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The Leuser Ecosystem is one of the essential landscapes in the world for biodiversity
conservation and ecosystem services. However, the Leuser Ecosystem has suffered many
threats from anthropogenic activities and changing climate. Climate change is the greatest
challenge to global biodiversity conservation. Efforts should be made to elaborate climatic
change metrics toward biological conservation practices. Herein, we present several
climate change metrics to support conservation management toward mammal species in
the Leuser Ecosystem. We used a 30-year climate of mean annual temperature, annual
precipitation, and the BIOCLIM data to capture the current climatic conditions. For the
future climate (2050), we retrieved three downscaled general circulation models for the
business-as-usual scenario of shared socioeconomic pathways (SSP585). We calculated
the dissimilarities of the current and 2050 climatic conditions using the standardized
Euclidean distance (SED). To capture the probability of climate extremes in each period
(i.e., current and future conditions), we calculated the 5th and 95th percentiles of the
distributions of monthly temperature and precipitation, respectively, in the current and
future conditions. Furthermore, we calculated forward and backward climate velocities
based on the mean annual temperature. These metrics can be useful inferences about
species conservation. Our results indicate that almost all of the endangered mammals in
the Leuser Ecosystem will occur in the area with threats to local populations and sites.
Different conservation strategies should be performed in the areas likely to present different
threats toward mammal species. Habitat restoration and long-term population monitoring
are needed to support conservation in this mega biodiversity region.
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INTRODUCTION

The Leuser Ecosystem is one of the essential landscapes in the
world for biodiversity conservation and ecosystem services (Le
Saout et al., 2013). It harbors various ecoregions such as tropical
lowland and montane rainforests, coastal ecosystem, and peatland
areas (Olson et al., 2001). This landscape represents the most
critical refugia for many endangered mammals in Asia, for
example, Sumatran orangutan, elephant, tiger, and rhinoceros,
including a massive endemic diversity plant species (Cochard,
2017). Furthermore, the Leuser Ecosystem also contributed to
regulating services like carbon sequestration (Warren et al.,
2017), water provisioning, and economic benefits toward the
local community (Janssen, 2003; Cochard, 2017).

Nevertheless, the Leuser Ecosystem has been subjected to
anthropogenic activities that lead to deforestation and climate
disturbance. Infrastructure development has been rapidly known
as a potential threat to the Leuser Ecosystem (Sloan et al., 2018).
Besides, illegal logging and agricultural expansion are also
responsible for forest disturbance within the Leuser Ecosystem
(Gaveau et al., 2009). Degradation of tropical peatlands within the
area caused high carbon emissions to the atmosphere due to
biomass loss, wildfires, and peat oxidation that lead to climate
change (Page et al., 2011). Previous studies show that the
destruction of tropical rainforests due to anthropogenic
activities has been linked to population declines in many
mammals such as Sumatran rhino, tiger, elephant, and
orangutan (Kinnaird et al., 2003; Linkie et al., 2008; Wich et al.,
2016; Weiskopf et al., 2019). Climate change can also induce
habitat range contraction and distribution shifting for mammal
species that lead to species extinction and extirpation (Chen et al.,
2011; Dirzo et al., 2014; Ribeiro et al., 2016; Condro et al., 2021).
Furthermore, the previous study also showed that the Leuser
Ecosystem would experience significant biodiversity extirpations
due to climate and habitat changes (Wich et al., 2016; Condro et al.,
2021). However, there are still few studies about climate change
impacts on biodiversity in the Leuser Ecosystem (Gaveau et al.,
2009; Wich et al., 2016). Therefore, measuring the climate change
impacts on biodiversity within the Leuser Ecosystem should be
carried out to point out future conservation strategies.

Conservation strategies designed to improve biodiversity’s
resilience to climate change are inextricably linked to broader
conservation activities (Game et al., 2011). Climate change
metrics are crucial methods for mapping potential biodiversity
risks in the future that helps predict which species are likely to
adapt in space to a novel climate, migrate, and stay in a habitat
with a newly suitable climate (Carroll et al., 2015). For instance,
climate change metrics commonly used are climatic anomalies,
change in climate extremes probability, and climatic change
velocity (Borges and Loyola, 2020). Climate anomalies and
change in climate extremes probability calculate the magnitude
of change in the average and extreme conditions, respectively, at a
given locality through time (Garcia et al., 2014). The velocity of
climate change evaluates the exposure of species in the landscape
to climate change (Loarie et al., 2009; Hamann et al., 2015). Those
metrics allow us to assess whether the current protected areas will
serve as refugia or suffer biodiversity extirpation and consequent

changes in ecosystem processes (Araújo et al., 2011; Carroll et al.,
2015). This study defines refugia as the areas with high future
climatic stability (Watson et al., 2013; Sales et al., 2019).

Protected areas should be recognized as part of a
comprehensive ecosystem-based management strategy that
considers the complex and cumulative effects of anthropogenic
activities. Nevertheless, taking climate change into account while
designing and evaluating protected areas is still in its beginning
(Brito-Morales et al., 2018). Herein, we present several metrics of
the climate change, that is, standardized climatic anomalies,
change in the probability of local climate extremes, and
climate velocity to support conservation management toward
endangered mammal biodiversity in the Leuser Ecosystem.

MATERIALS AND METHODS

Study Area
The study was conducted in the Leuser Ecosystem (Figure 1),
located in the north of Sumatera, Indonesia. The Leuser
Ecosystem covered two provincial administrative areas, that is,
North Sumatra and Aceh provinces. The Leuser Ecosystem covers
2.6 million hectares and consists of either protected areas
(i.e., nature conservation areas, nature reserve areas, and
hunting parks) or unprotected areas (i.e., production forests,
limited production forests, and convertible forests). The Leuser
Ecosystem exemplifies how discrepancies in forest management
by central and regional governments have undermined
conservation planning and infrastructure growth (Sloan et al.,
2018). We evaluated protected areas within the Leuser Ecosystem
based on climate change metrics and mammal species richness.

Climatic Data
We used a 30-year climate of mean annual temperature, annual
precipitation, and BIOCLIM variables at 30–arc second spatial
resolution (∼1 km) retrieved from WorldClim version 2.1
(Hijmans et al., 2005; Booth et al., 2014; Fick and Hijmans,
2017) for current climatic conditions. For the future climate in
2050, we retrieved three downscaled general circulation models
(GCMs) for the business-as-usual scenario of shared
socioeconomic pathways (SSP585) from the Coupled Model
Intercomparison Project phase 6 multi-model dataset
projections (Riahi et al., 2017). We followed the delta methods
described by Navarro–Racines et al. (2020) to perform statistical
downscaling of the GCM dataset and used a simple average to
obtain the ensemble model from 3 GCMs (Watson et al., 2013).
The three models used in the study were MIROC-ES2L and
MIROC6 from the University of Tokyo, National Institute for
Environmental Studies, and the Japan Agency for Marine-Earth
Science and Technology (Tatebe et al., 2019; Hajima et al., 2020);
and MRI-ESM 2.0 from the Meteorological Research Institute,
Tsukuba, Japan (Yukimoto et al., 2019).

Metrics of Climate Change Calculations
Standardized Climatic Anomalies
We calculated the dissimilarities of the current and 2050 climatic
conditions by using the standardized Euclidean distance (SED)
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for temperature and precipitation according to Williams et al.
(2007). This study used the mean annual temperature (Bio1) and
annual precipitation (Bio12) to evaluate temperature and
precipitation, respectively. The temporal differences for the
climatic variables were standardized by the interannual
standard deviation for both variables from the seasonality of
temperature (Bio4) and seasonality of precipitation (Bio15) in the
current condition. High SED values correspond to significant
changes in temperature and precipitation (Garcia et al., 2014).

Change in Probability of Local Climate Extremes
To capture the probability of climate extremes in each period
(i.e., current and future conditions), we calculated the 5th and
95th percentiles of the distributions of monthly temperature and
precipitation, respectively, in the current and future conditions.
Since the daily data were unavailable, the monthly data used here
can point out to the information enclosed within the gradual
trends (Garcia et al., 2014). We used both data to determine the
probability of an extreme event of precipitation and temperature
by a generalized extreme value distribution (Katz et al., 2005). To
avoid double-counting in probabilities, we subtracted the sum of

two probabilities (i.e., temperature and precipitation extremes)
with the product of two probabilities. The change in the
probability of local climate extremes was calculated by
subtracting future probability with the current probability of
climate extreme events. Negative values represented the
decrease in the climate extreme events, whereas positive values
indicated the increase in the climate extreme events in the future
condition. The calculations captured dry and hot aspects of the
climate extreme from the fifth percentile of precipitation and 95th
percentile of temperature. On the other hand, wet and cold
aspects of the climate extreme were retrieved from the 95th
percentile of precipitation and fifth percentile of temperature,
respectively. Several recent studies also used the monthly climatic
data to capture the climate extremes (Albright et al., 2011; Suggitt
et al., 2011; Stewart et al., 2021).

Climate Velocity
We calculated forward and backward climate velocities based on
the mean annual temperature in the current and future
conditions (Garcia et al., 2014; Carroll et al., 2015). Basically,
climate change velocity is the ratio of the climatic parameter’s

FIGURE 1 | Location of the Leuser Ecosystem and its protected areas. The conservation statuses of individual land management units were published by the
Ministry of Environment and Forestry, Republic of Indonesia. Nature conservation area consists of national parks, nature recreation parks, and grand forest parks.
Besides, the nature reserve area consists of strict nature reserve and wildlife reserve.
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temporal and spatial gradients (Loarie et al., 2009). This study
performed the climate-analog velocity algorithm developed by
Hamann et al. (2015) that calculates the distance of the climatic
parameter from present to the future climate match using a
rounding operation on the data to create more efficient
calculation. The forward velocity represents the minimum
distance the species in the current landscape has to migrate to
maintain climate conditions in the future. Conversely, backward
velocity shows how fast the species would have to migrate to
colonize in a particular landscape (Loarie et al., 2009; Carroll
et al., 2015).

Implications for Conservation
We investigated the protected area’s susceptibility within the
Leuser Ecosystem from the World Database on Protected Areas
(WDPA; www.protectedplanet.net; accessed on March 13, 2021)
based on standardized Euclidean distance (SED) by quantifying
an average of the metrics within the protected area patches
(Williams et al., 2007). We calculated the residence times
(i.e., the maximum diameter of each protected area patch
divided by velocity) to examine the interaction between
protected area extents and climatic velocities that is needed to
maintain pace with climate change (Loarie et al., 2009).

We created the bivariate plot based on forward and backward
velocities to assess the four regions of threat for biodiversity
within the study area. We classified the forward velocity and
backward velocity values into two categories: values greater than
the median and below the median. Low forward and backward
velocities represent low threat, low forward and high backward
velocities indicate threats to habitats, high forward and low
backward velocities represent threats to local populations, and
high for both velocities indicate threats to sites and populations
(Carroll et al., 2015). Furthermore, we calculated the proportion
of 45 endangered mammal species (i.e., near threatened,
vulnerable, endangered, and critically endangered based on the
IUCN red list categories) of interest and the geographic
distribution within the multifaceted threats (Carroll et al.,
2015; Borges and Loyola, 2020). We obtained the geographical
distribution of species from the IUCN red list spatial data for
terrestrial mammals (available from https://www.iucnredlist.org;
accessed on March 13, 2021).

RESULTS

Metrics of Climate Change
We observed a climatic anomaly value across the landscape
ranging from 0.25 to 0.57 (x� � 0.32, SE � 0.001). The Leuser
Ecosystem that was possibly exposed to a higher climate anomaly
(combined temperature and precipitation) would have occurred in
the northwest, southeast, and several montane areas within the
landscape. Future precipitation anomalies (x�� 0.27, SE � 0.002)
would have likely greater values than the temperature anomaly (x��
0.17, SE � 0.002). Furthermore, a higher temperature anomaly was
generated at high altitude areas, where the current climate
conditions become locally disappeared as climate shifting
becomes more pronounced (Figure 2A).

The fifth percentile of the extreme precipitation distribution
was 131 mm/month, and the 95th percentile was 453 mm/month.
Besides, the fifth and the 95th percentile of the extreme
temperature distributions were 17.7°C/month and 27.1°C/
month, respectively. The probability of climate extremes would
be increased about +26% by 2050 based on business as usual. We
found the future increase in temperature extremes in hot or cold
conditions (x� � +24%, SE � 0.001%) in the lowland areas.
Moreover, drought and extreme precipitation events had
considerably become more frequent (x�� +0.9%, SE � 5%) by
2050 in the montane areas (Figure 2B).

The results show that forward and backward climatic
velocities within the Leuser ecosystem are ranging from
0.08 m/year to 12.59 m/year (x� � 1.25 m/year, SE � 0.002 m/
year) and 0.08 m/year to 38.02 m/year (x�� 8.98 m/year, SE �
0.015 m/year), respectively (Figures 2C,D). We found only 31.2%
of the landscape areas that cannot survive climate change to
maintain current climatic conditions in the future. The residence
times from forward velocity were ranging from 7.9 to 1,548 years
(x�� 275.3 years, SE � 0.072 years).

Conservation Opportunities
We found that the local climate change exposure was ranging from
0.247–0.575 (x�� 0.344, SE � 0.002), and from 0.249 to 0.467 (x��
0.334, SE � 0.001) within the protected areas and unprotected
areas, respectively (Figure 3A). The results suggest that protected
area is more susceptible to climate change than the unprotected
areas within the Leuser Ecosystem based on SED values
(Kolmogorov–Smirnov test; D � 0.20397, p-value < 0.005).
Moreover, we found that the climatic anomaly in the nature
reserve area (NRA) was ranging from 0.248 to 0.575 (x�� 0.353,
SE � 0.005). Dissimilarities between current and future climates
within theHunting Park (HP)was ranging from 0.316 to 0.436 (x��
0.344, SE � 0.003). Furthermore, the climatic anomaly within the
Nature Conservation Area (NCA) was ranging from 0.258 to 0.281
(x�� 0.269, SE � 0.001) (see Figure 3B).

The result shows that 32% (∼840,490 km2) of the Leuser
Ecosystem would be threatened to sites and local populations
for mammal species until 2050 (i.e., high-risk areas). Areas with
threats to sites and endangered mammal populations are found in
the south, northeast, and small area in the northwest regions
(Figure 4B). Potential refugia areas with low threat cover only
28% of the Leuser Ecosystem. We found the potential refugia
areas in the center of the landscape. Areas with the threats only to
habitat (19%) will be in the center of the Leuser Ecosystem within
the relatively low steepness. Besides, areas with the threats only to
local populations (21%) will be also in the center of the Leuser
Ecosystem but within relatively high steepness (Figure 4B).

All endangered mammal species within the Leuser Ecosystem
will occur inside areas with a massive threat (i.e., habitat and local
populations; see Figure 4A for the species richness range
distribution) until 2050 from 3 to 100% of their ranges (see
Supplementary Material, Supplementary Table 1). Moreover,
forty-four species will maintain from 6 to 22% of their ranges in
the areas with threats to sites, while a similar number of mammal
species also will maintain from 16 to 41% of their ranges in the
areas with threats to local populations until 2050. Furthermore,
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FIGURE 2 | Projected climate change in the Leuser Ecosystem based on climate change metrics. The maps show projections of change based on business-as-
usual scenario (SSP585) by 2050. The metrics depicted characterize three dimensions of climate change: the magnitude of local changes in standardized climate
anomalies (A), change in the probability of extreme climates (B), and climate change velocity, either forward (C) or backward (D) velocities. Gray-filled histograms
indicate the statistical distributions of climate velocities.

FIGURE 3 | Local climate exposure variation within protected and non-protected areas (A) and different protected area types (B) in the Leuser Ecosystem.
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areas with low threat and potentially used as refugia can maintain
mammal species from 14 to 50% of their ranges (Figure 4C). We
found that agile gibbon (Hylobates agilis) will be totally out of the
refugia areas and almost 100% of species range occurred in the
high-risk areas. Sumatran elephant (Elephas maximus
sumatranus), bare-backed rousette (Rousettus spinalatus), and
Sumatran orangutan (Pongo abelii) were also the most vulnerable
as they broadly occur in the areas with threats to sites and local
populations as well (ranging from 33 to 51% of their ranges).

DISCUSSION

In this study, we calculated the climate change metrics and
elaborated on the same (i.e., forward and backward velocities)

with mammal species range information within the protected
areas of the Leuser Ecosystem for identifying threats to support
conservation management. We found that the protected areas of
the Leuser Ecosystem have become more susceptible to climate
disturbance than the unprotected areas. The results show that
future mammal species will likely migrate to the unprotected
areas for niche conservatism as a consequence to the global
climate change. Many anthropogenic activities that can lead to
habitat destruction occur outside the protected areas (Sloan et al.,
2018). A previous study shows that protected areas have to
protect biodiversity effectively compared with the unprotected
areas (Condro et al., 2021). However, according to another
research, Indonesian protected areas do not seem to be an
adequate option to prevent habitat disturbance (Brun et al.,
2015). Thus, identification of future biodiversity threats based

FIGURE 4 | Vulnerability assessment based on forward and backward velocities until 2050 (A), current richness of mammal species in the Leuser Ecosystem (B),
mean and standard deviation in the proportion of 45 species ranges in each region within the different combinations of climatic velocity (C).
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on climate change metrics is an infancy step to determine
conservation management planning (Carroll et al., 2015).

In response to changing climate, the distributions of
endangered mammals are shifting (Parmesan and Yohe, 2003).
Many studies prove that global climate change is encouraging
species occurrences poleward and approaching higher altitudes,
where the temperature gradient induces upward shifts more likely
than poleward shifts (Colwell et al., 2008). Our results indicate
that the magnitude of climate change effects will be higher on the
montane areas for both temperature and precipitation in the
study area. Previous studies also showed that high altitude
ecosystems are considered to be more threatened (Colwell
et al., 2008; Loarie et al., 2009). However, we found that the
local climate extremes will be greater in the lowland regions than
montane areas that indicate a novel climate, which mostly appear
in the lowland tropical areas such as rainforests (Williams et al.,
2007). Moreover, in the lowland areas of the Leuser Ecosystem
(e.g., peatlands, mangrove forests, and lowland rainforests),
where climate velocities were high, adaptation strategies
should be required (Ordonez et al., 2014). Possible
conservation actions in this landscape are in situ management
of species and site to increase resilience (Millar et al., 2007), ex situ
conservation, habitat modification through engineering (Brook
et al., 2008), and species translocation (Hughes et al., 2008). In
contrast, in the high altitudinal areas (e.g., montane forests),
where climate velocities (i.e., both forward and backward
velocity) were relatively low, adaptation strategies should be
facilitated along with protecting the remaining habitat and
maintaining ecosystem functions (Colwell et al., 2008).

Our analyses showed that only 28% of the Leuser Ecosystem
will preserve stable climate conditions, and can be performed as
climatic refugia for mammal species until 2050. Moreover, most
of the mammal species occurred in high-risk areas (i.e., threats to
sites, local populations, and both of them). Mammal populations
within the study area can be impacted in many ways: habitat
disturbance can lead to species extirpation (Kinnaird et al., 2003;
Dirzo et al., 2014), local changes in climate can induce species
range contractions (Condro et al., 2021), behavior and
physiology, as well as decline in the reproductive rate
(Bronson, 2009), and dispersal ability (Schloss et al., 2012).
We found that four species (H. agilis, E. maximus, R. spinalus,
and P. abelii) will be most susceptible to climate change as they
occur in the areas with threats to sites and local populations. A
previous study showed that P. abelii would completely suffer
range contraction by 2050, while H. agilis would likely expand
their ranges to maintain climatic niches (Condro et al., 2021). In
areas where local populations are threatened, species monitoring
is required to determine current species status and assess whether
further assisted conservation interventions such as species
translocations to habitat refugia are required. In addition,
habitat restoration and corridor development are needed to
facilitate species dispersal and to increase connectivity of the
species in areas with threats to sites (Hodgson et al., 2011; Borges
and Loyola, 2020).

Predicting the long-term impacts of changing climate on
biodiversity is quite challenging due to the complexity of
species responses toward physiological and evolutionary

mechanisms and the species interaction with anthropogenic
activities that lead to range contractions. In particular, tropical
species are susceptible to climate change as the species already
exist near their maximum thermal tolerance (Araújo et al., 2013).
Future climate projections were derived from an ensemble of
three different general circulation models to capture the spatio-
temporal representativeness of the study area. The spatial
resolution of future climate models was increased by statistical
downscaling to a local scale (Wiens et al., 2009). In many cases,
statistical techniques make the climate model output more
realistic than the other downscaling techniques (Ehret et al.,
2012; Hawkins et al., 2013). The uncertainties of the climate
models used in this study were provided by Navarro-Racines et al.
(2020). Furthermore, the IUCN species range dataset can also be
used to create the general conservation actions since there are no
adequate species occurrence data for endangered mammal
species in the Leuser Ecosystem. If the occurrence data are
available, a species distribution or ecological niche modeling
approach can be used to assess the impacts of climate change
on species.

CONCLUSION

In conclusion, we highlighted that most of the mammal species in
the Leuser Ecosystem would be impacted by changing climate.
The use of climate change metrics can provide valuable
information on the species exposure under a changing climate
and a considerable scope to inform conservation actions.
Standardized anomalies and changes in the probability of
climate extremes are useful to inform the magnitude of
climate change mean and variation within the study area.
Moreover, climatic forward velocity can inform conservation
of species and locally adapted populations, respectively, and
along with backward velocity, can facilitate conservation of
biodiversity at multi-levels in the face of climate change. These
approaches can provide broad and generic suggestions for
identifying areas that are most suitable for species as refugia
while considering the multifaceted future threats of climate
change to support biodiversity conservation planning. Further
study also should incorporate the vegetation intactness dynamics
into the model to capture adaptive capacity on biodiversity and
resulting detailed conservation actions for specific areas and
species (Watson et al., 2013; Alagador et al., 2016).
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