
Lightning Strike Location
Identification Based on 3D Weather
Radar Data
Mingyue Lu1, Yadong Zhang1, Zaiyang Ma2,3,4*, Manzhu Yu5, Min Chen2,3,4, Jianqin Zheng6

and Menglong Wang1

1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information
Science and Technology, Nanjing, China, 2Key Laboratory of Virtual Geographic Environment (Ministry of Education of PRC),
Nanjing Normal University, Nanjing, China, 3State Key Laboratory Cultivation Base of Geographical Environment Evolution
(Jiangsu Province), Nanjing, China, 4Jiangsu Center for Collaborative Innovation in Geographical Information Resource
Development and Application, Nanjing, China, 5Department of Geography, The Pennsylvania State University, University Park,
University Park, IL, United States, 6Wenzhou Meteorological Bureau, Wenzhou, China

Lightning is an instantaneous, intense, and convective weather phenomenon that can
produce great destructive power and easily cause serious economic losses and
casualties. It always occurs in convective storms with small spatial scales and short life
cycles. Weather radar is one of the best operational instruments that can monitor the
detailed 3D structures of convective storms at high spatial and temporal resolutions. Thus,
extracting the features related to lightning automatically from 3D weather radar data to
identify lightning strike locations would significantly benefit future lightning predictions. This
article makes a bold attempt to apply three-dimensional radar data to identify lightning
strike locations, thereby laying the foundation for the subsequent accurate and real-time
prediction of lightning locations. First, that issue is transformed into a binary classification
problem. Then, a suitable dataset for the recognition of lightning strike locations based on
3D radar data is constructed for system training and evaluation purposes. Furthermore,
the machine learning methods of a convolutional neural network, logistic regression, a
random forest, and k-nearest neighbors are employed to carry out experiments. The
results show that the convolutional neural network has the best performance in identifying
lightning strike locations. This technique is followed by the random forest and k-nearest
neighbors, and the logistic regression produces the worst manifestation.
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INSTRUCTION

Lightning is a spark of electricity in the atmosphere between clouds, the air, or the ground (Maggio
et al., 2009). Its high voltage, high temperature, and other physical effects can produce great
destructive power in an instant, which is prone to damaging the personal safety of ground personnel.
In particular, lightning can easily cause damage to commercial buildings, electrical equipment,
homes. Due to the rapid economic development and the massive increase in the amount of electrical
equipment, lightning disasters have become one of the ten most serious natural disasters announced
by the International Decade for Natural Disaster Reduction (NOAA National Severe Storms
Laboratory, 2021). Moreover, lightning is a small-scale strong convective weather phenomenon,
which makes it difficult to predict accurately. Since lightning always occurs in convective storms with
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small spatial scales and short life cycles, weather radar is one of
the best operational instruments that can monitor the detailed 3D
(Three dimensional) structures of such storms at high spatial and
temporal resolutions. Thus, extracting the features related to
lightning automatically from 3D weather radar data to identify
lightning strike locations would significantly benefit future
lightning predictions.

The current research on lightning can be roughly divided into
two categories: numerical analysis and statistical methods.
Numerical analysis is a mesoscale numerical weather
prediction system that mainly uses the Weather Research and
Forecasting (WRF) Model and other models to simulate strong
convection processes and discusses the influence of different
physical parameterization schemes on the simulation effect
(NCAR Mesoscale & Microscale Meteorology Laboratory,
2021). Barthe et al. (2010) estimated total lightning by the
WRF model according to the correlation between the flash
speed and the available model parameters (e.g., ice water path,
ice mass flux product). Zepka et al. (2014) used theWRFmodel to
study potential lightning locations based on the probability of
lightning occurrence within the location of interest. Giannaros
et al. (2016) used lightning to improve convective representations
by controlling the triggers of model convection parameterization
schemes on the basis of WRF-LTNGDA. Gharaylou et al. (2020)
used the WRF-ELEC model to predict the impact of initial
conditions on lightning activity. However, the coarse temporal
and spatial resolutions used in numerical analysis method limit
their utility in accurate lightning strike location recognition tasks.

Statistical methods are usually applied to study lightning based
on prior knowledge. Combining the density-based spatial
clustering of applications with noise (DBSCAN) algorithm and
the kernel density algorithm, Chen et al. (2017) eliminated
insignificant locations with rare lightning strikes. The National
Oceanic and Atmospheric Administration (NOAA) and the
Cooperative Institute for Meteorological Satellite Studies
(CIMSS) developed the empirical probability of severe
(ProbSevere) model in 2018. It extracts information related to
thunderstorm development from several data sources
automatically to produce timely, short-term, statistical
forecasts of thunderstorm intensity (Cintineo et al., 2018).
Wang et al. (2019) established a probabilistic warning model
for strong convective weather, such as hail and lightning, by
multiple logistic linear regression. Zhang et al. (2020) presented a
density-based convective storm identificationmethod for weather
radar data. North et al. (2020) used the heat equation to define a
redistribution kernel, and a simple linear advection scheme was
shown to work well in a lightning prediction example. Yücelbaş
et al. (2021) used effective meteorological parameters to pre-
estimate distance-based lightning. Mostajabi et al. (2019) used
machine learning techniques to successfully hindcast nearby and
distant lightning hazards by looking at single-site observations of
meteorological parameters. Karami et al. (2020) presented a
machine learning-based method to locate lightning flashes
using calculations of lightning-induced voltages on a
transmission line. Zhu et al. (2021) presented a machine-
learning approach (support vector machines) to classify cloud-
to-ground and intracloud lightning. Nevertheless, these methods

use a limited number of data factors to analyze the relationships
with lightning strike locations, and the recognition effects are
often unsatisfactory.

Weather radar is one of the most effective instruments for
monitoring the occurrence of lightning. It can be used to
indirectly identify the electrification process within a
developing thunderstorm because grapples and hail particles
return large reflectivity echoes (Wei and Hsieh, 2020). As
highly reliable data in the field of meteorological detection,
radar data have been widely considered by meteorologists, and
many explorations and practices have been carried out. Lu et al.
(2017) presented a spatial lattice model based on sampling
particles that was proposed to support both the representation
and analysis of meteorological information. A 3D modeling
strategy was used for weather radar data analysis (Lu et al.,
2018). Based on the data of nine weather radar slices at
different elevations, Wang et al. (2018) used a convolutional
neural network model to identify the spatial structures of three-
dimensional abnormal clouds when hail lands. Jiang et al. (2019)
utilized multisource convolutional neural networks to extract the
features of various weather-related data obtained from Doppler
radar to identify thunderstorms and gales. Ling et al. (2020)
proposed a new method based on stacked autoencoders to
identify abnormal weather radar echo images. Li et al. (2020a)
built a dataset from weather radar echo images using different
depth models, such as a simple convolutional neural network
(CNN), a recurrent neural network (S-RCNN), and a
spatiotemporal recurrent convolutional neural network (ST-
RCNN). The recognition performances of the learning models
on thunderstorms and gales were compared. Zhou et al. (2020)
proposed a new semantic segmentation-based deep learning
network for cloud-to-ground lightning nowcasting named
LightningNet. This model conducts reliable lightning
nowcasting by using multisource data.

As mentioned above, the current related experiments are
largely based on two-dimensional projection radar data or
regenerated product radar data. In fact, when weather radar
equipment is working, it scans in the surrounding three-
dimensional space, and the obtained radar data have obvious
three-dimensional characteristics. These studies ignore the
potential three-dimensional characteristics in radar data. It is
difficult to restore the real three-dimensional spatial data scene
around a target, which has caused relevant research to have
certain deficiencies. Machine learning can extract hidden
feature information from multidimensional data, and the
recognition of lightning strike locations based on three-
dimensional radar detection data has become possible.

In this article, we first transform the problem of identifying
lightning strike locations into a classification problem. Then, a
sliding window is used to construct a lightning feature dataset
based on three-dimensional weather radar data and lightning
location data. Furthermore, logistic regression, a random forest,
k-nearest neighbors, and a convolutional neural network are
employed to identify lightning strike locations. The
contribution of this paper is a first attempt to apply deep
learning methods to the identification of lightning strike
locations based on 3D radar data, thereby laying the
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foundation for subsequent accurate and real-time lightning
location predictions. This work is expected to provide a new
method for mitigating and preventing meteorological and
lightning disasters.

The rest of this paper is organized as follows. In Data, we
introduce the utilized data and the study area. InMethodology, we
provide the details of establishing the dataset based on lightning
location data and three-dimensional weather radar data and
briefly introduce the classification algorithms used, including
logistic regression, a random forest, k-nearest neighbors and a
convolutional neural network. In Experiments, we present the
experimental setup and results. Finally, we conclude and discuss
future research directions in. Conclusions and suggestions for
future work.

DATA

Data and Preprocessing
Lightning location data and three-dimensional weather radar data
are provided by the Ningbo Meteorological Bureau. Lightning
location data is obtained by the ADTD (Advanced TOA and
Direction system) lightning location systems, and ADTD is
ground-based advanced time of arrival and direction systems
cloud-to-ground lightning detection sensors. At present, the
system in the meteorological department has been widely used in
China. Its detection efficiency is between 80 and 90%, and the error is
generally several hundred meters to several kilometers. The single
station detection radius of the lightning positioning system is
approximately 300 km (Shi, 2016; Xu and Zhou, 2017). The
lightning data contain fields denoting the time, location (latitude

and longitude), polarity effect, peak intensity, steepness, and other
information of the ground flash return process, providing great help
when studying lightning activity. In this article, lightning data with
intensities less than 10 KA are removed, and those whose
corresponding radar combined reflectance (CR) grid values are
less than 10 DBZ are also eliminated to ensure data accuracy.
After preprocessing, the lightning location data are used as the
ground truth. There is a clear correlation between the occurrence of
lightning and radar echoes top heights and echo intensity
(Michimoto, 1991; Futyan and Del Genio, 2007). At the same
time, weather radar data is considered to be reliable detection
data in the meteorological field. Some scholars have used radar
data to predict lightning data. Therefore, we used radar echo data to
identify lightning, hoping to provide preliminary research for
lightning prediction based on radar data.

The weather radar data used in this paper are scanned and
generated by the S-band Doppler weather radar system. Doppler
weather radar has a high temporal-spatial resolution (1 km/
6 min). It provides information about the positions and
intensities of precipitation particles and particle motion
information. Therefore, it is an effective tool for monitoring
microscale and mesoscale convective systems and plays an
essential role in detecting severe weather. Weather radars
perform a 3D scan of the atmosphere. A radar system scans a
full volume every 5–6 min. It scans starting from the lowest
elevation angle and then increases the scanning angle gradually.
Finally, it provides data at nine elevation angles according to a
certain scanning strategy. Each elevation scan forms a cone with
an output of 2D raster data of the same size, and all 2D raster data
created at different elevation angles constitute 3D raster data with
a strict vertical alignment (Han et al., 2019). In this article, 3D

FIGURE 1 | Geographical locations of Ningbo.
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weather radar data are used as input data to identify lighting
strike locations.

Study Area
Ningbo is a sub-provincial city in northeastern Zhejiang
Province, People’s Republic of China, as shown in Figure 1.
The spatial extent is (28° 51’ - 30° 33′N; 120° 55’ - 122° 16′ E). It is
bounded on the east by the East China Sea and the Zhoushan
Archipelago, on the north by Hangzhou Bay (across which it faces
Jiaxing and Shanghai), on the west by Shaoxing, and on the south
by Taizhou. Thunderstorms frequently occur in Ningbo, and the
direct economic losses caused by lightning strikes are as high as
millions of yuan each year. Therefore, Ningbo is selected as the
study area in this article.

METHODOLOGY

Establishing the Dataset
First, the lightning data and radar data should be matched
spatially and temporally. A full radar scan generates one

complete set of radar volume data, consuming approximately
5–6 min. Thus, for a specific complete radar volume dataset, the
lightning data that occur during the period of the radar data
scan are selected, and those beyond the spatial extent of the
specific radar data are removed to ensure spatial consistency.
Then, the final selected lightning data and the specific radar data
form one group in which the lightning data and the radar data
are well matched spatially and temporally. Therefore, the
dataset in this article is constructed based on groups by the
sliding window strategy. First, based on the radar reflectivity
raster data, a sliding window with a size of M ×N (M is the size of
the row, N is the size of the column) is set up to obtain the
feature samples. Each feature sample contains nine layers of
radar reflectivity raster data within the sliding window (with a
size of M×N). Second, if one or more lightning data points are
located on the center grid of the sliding window, the sample in
this sliding window is labeled 1 (with lightning). Otherwise, the
corresponding sample is labeled 0 (without lightning). Figure 2
illustrates the extraction of feature data with lightning (samples
labeled 1). After the traversal of the sliding window, a dataset
with labels of 1 or 0 is established.

FIGURE 2 | Extraction of feature data with lightning.

FIGURE 3 | Flowchart of the lightning identification solution used in this article.
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We collect 30,447 samples labeled 1 and 493,557 samples
labeled 0 for a total of 524,004 samples from July to September.
These data are processed and packaged to build a 3D spatial
dataset. We divide into training sets and test sets, and were
randomly scrambled during the training. The test subset
contained samples for the second half of September 2018
(104,800 samples), whereas the training set included the
remaining samples.

During the training period, the extracted feature data (samples
labeled 1 or 0) are fed into various classification algorithms to train
a two-class classification model. Furthermore, the trained model is
applied to identify the new samples. If the output of the
classification result is 1, it proves that there is lightning in the
sample. If the output is 0, there is no lightning in the sample.
Figure 3 shows an overview of the solution used in this paper. It
should be noted that thisM×N sliding window can be set according
to the specific application. For example, in this article, we set this
sliding window size to 5 × 5 (5 columns and five rows).

Classification Algorithms
The identification of lightning strike locations by weather radar
data is regarded as a classification problem. We utilize some
frequently-used binary classification algorithms, namely, logistic
regression (LR) (Wright, 1995; Kleinbaum et al., 2002), K-nearest
neighbors (KNN) (Dudani, 1976; Kramer, 2013), a random forest
(RF) (Liaw andWiener, 2002; Pal, 2005) and a convolutional neural
network (CNN) (Wang, et al., 2019; Sothe et al., 2020), to conduct
our experiments based on the dataset constructed in the previous
section. The following is a brief introduction of these approaches.

Logistic regression (LR): LR is essentially a classification
method (Cheng et al., 2006). To solve a classification problem,
the model is trained according to some known training sets, and
then the classes of the new data are predicted. The goal of LR is to
find a decision boundary with a sufficient degree of
discrimination so that the two categories can be well
separated. In this paper, the parameters we used in LR are set
as follows, penalty is L2 regularization, Inverse of regularization
strength is 1, the maximum number of iterations for the solver to
converge is 500, and a binary problem fits for each label.

K-nearest neighbors (KNN): KNN is a classification algorithm
(Liu et al., 2019). To determine the category of an unknown
sample, KNN uses all the samples of the known categories as

references and calculates the distances between the unknown
sample and all the known samples. The K known samples that are
closest to the unknown sample are selected. According to the
majority-voting rule, the unknown sample and the K-nearest
samples are classified into one category. The parameters of KNN
are we set to: the number of neighbors is 9, leaf size is 5, the
number of parallel jobs to run for neighbors search is 1.

Random forest (RF): RFs are commonly used in regression and
classification, as they improve the prediction accuracy of the
resulting model without significantly increasing the amount of
required calculations (Gao et al., 2019; Li et al., 2020b). An RF is
not sensitive to multivariate common linearity, the results are
relatively robust to missing data and unbalanced data, and it can
effectively predict the effects of up to thousands of explanatory
variables. The parameters of the RF in this article are we set as: the
number of trees in the forest is 100, the maximum depth of the
tree is 5, random_state is the seed used by the random number
generator set to 2.

Convolutional neural network (CNN): A CNN is a type of
feedforward neural network that includes convolution
calculations and has a deep structure (Lei et al., 2019; Wan
et al., 2019). In deep learning, CNNs have achieved great
success in image classification. CNNs possess the ability to
characterize learning; they can classify input information
according to its hierarchical structure and identify similar
features at different locations in space. In this paper, the
CNN structure contains three parts: an input layer, a hidden
layer, and an output layer. The input layer can handle
multidimensional data. We put the training dataset into the
input layer. The hidden layer is the core of the CNN, including
the convolutional layer, pooling layer and fully connected layer.
For classification problems, the output layer returns the
probability that the input image belongs to a certain
category. For us, the output of the output layer is the
probability of a lightning strike location.

Figure 4 shows the overall CNN architecture used in this
article. The CNN has seven layers, two convolutional layers and
two pooling layers that appear alternately. There are three fully
connected (FC) layers connected to the last feature map. Finally,
the fully connected layers output the final classification results.
The size of the dataset input into the CNN is 9 × 5×5, and the
filter size is set to 9 × 1×1 (here, nine refers to the weather radar
data at nine different heights). 9 × 5×5 in the first layer means that
this layer has nine different elevation radars and that each level
has a size of 5 × 5.9 × 4×4 in the second layer means that the
feature map generated after sample pooling has a size of 9 × 4×4.
Other layers are similar ultimately fully connected layer (FC)
output results. We use the cross-entropy loss as the objective

FIGURE 4 | Architecture of the CNN used in this study.

TABLE 1 | Confusion matrix.

Identified class

Strike Nonstrike

Actual Class Strike TP FN
Nonstrike FP TN
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function for training the CNN. For optimization, the Adam
optimizer is leveraged to train the network, the batch size is
64, and the number of epochs is set to 100. The learning rate is
0.001. Note that different from conventional machine learning
approaches, CNNs can be directly applied to radar images
without needing the handcrafted features above.

EXPERIMENTS

Experimental Setup
In this paper, we conduct comparative experiments with the dataset
generated in Methodology. For these classification methods, the
training set is employed for model training, and the test set is

TABLE 2 | The results are shown in different models.

Classifier Precision FPR Recall Accuracy F-measure ROC AUC P-R

LR 0.749 0.251 0.391 0.958 0.513 0.691 0.328
KNN 0.763 0.237 0.558 0.965 0.644 0.774 0.448
RF 0.835 0.165 0.538 0.967 0.654 0.765 0.475
CNN 0.842 0.158 0.604 0.967 0.703 0.798 0.534

The bold value is the best value in each column.

FIGURE 5 | Lightning locations observed and identified by the CNN model on September 20, 2018 (In upper, the blue dot represents the observed lightning. In
lower, the dark blue dot (Miss_lightning) is miss identified lightning, the gray dot (False_lightning) represents the falsely reported lightning, and the red dot represents the
correctly identified lightning.).
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used to verify the lightning classification results. In brief, the purpose
is to explore the classification outcomes, which are regarded as the
identification results of the lightning strike locations.

In addition, all classification algorithms utilized in this article are
executed in the python37 environment. These machine learning
methods (LR, the RF and KNN) are developed using the scikit-learn
(sklearn) library. Sklearn is a simple and efficient tool for predictive
data analysis. PyTorch’s is used to efficiently implement the CNN
approach. The CNN uses a GPU to accelerate the computation
process. Moreover, the hardware environment contains a Core i7-
9500 (2.6 GHz) CPU and a GeForce GTX 1065 GPU.

Performance Criteria
A confusion matrix can be used to assess the accuracy of binary
classification results (Stehman, 1997). The confusion matrix
shown in Table 1 is used. In Table 1, Tp and TN represent
the numbers of true positive and true negative cases, respectively,
while FP and FN denote the numbers of false positive and false
negative cases, respectively (Pakdaman et al., 2020). In Table 1,
‘‘strike’’ and ‘‘nonstrike’’ indicate the lightning strike and non-
lightning-strike events, respectively.

Based on Table 1, to evaluate the performance of the proposed
algorithms, seven conventional criteria are considered: precision,
false positive rate (FPR), recall, accuracy, F-measure, area under
the curve (AUC), and precision-recall (P-R) (Pakdaman et al.,
2020; Luque et al., 2019; Sofaer et al., 2019). Precision is
intuitively the ability of a classifier to not label a negative
sample as positive and can be calculated by:

Precision � TP
TP + FP

(3)

False positive rate (FPR): The proportion of real negative
examples predicted to be positive can be calculated by:

FPR � FP
FP + TP

(4)

Recall is the ability of the classifier to find all the positive samples
and can be calculated by:

Recall � TP
TP + FN

(5)

Accuracy is the proportion of the correct predictions to the total
number of predictions:

Accuracy � TP + TN
TP + FN + FP + TN

(6)

The F-measure can be interpreted as a weighted average of the
precision and recall, where the best F-measure is 1 and at the
worst is 0. The relative contributions of precision and recall to the
F-measure are equal. The formula for the F-measure is:

F −measure � 2*
precision p recall
precision + recall

(7)

The area under the receiver operating characteristic curve
(ROCAUC) is defined as the area enclosed by the coordinate axes
under the ROC curve (Luque et al., 2019). The value of this area
cannot be greater than 1. The value range of the AUC is between
0.5 and 1. The closer the AUC is to 1.0, the higher the authenticity
of the detection method; when it is equal to 0.5, the authenticity is
lowest, and the method has no application value.

Precision-recall (P-R) is a useful measure of prediction success
when the classes are very imbalanced (Sofaer et al., 2019; Saito
and Rehmsmeier, 2015). When the number of positive samples is
seriously less than the number of negative samples, the P-R curve
can more intuitively express the differences between models than
other metrics, which is more appropriate. Since the collected
dataset contains unbalanced data, P-R is required. In this paper,
we use the area under the P-R curve to express the P-R curve.

Results Analysis
We conduct experiments using the constructed dataset to
compare the performance of the four models, namely, LR,

FIGURE 6 | Lightning locations observed and identified by the CNNmodel on September 21, 2018 (In Figure 6A, the blue dot represents the observed lightning. In
Figure 6B, the dark blue dot (Miss_lightning) is miss identified lightning, the gray dot (False_lightning) represents the falsely reported lightning, and the red dot represents
the correctly identified lightning).
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KNN, RF, and a CNN. The precision, false positive rate (FPR),
recall, accuracy, F-measure, area under the curve (AUC), and
precision recall (P-R) values of the test samples produced by the
three models are recorded as the final results. For these indicators,
smaller FPRs are better, and the larger the other metrics are, the
better they are.

Table 2 shows that the model with the best performance in
term of recognizing the lightning strike locations is the CNN,
followed by the RF and KNN, and LR has the worst performance.
The CNN has the best precision, recall, accuracy, and F-measure,
and it has the lowest FPR at 0.158. More importantly, the AUC
and P-R performance of the CNN is far superior to that of other
models. P-R is an important model identification indicator. The
area under the PR curve yielded by the CNN is 0.534, which is
0.059 higher than those of the other best-performingmodels. This
shows that CNN can not only better obtain the hidden data
features among the multilayer radar data but also has better
model ability and can adapt to complex multidimensional data.
Notably, the RF performs best aside from the CNN. Its P-R and
other criteria (except Recall and AUC) are the best among the
three machine learning methods, indicating that the RF is also an
effective algorithm and has a certain effect on identifying
lightning strikes. Among all the methods, LR performs worst.
Not only are its AUC and P-R the worst, but its FPR is the highest
among those of all the models, which shows that LR has difficulty
dealing with the identification of lightning strike locations.

In addition, all models have high accuracy, but the PR values of
the LR model, DT model, and KNN model do not perform well.
This means that when identifying lightning strikes, accuracy
alone cannot measure the true accuracy of the given model.
This may be due to the imbalance between positive and negative
samples in the created dataset. It is undeniable that the CNN
model has the best recognition effect, and we use it for a
subsequent case analysis.

Case Study 1–September 20, 2018
To verify the CNN model, we apply the model in a real
environment. Under the influence of convective cloud clusters,
intense lightning activities occurred in Ningbo in northeastern
Zhejiang Province of China on September 20, 2018. The China
Meteorological Administration (CMA) Public Meteorological
Service Centre issued a lightning warning. Therefore, the
weather radar data obtained from Ningbo at 10:54 (Universal
Time) on that day are selected for use.

Lightning is not particularly stable and normally drifts. The
deviation of the thunderstorm center is less than 5%, and the
accuracy of the identification location is within the acceptable
(Huang et al., 2019). In order to better quantify and evaluate the
recognition results of the model, we believe that the identified
lightning strike location within 1 km around the lightning strike
location is also effective.

Figure 5 shows the observed lightning strike position and the
result identified by the CNNmodel. The upper part of the figure is
the distribution of the observed lightning strike position, and the
lower part is the result of the CNN model identification. The
average probability of correct hit, miss identified, false identified
for this case amounted to 0.763, 0.235, 0.237. It can be seen that

the CNN can identify the approximate locations of lightning, and
the model has a good recognition effect with respect to
concentrated lightning, which proves that it is feasible to use a
CNN combined with radar data in a real environment to identify
lightning. However, the disadvantage is that the range of lightning
strike locations identified by the CNN is larger than the actual
landing area. These situations may be due to the fact that the
model training samples are not sufficient or that some lightning
cannot be detected by lightning positioning equipment. It is also
possible that we have overlooked certain parameters that have
important impacts on lightning recognition. Furthermore,
another shortcoming is that the CNN model is not ideal for
the recognition of discrete lightning location data. Some scattered
lightning bolts are not recognized.

Case Study 2–September 21, 2018
On August 23, 2018, a few thunderstorms occurred in south
ningbo. We chose the radar data at 06:48 UTC that day for the
examination. Figure 6 shows Lightning locations observed and
identified by the CNN model. Figure 6A shows the observed
lightning strike locations. and Figure 6B shows the results of
lightning strikes identified by the CNN. The average probability
of correct hit, miss identified, false identified for this case
amounted to 0.725, 0.271, 0.275. In this case, the CNN model
also can identify the approximate location of the lightning strike
locations, but the identification results of the discretely
distributed lightning points are poor and cannot be prepared
for identification. Nevertheless, it is possible to use the CNN
model to identify lightning strike locations.

CONCLUSIONS AND SUGGESTIONS FOR
FUTURE WORK

In this article, we convert the problem of identifying lightning
strike locations into a binary classification problem, and a sliding
window strategy is utilized to construct a dataset suitable for the
identification of lightning strike locations based on 3D weather
radar data. Then, based on the constructed dataset, four common
classification algorithms (LR, an RF, KNN and a CNN) are applied
to explore the identification of lightning strike locations. The
results show that the CNN has the best performance in terms
of the identification of lightning strike locations. Its precision is
0.842, the recall is 0.604, the accuracy is 0.967, the FPR is 0.158, and
the area under the P-R curve is also outstanding at 0.534. The CNN
is followed by the RF and KNN, LR has the worst performance.
This proves that a deep learning method can conduct autonomous
learning of spatial feature data with the support of a large amount
of multidimensional data and can obtain more hidden data
information relationships than other approaches. Lightning
strike location recognition based on three-dimensional radar
detection data is efficient and can be used to a certain extent.
However, because the occurrence of lightning is a relatively low-
probability event, it is difficult to identify with weather radar data.
The essence of this situation is an imbalanced classification
problem. When constructing the dataset, we lack the
consideration of a balanced sampling design, which to a certain
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extent causes the problem of too large a lightning strike location to
being identified by the CNN model. In the future, the impact of
unbalanced samples on the identification of lightning strike
locations will be considered. In addition, with the rapid
development of deep learning, an increasing number of
methods and technologies can be applied to the recognition of
lightning strikes. Other modeling methods may be able to obtain
better results with respect to the recognition of lightning strikes.
We need to evaluate these numerous methods in the future. We
hope to obtain a more accurate method for identifying lightning
strike locations and reduce the false positive rate of lightning
detection to provide certain decision-making support for
disaster prevention and mitigation.
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