, C., Zheng, R., and Yu, D. (2011). An Empirical Study on the Effects of
Industrial Structure on Economic Growth and Fluctuations in China. Econ. Res.
J. 46 (05), 4–16+31. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?
dbcode�CJFD&dbname�CJFD2011&filename�JJYJ201105002&v�jXi17UDWTaaq
RHWJh8aSKBVxDK77Pz%25mmd2FC3DruT4vnekzOQ8DZnDbFnu
QFv3dcUcCh. (Accessed June 5, 2021).

Grossman, G. M., and Krueger, A. B. (1991). Environmental Impacts of a North
American Free Trade Agreement. National Bureau of Economic Research
Working Paper. No. 3914. doi:10.3386/w3914 Available at: https://www.
nber.org/papers/w3914 (Accessed August 15, 2021).

Grossman, G. M., and Krueger, A. B. (1995). Economic Growth and the
Environment. Q. J. Econ. 110 (2), 353–377. doi:10.2307/2118443

Han, X., Cao, T., and Sun, T. (2019). Analysis on the Variation Rule and Influencing
Factors of Energy Consumption Carbon Emission Intensity in China’s Urbanization
Construction. J. Clean. Prod. 238, 124605. doi:10.1016/j.jclepro.2019.117958

Holtz-Eakin, D., and Selden, T. M. (1995). Stoking the Fires? CO2 Emissions and
Economic Growth. J. Public Econ. 57, 85–101. doi:10.1016/0047-2727(94)01449-x

Hossain, M. S. (2011). Panel Estimation for CO2 Emissions, Energy Consumption,
Economic Growth, Trade Openness and Urbanization of Newly Industrialized
Countries. Energy Policy 39 (11), 6991–6999. doi:10.1016/j.enpol.2011.07.042

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 72151714

Li et al. Driving Factors of CO2 Emissions

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1016/j.eneco.2018.07.022
https://doi.org/10.1108/14777830710778328
https://doi.org/10.1016/j.rser.2013.02.041
https://doi.org/10.1016/s0360-5442(00)00039-6
https://doi.org/10.1016/s0360-5442(00)00039-6
https://doi.org/10.1016/j.ecolecon.2009.05.002
https://doi.org/10.1257/aer.91.4.877
https://doi.org/10.1016/j.jclepro.2018.10.248
https://doi.org/10.1016/j.rser.2016.11.201
https://doi.org/10.1016/j.jclepro.2017.03.174
https://doi.org/10.1016/0016-3287(93)90005-e
https://doi.org/10.1016/0016-3287(93)90005-e
https://doi.org/10.1088/1748-9326/ac09ae
https://doi.org/10.1088/1748-9326/ac09ae
https://doi.org/10.1016/j.jeem.2017.05.005
https://doi.org/10.1016/j.ecolind.2015.09.025
https://medium.com/@piyush.kailash.chaudhari/importance-of-feature-scaling-for-artificial-neural-networks-and-k-nearest-neighbors-4b7aa618d5ea
https://medium.com/@piyush.kailash.chaudhari/importance-of-feature-scaling-for-artificial-neural-networks-and-k-nearest-neighbors-4b7aa618d5ea
https://medium.com/@piyush.kailash.chaudhari/importance-of-feature-scaling-for-artificial-neural-networks-and-k-nearest-neighbors-4b7aa618d5ea
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=SJJJ201104009&v=PKVIHlLP1q%mmd2FhF%mmd2FkK6z80YIy5msaiQr1ZOQco3gj65bo4cCpLmeL1cPGQf9VKfY9q
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=SJJJ201104009&v=PKVIHlLP1q%mmd2FhF%mmd2FkK6z80YIy5msaiQr1ZOQco3gj65bo4cCpLmeL1cPGQf9VKfY9q
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=SJJJ201104009&v=PKVIHlLP1q%mmd2FhF%mmd2FkK6z80YIy5msaiQr1ZOQco3gj65bo4cCpLmeL1cPGQf9VKfY9q
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=SJJJ201104009&v=PKVIHlLP1q%mmd2FhF%mmd2FkK6z80YIy5msaiQr1ZOQco3gj65bo4cCpLmeL1cPGQf9VKfY9q
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=SJJJ201104009&v=PKVIHlLP1q%mmd2FhF%mmd2FkK6z80YIy5msaiQr1ZOQco3gj65bo4cCpLmeL1cPGQf9VKfY9q
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=SJJJ201104009&v=PKVIHlLP1q%mmd2FhF%mmd2FkK6z80YIy5msaiQr1ZOQco3gj65bo4cCpLmeL1cPGQf9VKfY9q
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=SJJJ201104009&v=PKVIHlLP1q%mmd2FhF%mmd2FkK6z80YIy5msaiQr1ZOQco3gj65bo4cCpLmeL1cPGQf9VKfY9q
https://doi.org/10.1111/j.1467-9701.2011.01370.x
https://doi.org/10.1016/j.jeconom.2015.03.007
https://doi.org/10.1023/b:poen.0000039950.85422.eb
https://doi.org/10.1023/b:poen.0000039950.85422.eb
https://doi.org/10.1016/j.cities.2020.102818
https://doi.org/10.1016/j.apenergy.2018.08.050
https://doi.org/10.1016/j.eneco.2013.08.004
https://doi.org/10.1016/j.eneco.2013.08.004
https://doi.org/10.1142/s2345748120500037
https://doi.org/10.1016/j.eiar.2005.11.007
https://doi.org/10.1016/s0921-8009(03)00008-9
https://doi.org/10.1016/j.ecolecon.2005.03.031
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=JJYJ201105002&v=jXi17UDWTaaqRHWJh8aSKBVxDK77Pz%mmd2FC3DruT4vnekzOQ8DZnDbFnuQFv3dcUcCh
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=JJYJ201105002&v=jXi17UDWTaaqRHWJh8aSKBVxDK77Pz%mmd2FC3DruT4vnekzOQ8DZnDbFnuQFv3dcUcCh
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=JJYJ201105002&v=jXi17UDWTaaqRHWJh8aSKBVxDK77Pz%mmd2FC3DruT4vnekzOQ8DZnDbFnuQFv3dcUcCh
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=JJYJ201105002&v=jXi17UDWTaaqRHWJh8aSKBVxDK77Pz%mmd2FC3DruT4vnekzOQ8DZnDbFnuQFv3dcUcCh
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=JJYJ201105002&v=jXi17UDWTaaqRHWJh8aSKBVxDK77Pz%mmd2FC3DruT4vnekzOQ8DZnDbFnuQFv3dcUcCh
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=JJYJ201105002&v=jXi17UDWTaaqRHWJh8aSKBVxDK77Pz%mmd2FC3DruT4vnekzOQ8DZnDbFnuQFv3dcUcCh
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=JJYJ201105002&v=jXi17UDWTaaqRHWJh8aSKBVxDK77Pz%mmd2FC3DruT4vnekzOQ8DZnDbFnuQFv3dcUcCh
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2011&filename=JJYJ201105002&v=jXi17UDWTaaqRHWJh8aSKBVxDK77Pz%mmd2FC3DruT4vnekzOQ8DZnDbFnuQFv3dcUcCh
https://doi.org/10.3386/w3914
https://www.nber.org/papers/w3914
https://www.nber.org/papers/w3914
https://doi.org/10.2307/2118443
https://doi.org/10.1016/j.jclepro.2019.117958
https://doi.org/10.1016/0047-2727(94)01449-x
https://doi.org/10.1016/j.enpol.2011.07.042
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Kasman, A., and Duman, Y. S. (2015). CO2 Emissions, Economic Growth, Energy
Consumption, Trade and Urbanization in New EU Member and Candidate
Countries: A Panel Data Analysis. Econ. Model. 44, 97–103. doi:10.1016/
j.econmod.2014.10.022

Khan, Z., Murshed, M., Dong, K., and Yang, S. (2021). The Roles of export
Diversification and Composite Country Risks in Carbon Emissions Abatement:
Evidence from the Signatories of the Regional Comprehensive Economic
Partnership Agreement. Appl. Econ., 1–19. doi:10.1080/00036846.2021.1907289

Khan, Z., Sisi, Z., and Siqun, Y. (2019). Environmental Regulations an Option:
Asymmetry Effect of Environmental Regulations on Carbon Emissions Using
Non-linear ARDL. Energy Sourc. A: Recovery, Utilization, Environ. Effects 41,
137–155. doi:10.1080/15567036.2018.1504145

Lantz, V., and Feng, Q. (2006). Assessing Income, Population, and Technology
Impacts on CO2 Emissions in Canada: Where’s the EKC? Ecol. Econ. 57,
229–238. doi:10.1016/j.ecolecon.2005.04.006

Li, K., and Lin, B. (2015). Impacts of Urbanization and Industrialization on
Energy Consumption/CO2 Emissions: Does the Level of Development
Matter? Renew. Sustain. Energ. Rev. 52, 1107–1122. doi:10.1016/
j.rser.2015.07.185

Li, Z.-Z., Li, R. Y. M., Malik, M. Y., Murshed, M., Khan, Z., and Umar, M. (2021).
Determinants of Carbon Emission in China: How Good Is Green Investment?
Sustainable Prod. Consumption 27, 392–401. doi:10.1016/j.spc.2020.11.008

Liddle, B., and Lung, S. (2010). Age-structure, Urbanization, and Climate Change
in Developed Countries: Revisiting STIRPAT for Disaggregated Population and
Consumption-Related Environmental Impacts. Popul. Environ. 31 (5),
317–343. doi:10.1007/s11111-010-0101-5

Lin, B., and Du, K. (2014). Understanding the Changes in China’s Energy
Intensity: a Comprehensive Decomposition Framework. J. World
Economy 37 (04), 69–87. Available at: https://kns.cnki.net/kcms/detail/detail.
aspx?fi lename�SJJJ201404005&dbcode�CJFQ&dbname�CJFD2014&
v�7ZdISdpBS7Ocxj7t_Kly5sUetQA6bDAudZuqf7tsBLFTt4L-55mxiTThz9tEW3Jy.
(Accessed June 5, 2021).

Lin, B., and Du, K. (2013). What Is the Driving Force of My Country’s Energy
Productivity Growth: Based on the Decomposition of Distance Function.
J. Financial Res. (09), 84–96. Available at: https://kns.cnki.net/kcms/detail/
detail.aspx?filename�JRYJ201309007&dbcode�CJFQ&dbname�CJFD2013&
v�gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-
W2Cott. (Accessed June 5, 2021).

Lin, B., and Jiang, L. (2009). Prediction of Environmental Kuznets Curve of
Carbon Dioxide in China and Analysis of Influencing Factors. Manage.
World 4, 2736, 2009. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?
dbcode�CJFD&dbname�CJFD2009&filename�GLSJ200904005&v�hnvCX%
25mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExm
NIGtEQn. (Accessed June 5, 2021).

Liu, J., Murshed, M., Chen, F., Shahbaz, M., Kirikkaleli, D., and Khan, Z. (2021). An
Empirical Analysis of the Household Consumption-Induced Carbon Emissions
in China. Sustain. Prod. Consumption 26, 943–957. doi:10.1016/
j.spc.2021.01.006

Liu, X., and Bae, J. (2018). Urbanization and Industrialization Impact of CO2
Emissions in China. J. Clean. Prod. 172, 178–186. doi:10.1016/j.jclepro.2017.10.156

Liu, Z., Geng, Y., Lindner, S., and Guan, D. (2012). Uncovering China’s
Greenhouse Gas Emission from Regional and Sectoral Perspectives. Energy
45 (1), 1059–1068. doi:10.1016/j.energy.2012.06.007

Ma, Q., Murshed, M., and Khan, Z. (2021). The Nexuses between Energy Investments,
Technological Innovations, Emission Taxes, and Carbon Emissions in china. Energy
Policy 155 (30), 112345. doi:10.1016/j.enpol.2021.112345

Martin, W. (2008). The Carbon Kuznets Curve: A Cloudy Picture Emitted by Bad
Econometrics? Resource Energ. Econ. v30, 388–408.

Martinez-Zarzoso, I., and Bengochea-Morancho, A. (2004). Pooled Mean Group
Estimation for an Environmental Kuznets Curve for CO2. Econ. Lett. 82, 121–126.

Moomaw, W. R., and Unruh, G. C. (1997). Are Environmental Kuznets Curves
Misleading Us? the Case of CO2 Emissions. Envir. Dev. Econ. 2, 451–463.
doi:10.1017/s1355770x97000247

Murshed, M., and Dao, N. T. T. (2020). Revisiting the CO2 Emission-Induced EKC
Hypothesis in South Asia: the Role of Export Quality Improvement.GeoJournal
(8). doi:10.1007/s10708-020-10270-9

Murshed, M., Ali, S. R., and Banerjee, S. (2020). Consumption of Liquefied
Petroleum Gas and the EKC Hypothesis in South Asia: Evidence from

Cross-Sectionally Dependent Heterogeneous Panel Data with Structural
Breaks. Energ. Ecol. Environ. 6 (4), 353–377. doi:10.1007/s40974-020-00185-z

Poumanyvong, P., and Kaneko, S. (2010). Does Urbanization lead to Less Energy
Use and Lower CO2 Emissions? A Cross-Country Analysis. Ecol. Econ. 70 (2),
434–444. doi:10.1016/j.ecolecon.2010.09.029

Rahman, M. M., Saidi, K., and Mbarek, M. B. (2020). Economic Growth in South
Asia: the Role of CO2 Emissions, Population Density and Trade Openness.
Heliyon 6 (5), e03903. doi:10.1016/j.heliyon.2020.e03903

Rehman, A., Ulucak, R., Murshed, M., Ma, H., and Isik, C. (2021b). Carbonization
and Atmospheric Pollution in China: The Asymmetric Impacts of Forests,
Livestock Production, and Economic Progress on CO2 Emissions. J. Environ.
Manage. 294, 1–10. doi:10.1016/j.jenvman.2021.113059

Rehman, A., Ma, H., Ozturk, I., Murshed, M., and Dagar, V. (2021a). The Dynamic
Impacts of CO2 Emissions from Different Sources on Pakistan’s Economic
Progress: a Roadmap to Sustainable Development. Environ. Dev. Sustain..
doi:10.1007/s10668-021-01418-9

Sachs, J., Panayotou, T., and Peterson, A. (1999). Developing Countries and the
Control of Climate Change: A Theoretical Perspective and Policy Implications.
CAER Ⅱ Discussion Paper. No. 44. Available at: https://www.semanticscholar.
org/paper/Developing-Countries-and-the-Control-of-Climate-%3A-A-Sachs-
Panayotou/4a052fa713252eadb020ced77323cbf5c0d7a360 and https://www.
earth.columbia.edu/sitefiles/file/Sachs%20Writing/1999/HIIDCAERII_
DevelopingCountriesandtheControlofClimateChange_Nov1999.pdf. (Accessed
August 15, 2021).

Sadorsky, P. (2013). Do urbanization and Industrialization Affect Energy Intensity in
Developing Countries? Energ. Econ. 37, 52–59. doi:10.1016/j.eneco.2013.01.009

Saidi, K., and Hammami, S. (2015). The Impact of CO2 Emissions and Economic
Growth on Energy Consumption in 58 Countries. Energ. Rep. 1, 62–70.
doi:10.1016/j.egyr.2015.01.003

Shafik, N. (1994). Economic Development and Environmental Quality: an
Econometric Analysis. Oxford Econ. Pap. 46, 757–773. doi:10.1093/oep/
46.supplement_1.757

Shahbaz, M., Chaudhary, A. R., and Ozturk, I. (2017). Does Urbanization Cause
Increasing Energy Demand in Pakistan? Empirical Evidence from STIRPAT
Model. Energy 122, 83–93. doi:10.1016/j.energy.2017.01.080

Shahbaz, M., Nasir, M. A., and Roubaud, D. (2018). Environmental Degradation in
France: the Effects of FDI, Financial Development, and Energy Innovations.
Energ. Econ. 74, 843–857. doi:10.1016/j.eneco.2018.07.020

Shen, X., Chen, Y., and Lin, B. (2021). The Impacts of Technological Progress and
Industrial Structure Distortion on China’s Energy Intensity. Econ. Res. J. (02),
157–173. Available at: http://kns.cnki.net/kcms/detail/11...F.20210406.1417.020.html.

Shi, X, K. Wang., Cheong, T. S., and Zhang, H. (2020). Prioritizing driving factors
of household carbon emissions: An application of the LASSO model with
survey da, 104ta. Energ. Econ. 92942, 1–13. doi:10.1016/j.eneco.2020.104942

Wang, C. (2011). Sources of Energy Productivity Growth and its Distribution
Dynamics in China. Resource Energ. Econ. 33 (1), 279–292. doi:10.1016/
j.reseneeco.2010.06.005

Wang, F., Wu, L., and Yang, C. (2010). Driving Factors for Growth of Carbon
Dioxide Emissions during Economic Development in China. Econ. Res. J. 45 (02),
123–136. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=
CJFD&dbname=CJFD2010&filename=JJYJ201002011&v=O6IUlfr0xi3lU0SXtaGeZhrF%
25mmd2FUmFUiFJAc%25mmd2BkKLVVy2pyXHnkjBYtLEQTuMQiPFLT.
(Accessed August 15, 2021).

Wang, P., Wu, W., Zhu, B., and Wei, Y. (2013). Examining the Impact Factors of
Energy-Related CO2 Emissions Using the STIRPAT Model in Guangdong
Province, China. Appl. Energ. 106, 65–71. doi:10.1016/j.apenergy.2013.01.036

Wang, Z., Yin, F., Zhang, Y., and Zhang, X. (2012). An Empirical Research on the
Influencing Factors of Regional CO2 Emissions: Evidence from Beijing City,
China. Appl. Energ. 100, 277–284. doi:10.1016/j.apenergy.2012.05.038

Wei,W. X., Yang, F., and Iang, F. (2010). Impact of Technology advance on Carbon
Dioxide Emission in China. Stat. Res. 27 (07), 36–44. doi:10.19343/j.cnki.11-
1302/c.2010.07.006

Yang, L., Zhu, J., and Jia, Z. (2019). Influencing Factors and Current Challenges of CO2
Emission Reduction in China: a Perspective Based on Technological Progress.
Econ. Res. J. 54, 118–132. Available at: https://kns.cnki.net/kcms/detail/detail.
aspx?dbcode�CJFD&dbname�CJFDLAST2020&filename�JJYJ201911009
&v�ffsbFCXZ%25mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFk
KQ1VS5NSK9k258gY9lErsg. (Accessed June 5, 2021).

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 72151715

Li et al. Driving Factors of CO2 Emissions

https://doi.org/10.1016/j.econmod.2014.10.022
https://doi.org/10.1016/j.econmod.2014.10.022
https://doi.org/10.1080/00036846.2021.1907289
https://doi.org/10.1080/15567036.2018.1504145
https://doi.org/10.1016/j.ecolecon.2005.04.006
https://doi.org/10.1016/j.rser.2015.07.185
https://doi.org/10.1016/j.rser.2015.07.185
https://doi.org/10.1016/j.spc.2020.11.008
https://doi.org/10.1007/s11111-010-0101-5
https://kns.cnki.net/kcms/detail/detail.aspx?filename=SJJJ201404005&dbcode=CJFQ&dbname=CJFD2014&v=7ZdISdpBS7Ocxj7t_Kly5sUetQA6bDAudZuqf7tsBLFTt4L-55mxiTThz9tEW3Jy
https://kns.cnki.net/kcms/detail/detail.aspx?filename=SJJJ201404005&dbcode=CJFQ&dbname=CJFD2014&v=7ZdISdpBS7Ocxj7t_Kly5sUetQA6bDAudZuqf7tsBLFTt4L-55mxiTThz9tEW3Jy
https://kns.cnki.net/kcms/detail/detail.aspx?filename=SJJJ201404005&dbcode=CJFQ&dbname=CJFD2014&v=7ZdISdpBS7Ocxj7t_Kly5sUetQA6bDAudZuqf7tsBLFTt4L-55mxiTThz9tEW3Jy
https://kns.cnki.net/kcms/detail/detail.aspx?filename=SJJJ201404005&dbcode=CJFQ&dbname=CJFD2014&v=7ZdISdpBS7Ocxj7t_Kly5sUetQA6bDAudZuqf7tsBLFTt4L-55mxiTThz9tEW3Jy
https://kns.cnki.net/kcms/detail/detail.aspx?filename=SJJJ201404005&dbcode=CJFQ&dbname=CJFD2014&v=7ZdISdpBS7Ocxj7t_Kly5sUetQA6bDAudZuqf7tsBLFTt4L-55mxiTThz9tEW3Jy
https://kns.cnki.net/kcms/detail/detail.aspx?filename=SJJJ201404005&dbcode=CJFQ&dbname=CJFD2014&v=7ZdISdpBS7Ocxj7t_Kly5sUetQA6bDAudZuqf7tsBLFTt4L-55mxiTThz9tEW3Jy
https://kns.cnki.net/kcms/detail/detail.aspx?filename=SJJJ201404005&dbcode=CJFQ&dbname=CJFD2014&v=7ZdISdpBS7Ocxj7t_Kly5sUetQA6bDAudZuqf7tsBLFTt4L-55mxiTThz9tEW3Jy
https://kns.cnki.net/kcms/detail/detail.aspx?filename=JRYJ201309007&dbcode=CJFQ&dbname=CJFD2013&v=gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-W2Cott
https://kns.cnki.net/kcms/detail/detail.aspx?filename=JRYJ201309007&dbcode=CJFQ&dbname=CJFD2013&v=gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-W2Cott
https://kns.cnki.net/kcms/detail/detail.aspx?filename=JRYJ201309007&dbcode=CJFQ&dbname=CJFD2013&v=gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-W2Cott
https://kns.cnki.net/kcms/detail/detail.aspx?filename=JRYJ201309007&dbcode=CJFQ&dbname=CJFD2013&v=gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-W2Cott
https://kns.cnki.net/kcms/detail/detail.aspx?filename=JRYJ201309007&dbcode=CJFQ&dbname=CJFD2013&v=gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-W2Cott
https://kns.cnki.net/kcms/detail/detail.aspx?filename=JRYJ201309007&dbcode=CJFQ&dbname=CJFD2013&v=gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-W2Cott
https://kns.cnki.net/kcms/detail/detail.aspx?filename=JRYJ201309007&dbcode=CJFQ&dbname=CJFD2013&v=gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-W2Cott
https://kns.cnki.net/kcms/detail/detail.aspx?filename=JRYJ201309007&dbcode=CJFQ&dbname=CJFD2013&v=gazb_TmM57RsImpyvmwXBe67SvuxDMQJVNSt68dYl5hNcsOm3uxVUvRoF-W2Cott
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=GLSJ200904005&v=hnvCX%mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExmNIGtEQn
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=GLSJ200904005&v=hnvCX%mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExmNIGtEQn
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=GLSJ200904005&v=hnvCX%mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExmNIGtEQn
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=GLSJ200904005&v=hnvCX%mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExmNIGtEQn
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=GLSJ200904005&v=hnvCX%mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExmNIGtEQn
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=GLSJ200904005&v=hnvCX%mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExmNIGtEQn
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=GLSJ200904005&v=hnvCX%mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExmNIGtEQn
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2009&filename=GLSJ200904005&v=hnvCX%mmd2Bnv89Jb8ZEhkoTGxX8Ufj8SzOC2I8xzaqyApuknmDeyvWbifRExmNIGtEQn
https://doi.org/10.1016/j.spc.2021.01.006
https://doi.org/10.1016/j.spc.2021.01.006
https://doi.org/10.1016/j.jclepro.2017.10.156
https://doi.org/10.1016/j.energy.2012.06.007
https://doi.org/10.1016/j.enpol.2021.112345
https://doi.org/10.1017/s1355770x97000247
https://doi.org/10.1007/s10708-020-10270-9
https://doi.org/10.1007/s40974-020-00185-z
https://doi.org/10.1016/j.ecolecon.2010.09.029
https://doi.org/10.1016/j.heliyon.2020.e03903
https://doi.org/10.1016/j.jenvman.2021.113059
https://doi.org/10.1007/s10668-021-01418-9
https://www.semanticscholar.org/paper/Developing-Countries-and-the-Control-of-Climate-%3A-A-Sachs-Panayotou/4a052fa713252eadb020ced77323cbf5c0d7a360
https://www.semanticscholar.org/paper/Developing-Countries-and-the-Control-of-Climate-%3A-A-Sachs-Panayotou/4a052fa713252eadb020ced77323cbf5c0d7a360
https://www.semanticscholar.org/paper/Developing-Countries-and-the-Control-of-Climate-%3A-A-Sachs-Panayotou/4a052fa713252eadb020ced77323cbf5c0d7a360
https://www.earth.columbia.edu/sitefiles/file/Sachs%20Writing/1999/HIIDCAERII_DevelopingCountriesandtheControlofClimateChange_Nov1999.pdf
https://www.earth.columbia.edu/sitefiles/file/Sachs%20Writing/1999/HIIDCAERII_DevelopingCountriesandtheControlofClimateChange_Nov1999.pdf
https://www.earth.columbia.edu/sitefiles/file/Sachs%20Writing/1999/HIIDCAERII_DevelopingCountriesandtheControlofClimateChange_Nov1999.pdf
https://doi.org/10.1016/j.eneco.2013.01.009
https://doi.org/10.1016/j.egyr.2015.01.003
https://doi.org/10.1093/oep/46.supplement_1.757
https://doi.org/10.1093/oep/46.supplement_1.757
https://doi.org/10.1016/j.energy.2017.01.080
https://doi.org/10.1016/j.eneco.2018.07.020
http://kns.cnki.net/kcms/detail/11...F.20210406.1417.020.html
https://doi.org/10.1016/j.eneco.2020.104942
https://doi.org/10.1016/j.reseneeco.2010.06.005
https://doi.org/10.1016/j.reseneeco.2010.06.005
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=JJYJ201002011&v=O6IUlfr0xi3lU0SXtaGeZhrF%mmd2FUmFUiFJAc%mmd2BkKLVVy2pyXHnkjBYtLEQTuMQiPFLT
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=JJYJ201002011&v=O6IUlfr0xi3lU0SXtaGeZhrF%mmd2FUmFUiFJAc%mmd2BkKLVVy2pyXHnkjBYtLEQTuMQiPFLT
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2010&filename=JJYJ201002011&v=O6IUlfr0xi3lU0SXtaGeZhrF%mmd2FUmFUiFJAc%mmd2BkKLVVy2pyXHnkjBYtLEQTuMQiPFLT
https://doi.org/10.1016/j.apenergy.2013.01.036
https://doi.org/10.1016/j.apenergy.2012.05.038
https://doi.org/10.19343/j.cnki.11-1302/c.2010.07.006
https://doi.org/10.19343/j.cnki.11-1302/c.2010.07.006
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JJYJ201911009&v=ffsbFCXZ%mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFkKQ1VS5NSK9k258gY9lErsg
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JJYJ201911009&v=ffsbFCXZ%mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFkKQ1VS5NSK9k258gY9lErsg
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JJYJ201911009&v=ffsbFCXZ%mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFkKQ1VS5NSK9k258gY9lErsg
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JJYJ201911009&v=ffsbFCXZ%mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFkKQ1VS5NSK9k258gY9lErsg
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JJYJ201911009&v=ffsbFCXZ%mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFkKQ1VS5NSK9k258gY9lErsg
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JJYJ201911009&v=ffsbFCXZ%mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFkKQ1VS5NSK9k258gY9lErsg
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JJYJ201911009&v=ffsbFCXZ%mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFkKQ1VS5NSK9k258gY9lErsg
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=JJYJ201911009&v=ffsbFCXZ%mmd2BXHaBhuX5uzpMjUQQJLF2u2ENdBwXz9hFkKQ1VS5NSK9k258gY9lErsg
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Yang, L., and Li, Z. (2017). Technology advance and the Carbon Dioxide Emission
in China - Empirical Research Based on the Rebound Effect. Energy Policy 101
(FEB.), 150–161. doi:10.1016/j.enpol.2016.11.020

York, R., Rosa, E. A., and Dietz, T. (2003). STIRPAT, IPAT and ImPACT: Analytic
Tools for Unpacking the Driving Forces of Environmental Impacts. Ecol. Econ.
46 (3), 351–365. doi:10.1016/s0921-8009(03)00188-5

Young, A. (1998). Growth without Scale Effects. J. Polit. Economy 106 (1), 41–63.
doi:10.1086/250002

Yu, Y., and Du, Y. (2018). Impact of Technological Innovation on CO2 Emissions
and Emissions Trend Prediction on ‘new normal’ Economy in China. Atmos.
Pollut. Res. 10, 152–161. doi:10.1016/j.apr.2018.07.005/

Yu, J., Shi, X., Guo, D., and Yang, L. (2021). Economic Policy Uncertainty (EPU)
and Firm Carbon Emissions: Evidence Using a China Provincial EPU Index.
Energy Economics 94, 105071.

Zhang, C., and Lin, Y. (2012). Panel Estimation for Urbanization, Energy
Consumption and CO2 Emissions: A Regional Analysis in China. Energy
Policy 49, 488–498. doi:10.1016/j.enpol.2012.06.048

Zhu, H.-M., You, W.-H., and Zeng, Z.-f. (2012). Urbanization and CO2 Emissions:
A Semi-parametric Panel Data Analysis. Econ. Lett. 117 (3), 848–850.
doi:10.1016/j.econlet.2012.09.001

Zi, C., Jie, W., and Jie, C. (2016). CO2 Emissions and Urbanization Correlation in
China Based on Threshold Analysis. Ecol. Indicators 61, 193–201. doi:10.1016/
j.ecolind.2015.09.013

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li, Siu and Zhao. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is cited,
in accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 72151716

Li et al. Driving Factors of CO2 Emissions

https://doi.org/10.1016/j.enpol.2016.11.020
https://doi.org/10.1016/s0921-8009(03)00188-5
https://doi.org/10.1086/250002
https://doi.org/10.1016/j.apr.2018.07.005/
https://doi.org/10.1016/j.enpol.2012.06.048
https://doi.org/10.1016/j.econlet.2012.09.001
https://doi.org/10.1016/j.ecolind.2015.09.013
https://doi.org/10.1016/j.ecolind.2015.09.013
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Driving Factors of CO2 Emissions: Further Study Based on Machine Learning
	Introduction
	Literature Review
	Data and the Variables
	CO2 Emissions
	Industrial Structure Rationalization Index
	Other Variables and Data

	Methodology
	Linear Models–Linear Regression, Lasso, and ElasticNet
	Nonlinear Models: Classification and Regression Tree, Support Vector Regression, and k-Nearest Neighbors Regression
	Ensemble Methods
	Bagging Methods: Random Forest and Extra Trees
	Boosting Methods: XGBoost, AdaBoost, and Gradient Boost

	Artificial Neural Networks

	Results
	Linear Models: Linear Regression, Lasso, and ElasticNet
	Nonlinear Models: Classification and Regression Tree, Support Vector Regression, and k-Nearest Neighbors Regression
	Ensemble Methods
	Artificial Neural Network

	Discussions
	Conclusion and Policy Implications
	Data Availability Statement
	Author Contributions
	Funding
	References


