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The reproductive characteristics of plants are likely affected by climate change e.g.,
changes in precipitation patterns and nitrogen deposition, but few studies have
examined the effects of these ecological agents of selection on the seed yield and
germination characteristics of perennial grasses. Here, we conducted a multiple-year
pot experiment with Leymus chinensis, a common perennial grass in the eastern region of
the Eurasian steppe zone, which was grown under three water treatments with and
without nitrogen addition. The seed yield of L. chinensis increased with precipitation and
was highest (7.0 g/pot) under 747 mm of precipitation with nitrogen addition (10.5 g/m2).
Seed yield was positively correlated with heading number, tiller number, and grain number
per spike, and the heading number was a critical factor affecting seed yield. Seed
germination percentage and the time to obtain 50% germination were affected by
environmental cues experienced by the mother plants.
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INTRODUCTION

Grasslands are among the most widely distributed terrestrial biomes globally, covering ca. 52.54
million km2 of the terrestrial surface (Zhao et al., 2020). Grasslands play an important role in regional
climates, biodiversity, conservation, the provision of ecosystem services, and socio-economic
development (Zhao et al., 2015; Han et al., 2018; Nerlekar and Veldman, 2020). Grasslands have
become seriously degraded because of climate change and human activities (Andrade et al., 2015;
Shen et al., 2016; Wick et al., 2016; Zhou et al., 2020). The continual degradation of grasslands has
caused a series of problems, including grassland desertification, biodiversity loss, and the decrease of
carbon sinks capacity reduction, and these problems pose a threat to animal husbandry, ecological
security, and sustainable development. The restoration of degraded grasslands thus require urgent
attention (Man et al., 2016; Ma et al., 2018).

Given that the atmospheric deposition of biologically active nitrogen (N) has increased
dramatically over the past few decades and precipitation patterns have changed, there has been
increased research interest in examining the effects of N deposition and precipitation on the growth
and reproduction of grass (Duan et al., 2019; Zhao et al., 2019). The addition of N has been shown to
increase the height, population density, N concentration in tissues, photosynthetic rate, and water-
use efficiency of plants (Pan et al., 2005; Ren et al., 2014). Ochoa-Hueso et al. (2014) suggested that
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increases in precipitation can enhance plant productivity and
thus potentially food production in water-limited ecosystems.
Most studies examining the effects of elevated N deposition and
altered precipitation on grasslands have focused on net primary
productivity or vegetative plant reproduction. By contrast, few
studies have examined the effects of N deposition and
precipitation on the sexual reproduction of plants (Wu et al.,
2011; Gajić et al., 2018; Huang et al., 2019; Zhao et al., 2019).

Regulation of water and N is one of the most effective methods
for increasing the seed yield of grasses. Some studies have found
that water and N can increase the supply of nutrients in plants,
prevent floret degeneration, and increase the number of seeds
(Islam et al., 2018; Liu et al., 2019; Wang et al., 2020). Kunstler
et al. (2016) reported that a lack of precipitation reduced the
number of plant tillers and the differentiation of spikes and
florets. Li et al. (2015) found that the seed productivity of
artificial grassland was significantly higher than that of natural
grassland because of differences in nutrient conditions. Yang,
(1989) reported that water and N can affect the development of
seed-bearing organs in the ear of Leymus chinensis, and the
residual effect of fertilization can enhance the seed yield of
plants in the second year. Wang et al. (2013) found that N
addition can increase the number of reproductive branches
and promote the seed production of L. chinensis. Its ability to
utilize and compete for nutrients and water resources depends on
the stage of seed germination (Ghaderi-Far et al., 2010; Ma et al.,
2012). However, few studies have examined the effects of nutrient
addition and precipitation changes on the seed germination of
maternal plants in semi-arid grassland.

Leymus chinensis (Trin.) Tzvel (L. chinensis) is the dominant
perennial, rhizomatous grass in the eastern region of the Eurasian
steppe zone, including the Songnen grassland, which features an
arid climate and has soils that are high pH and low in N (Wang
et al., 2019). L. chinensis is considered the most appropriate grass
for restoring degraded grasslands and establishing new grasslands
in marginal areas. L. chinensis has a low heading percentage, low
seed setting percentage, and low germination percentage, which
severely limit its further utilization and seed yield (Shi et al.,
2017). Thus, the low seed production capacity of L. chinensis is
the main factor limiting its ability to be used for the establishment
of large-scale artificial grasslands (Zhou and Yang, 2006; Wang
et al., 2010).

Our previous study has shown that the aboveground biomass
of L. chinensis increases with precipitation, and the aboveground
biomass of L. chinensis was highest under 10.5 g/m2 N addition
and 747 mm of precipitation. Short-term N addition significantly
affects leaf physiological traits but has no effect on morphological
traits (Zhao et al., 2020). Whether the seed yield and germination
characteristics of L. chinensis are altered after multiple years of
water and N treatments has not yet been studied. Here, we
characterized the effects of different water and N treatments
on the sexual reproduction ability and seed germination of L.
chinensis. We hypothesized that variation in the amount of
precipitation and N addition would 1) alter the seed setting
characteristics of L. chinensis and 2) affect the germination
characteristics of the maternal plant seeds.

MATERIALS AND METHODS

Experimental Design and Sampling
The pot experiment was conducted in a movable rain shelter in
Changchun, Jilin Province (124°18′–127°02′E, 43°05′–45°15′N,
altitude of 250–350 masl). The site’s mean annual temperature is
4.9°C, with an average temperature of 23°C in July and −16.4°C in
January. The area features a temperate continental climate with a
mean annual precipitation of 498.0 mm, maximum annual
precipitation of 754.0 mm (1956, 50% higher than the mean),
and minimum of 244.1 mm (1982, 50% lower than the mean) for
the period 1953–2012. The experimental field was covered with
black soil, which had a pH of 7.12, electrical conductivity of
0.73 dS/m, and soil organic carbon, N, and phosphorus (P)
concentrations of 2.83%, 1.37 g/kg, and 0.67 g/kg, respectively
(Zhao et al., 2019). The plastic plant pots (diameter: 30 cm,
height: 30 cm) were filled with sieved soil from the 0–20 cm
layer near the experimental field. Ten seedlings of L. chinensis
were transplanted to each pot uniformly on June 01, 2016.
Regular watering and weeding were carried out to ensure the
normal growth of L. chinensis.

The water and N treatments began on June 01, 2017. There
were three precipitation gradients and two nutrient levels (each
with three replicates, 18 pots in total) to explore the effects of
water, N, and the water × N interaction on the seed yield and
germination characteristics of L. chinensis. The three
precipitation gradients were mean annual precipitation
(498 mm, W2), 150% mean annual precipitation (747 mm,
W3), and 50% mean annual precipitation (249 mm, W1).
Underground water was used for irrigation (once every other
day), and the concentrations of N, P, and potassium in
underground water were below the limits of detection. The
irrigation amount was 96, 193, and 289 ml/pot for W1, W2,
and W3, respectively. The two nutrient levels were control
(N0) and N addition (N1). The amount of N was based on
recommendations for alleviating nitrogen limitation in typical
steppe (Bai et al., 2008; Bai et al., 2014). To avoid natural N input
from wet deposition, all of L. chinensis plants were covered by a
transparent polyvinylchloride roof on rainy days.

At the seed maturity stage on August 15, 2018, we determined
the tiller number per pot and heading number per pot and
measured the spike length, grain number per spike, and seed
setting rate from nine randomly selected samples from each pot.

Germination Experiment
The germination test was carried out in an incubator (Harbin,
China) using 9-cm diameter Petri dishes lined with two layers of
filter paper that were saturated with 6 ml of distilled water. The
incubation regime consisted of alternating cycles of 12 h of light
(fluorescent and incandescent white light of 54 μmolm−2s−1) and
high temperature (28°C) and 12 h of darkness and low
temperature (16°C). Water was added to the dishes when
necessary to ensure that they were continuously moist. The
dishes were distributed randomly in the incubator, and their
positions changed daily. Each water and N treatment was
replicated nine times, with 25 seeds were used in each
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replication. Seeds were considered to be germinated upon
emergence of the radicle. Germination was recorded every day
for 28 days. The time to 50% germination (in days) was calculated
from the germination times of all germinated seeds.

Germination percentage (GP) was calculated using the
equation:

GP � (n/N) × 100 (1)

where n is the number of germinated seeds at the end of the
test, and N is the total number of seeds kept for
germination.

The time to obtain 50% germination (T50) was calculated
using the equation (Farooq et al., 2005):

T50 � ti + (N2 −Ni)(tj − ti)
(Nj − Ni)

(2)

TABLE 1 | Results of two-way ANOVAs for the effects of water, nitrogen and their interactions on yield components of L. chinensis.

Factor d.f. Grain number/spike Seed setting rate (%) Thousand seed weight (g) Seed yield (g/pot)

MS F p MS F p MS F p MS F p

Water (W) 2 2882.228 227.434 0.004 1353.127 41.123 0.024 0.428 16.870 0.056 44.581 129.712 <0.001
Nitrogen (N) 1 32.895 2.596 0.248 389.087 11.825 0.075 0.205 8.080 0.105 3.727 10.844 0.006
W × N 2 12.673 0.210 0.814 32.905 0.512 0.612 0.025 0.166 0.849 2.264 6.588 0.012

FIGURE 1 | Effects of water and nitrogen on yield components of L. chinensis (mean ± SE). N0, control, without N application; N1, N applied as urea at 10.5 g N/m2;
W1, 50% mean annual precipitation (249 mm) (irrigation amount: 96 ml per pot); W2, mean annual precipitation (498 mm) (irrigation amount: 193 ml per pot); and W3,
150% mean annual precipitation (747 mm) (irrigation amount: 289 ml per pot). Different lowercase letters indicate significant differences (p < 0.05) among water
treatments at the same level of N addition.
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where N is the final number of germinated seeds, Nj and Ni are
the cumulative numbers of seeds germinated by adjacent counts
at times tj and ti, respectively, when Ni < N/2 < Nj.

Statistical Analyses
Generalized linear model (GLM) was used to analyze the effects of
water, N, and the water × N interaction on seed yield, yield
components, GP and T50, where water and N served as fixed
factors and block as a random effect. Analysis of variance, followed
by Duncan’s test, was used to compare means among treatments.
Pearson’s correlation coefficients were used to analyze the
relationships between yield components and other related
characters. Differences were considered statistically significant at
p values of 0.05. All the analyses were performed in SPSS 20.0
software program (SPSS Inc., Chicago, Illinois, United States).

RESULTS

Seed Yield and Components
The grain number per spike and seed setting rate were significantly
affected by water (F � 227.434, p < 0.01; F � 41.123, p < 0.05;
Figures 1B,C; Table 1). There was no significant difference in the
spike length between N treatments under the same precipitation
treatment (Figure 1A). Under N1, the spike length of L. chinensis
was 13.7% lower under W3 compared with W2. Grain number per
spike and seed setting rate were lower under W1 than under W2

and W3. Under the same precipitation treatment, the seed setting
rate and thousand seed weight of L. chinensiswere higher under N0

than N1 (Figures 1C,D).
The seed yield per pot of L. chinensis was significantly affected

by water, N, and the water ×N interaction (F � 129.712, p < 0.001;

F � 10.844, p < 0.01; F � 6.588, p < 0.05; Table 1). Seed yield
significantly increased with precipitation. The highest seed yield
was observed under N1W3 (7.0 g/pot). Plants under N1W2

produced two-fold more seeds than the plants under N0W2.
The seed yield was 13.2% higher under N1W3 than under
N0W3 (Figure 2). The water × N interaction had a positive
effect on the seed yield of L. chinensis.

Significant positive correlations were observed between seed
yield and tiller number (R2 � 0.566, p < 0.05). There was a
significant positive correlation between seed yield and heading
number (R2 � 0.594, p < 0.01, Table 2). Tiller number had a
smaller effect on seed yield compared with heading number.
There was a significant positive correlation between tiller number
and heading number (R2 � 0.507, p < 0.05). Significant positive
correlations were observed between seed yield and grain number
per spike (R2 � 0.701, p < 0.01). There was a negative, but non-
significant, correlation between spike length and seed yield.
Significant positive correlations were observed between
thousand seed weight and grain number per spike (R2 � 0.583,
p < 0.05).

Seed Germination
The GP of L. chinensis was significantly affected by the water × N
interaction (F� 4.536, p< 0.05,Table 3). TheGP ranged from 80.0%
under N1W2 to 94.7% under N1W3. The lowest T50 was observed
under N1W1, and T50 was 23.7 and 29.9% lower under N1W1

compared with N1W3 and N1W3, respectively (Figure 3A).
Under N1, T50 increased with precipitation. Under N0, T50

increased from 8.8 days under W1 to 13.4 days under W2

(Figure 3B). The water conditions experienced by the
mother plant affected T50 in the progeny. T50 was lower and
higher in the progeny underW1 andW3, respectively, compared
with W2.

FIGURE 2 | Effects of water and nitrogen on seed yield of L. chinensis
(mean ± SE). N0, control, without N application; N1, N applied as urea at 10.5 g
N/m2; W1, 50% mean annual precipitation (249 mm) (irrigation amount: 96 ml
per pot); W2, mean annual precipitation (498 mm) (irrigation amount:
193 ml per pot); andW3, 150%mean annual precipitation (747 mm) (irrigation
amount: 289 ml per pot). Different lowercase letters indicate significant
differences (p < 0.05) among water treatments at the same level of N addition.

TABLE 2 | The correlation among yield components and other related characters.

Factor X1 X2 X3 X4 X5

X2 0.507* — − − −

X3 −0.166 −0.427 − − −

X4 0.335 −0.065 −0.053 − −

X5 0.137 −0.273 0.143 0.583* −

Y 0.566* 0.594** −0.267 0.701** 0.192

X1, Tiller number; X2, Heading number; X3, Spike length; X4, Grain number/spike; X5,
Thousand seed weight; Y, Seed yield. Correlation coefficients calculated by the Pearson
two-tailed test; *and ** indicate significant correlation at the 0.05 and 0.01 levels,
respectively.

TABLE 3 | Results of two-way ANOVAs for the effects of water, nitrogen and their
interactions on germination and T50 of L. chinensis.

Factor d.f. Germination
percentage (%)

T50 (d)

MS F p MS F p

Water (W) 2 134.222 1.189 0.457 18.841 3.318 0.232
Nitrogen (N) 1 0.889 0.008 0.937 9.315 1.64 0.329
W × N 2 112.889 4.536 0.034 5.679 1.778 0.211
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DISCUSSION

Seed Yield
In this study, the water supply had a major effect on the seed yield
(Table 1). The grain number per spike and seed setting rate in L.
chinensis varied depend on water supply. The increase in the tiller
number, heading number, and number grain per spike all
contributed to the increase in seed production. Plants under
W3 produced 4.6-fold more seeds than plants under W1 with no
fertilizer input (Figure 2). The results were consistent with those
of Main et al. (2014) showing that the heading number of
Gossypium spp. decreases under water deficiency. The heading
number of Zoysia japonica, Agropyron cristatum, and
Psathyrostachys juncea increases significantly under a suitable
level of N application (Tandoh et al., 2019; Qasim et al., 2020;
Zanon et al., 2020). However, our findings are inconsistent with a
previous study conducted in Brazil showing that the seed yield of
grass was not greatly affected by water (Canto et al., 2020).

The results of this study indicate that water andNaffect the number
of germinated seeds of L. chinensis in the following year. At the end of
the growing season, a large number of buds in the underground bud
bank germinated, and the apical meristem of the progeny began to
transform from vegetative branches into reproductive branches, many
of which reached the spikelet differentiation stage. Hence, water and N
treatment in the previous year has a strong effect on the spikelet
differentiation of L. chinensis (Ryle, 2010; Taliman et al., 2019).

The results of this study showed that N addition can improve the
grain number per spike and seed yield (Table 1). This might stem
from the fact that N is a major component of nucleic acids and

protoplasm. The extra protein produced under N addition allows
the plant leaves to grow larger and hence have a larger surface
available for photosynthesis (Zhang et al., 2016).Water can promote
nutrient absorption in L. chinensis, which enhances photosynthetic
capacity, provides energy for reproductive development, promotes
the differentiation of spikes and florets, and reduces the number of
aborted spikes and florets. Saeidnia et al. (2018) recorded that water
stress reduces the seed yield of Bromus inermis by 38%. A sufficient
supply of water and N can prevent nutrient competition between
seeds and other organs after spikelet and floret differentiation,
thereby increasing the grain number per spike and seed setting
rate (He et al., 2017; Kaisermann et al., 2017; Cohen et al., 2021).

Seed yield is the product of the heading number and the
reproductivity of reproductive branches per plant. In this study,
water significantly increased the seed yield of L. chinensis, which
was consistent with the results of previous research (Wang et al., 2010;
Chen et al., 2013; Gao et al., 2020). N might promote tillering, the
accumulation of dry matter, and seed yield by affecting flower bud
development and seed production (Hrdlickova et al., 2011; Wang
et al., 2017;Wang et al., 2019; Yang et al., 2019). Additionally, Nmight
be involved in the expression of some flowering genes, as on-off cycles
in gene expression are positively correlated with N fertilization levels;
thus, N fertilization can effectively increase seed yield (Miyazaki et al.,
2015).

Seed Germination
Seed germination is a critical phase in the plant life cycle. Seeds
harvested from plants grown in different maternal environments
may vary in their ability to germinate under the same germination

FIGURE 3 | Effects of water and nitrogen on germination percentage and T50 of L. chinensis (mean ±SE). N0, control, without N application; N1, N applied as urea at
10.5 g N/m2; W1, 50% mean annual precipitation (249 mm) (irrigation amount: 96 ml per pot); W2, mean annual precipitation (498 mm) (irrigation amount: 193 ml per
pot); and W3, 150% mean annual precipitation (747 mm) (irrigation amount: 289 ml per pot). Different lowercase letters indicate significant differences (p < 0.05) among
water treatments at the same level of N addition.
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conditions (Nguyen et al., 2021). As shown in Figure 3A, fewer
seeds harvested from plants grown under W2 germinated
compared with those harvested from plants grown under W1

and W3 with N addition. The shortest T50 in this study was
observed under N1W1, which indicated that N application
significantly shortened the germination time of seeds. The
addition of N fertilizer to the mother plants promoted the
germination of seeds (Alboresi et al., 2005). The mother plant
has a substantial influence on seed traits, such as GP (Singh et al.,
2017; Geshnizjani et al., 2019). The environmental cues (e.g., soil
moisture and nutrients) the mother plant experiences can lead to
variation in seed quality even within the same genotype (Van Der
Weele et al., 2000).

CONCLUSION

In conclusion, seed yield was highest when plants had a high tiller
number, heading number, and grain number per spike.
Therefore, water and N need to be carefully managed to
optimize seed production. The highest seed yield (7.0 g/pot) of
L. chinensis was observed under N1W3. Decreases or increases in
precipitation in treatments without N addition shortened the
germination time of the produced seeds.
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