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Restoration of reclaimed marshes has great effects on soil biological processes. However,
the responses of soil microbial properties (microbial biomass and enzyme activities) to
natural restoration of reclaimed marshes is poorly studied, especially in a long restoration
chronosequence. This study assessed the responses of soil microbial properties to natural
restoration and investigated the relationships between soil microbial properties and soil
physico-chemical and plant properties. We selected a restoration chronosequence (1, 4,
8, 13, 17, 27 years) after farmland abandonment, a soybean field, and a natural marsh in
Sanjiang Plain, northeast China. For each site, we analyzed the soil microbial biomass
carbon and nitrogen (MBC and MBN), four enzymes (β-glucosidase, invertase, catalase,
urease) activities, soil physico-chemical properties at 0–50 cm depths, and plant
properties (biomass, height, and coverage). The MBC and MBN contents increased
with restoration time, but MBN content slowed down after 8 years of restoration. After
27 years of restoration, the soil MBC and MBN contents were 15.7 and 3.2 times of those
in the soybean field, but the largest contents of MBC and MBN in the restored sites were
7.78%, 27.76% lower than those in natural marshes, respectively. Moreover, soil enzyme
activities and the geometric mean of enzymatic activities (GME) also increased with
restoration but slowed down after 13 years of restoration. After 27 years of restoration,
the GME was 2.9 times than that in the soybean field, but the largest GME in the restored
sites was 31.15% lower than that in the natural marsh. MBC and MBN contents, soil
enzyme activities, and GME had significant relationships with soil C:N ratio, organic
carbon, nutrients (total nitrogen, available nitrogen, total phosphorus), bulk density,
moisture content, pH, plant properties, (i.e. biomass, height, and coverage) (p < 0.01).
Redundancy analysis revealed that soil C:N ratio, pH, moisture content, total nitrogen and
phosphorus were main factors affecting MBC and MBN contents and enzyme activities. In
conclusion, soil microbial properties can respond positively to the natural restoration
process of the reclaimed marshes and were significantly correlated with specific
parameters of soil physico-chemical and plant properties.
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INTRODUCTION

Wetland restoration has become more important in the past
2 decades (Euliss et al., 2006; Marton et al., 2014a), as disturbed/
degraded wetland have been found to reduce the functions of
water storage, flood control, carbon (C) and nitrogen (N)
sequestration, biodiversity conservation, etc. (Jiang et al., 2015;
Yu et al., 2017; Qi et al., 2021). The reclaimed wetlands can
increase carbon emission (CO2), decrease soil moisture and C and
N storage, and change microbiological properties (MBC and
enzyme activities) (Song et al., 2012; Bai et al., 2013). Natural
restoration is an effective way to restore the degraded ecosystem
because it can reduce anthropogenic disturbance (Walker et al.,
2007) and cost less compared to artificial restoration (Zahawi
et al., 2014).

Soil microorganisms play a great role in the biogeochemical
process of wetlands (Sousa et al., 2015) and can provide nutrients
for the development and function of soil and plants (Li et al.,
2015; Xu et al., 2020). Soil microbial properties such as microbial
biomass and enzyme activities are essential components of
wetlands (Xiao et al., 2015). They are considered to be more
sensitive parameters than physico-chemical properties important
indicators and thus could reflect the changes in soil properties
after ecosystem restoration (Araujo et al., 2013; Zhang et al., 2015;
Kabiri et al., 2016). Soil microbial biomass is indexed to measure
the active components of soil organic matter (SOM). It is closely
related to nutrient cycling and thus is extensively considered as an
indicator of soil fertility and ecosystem productivity (Singh and
Gupta, 2018). Soil enzymes are derived from the exudates of plant
roots and microorganisms and the decomposition products of
residues in the soil (Sinsabaugh et al., 2009; Joniec, 2018). In
particular, β-glucosidase (GLU), invertase (INV), catalase (CAT)
are the main enzymes in the cycling of soil C, while urease (URE)
is a key enzyme in the cycling of soil N (Baddam et al., 2016; Zhao
et al., 2018). Soil microbial properties can be affected by soil
properties such as soil C and N content, pH, moisture content,
bulk density, and nutrients (Kotroczó et al., 2014; Baddam et al.,
2016; Wang et al., 2019). They can also be affected by plant
properties such as plant biomass, species composition, and age
(Yuan and Yue, 2012; Xu et al., 2020). Moreover, soil microbial
properties can also be influenced by land use/cover change (Raiesi
and Beheshti, 2014; Feng et al., 2019). For example, Babujia et al.
(2010) and Zhang et al. (2018) found that soil microbial biomass
and enzyme activities can be influenced by the ecosystem
restoration after farmland abandonment.

Farmland abandonment accelerates plant recovery and
increases the input of organic matter through above- and
below-ground biomass (Novara et al., 2017; Romero-Díaz
et al., 2017), which can increase the soil microbial biomass
and enzyme activity (Jiang et al., 2009; Wang B. et al., 2011).
Raiesi and Salek-Gilani (2018) showed that soil enzyme activities
increased after 4–45 years of farmland abandonment. Feng et al.
(2019) found that MBC and MBN contents and enzyme activities
increased with restoration time in degraded forests, but some
enzyme activities decreased after 11 year restoration. However,
the effects of a long natural restoration time on soil microbial
biomass and enzyme activities in abandoned reclaimed marshes

after farmland abandonment are rarely reported. It is necessary to
study the effects of marsh ecosystem on soil microbial properties
after restoration, and help clarify the changes in SOM and soil
function.

Sanjiang Plain is one of the most typical temperate marsh
distribution areas in the world (Brinson andMalvárez, 2002). It is
the region most severely affected by tillage and also the largest
wetlands restoration area in China (Mao et al., 2018). We chose a
restoration chronosequence (1, 4, 8, 13, 17, 27 years after soybean
field abandonment), a soybean field (SF), and a natural marsh
(NM) in Sanjiang Plain to investigate MBC and MBN contents
and activities of four enzymes including GLU, INV, CAT, and
URE. The objectives of this study were to: (1) assess how these
microbial properties respond to restoration of reclaimed marshes
after farmland abandonment; (2) investigate the relationships
between soil microbial properties with soil physico-chemical and
plant properties. We hypothesized that (1) soil MBC and MBN
contents and the activities of GLU, INV, CAT, and URE will
increase with restoration time and that (2) soil MBC and MBN
contents and the activities of GLU, INV, CAT, and URE will have
significant relationships with soil physico-chemical and plant
properties.

MATERIALS AND METHODS

Study Area Description
The study was conducted in July 2019 at the Sanjiang National
Nature Reserve of Fuyuan City. GPS was used to locate the study
area (48°3′37.97″–48°9′05.82″N, 134°31′46.66″–134°36′05.51″E),
which is located in the Sanjiang Plain of Northeast China
(Figure 1). The study area belongs to a temperate climate,
with an annual average temperature of 2.52°C and
precipitation of 558 mm (falling mainly from June to
September) (Song et al., 2009). In the past 50 years, the
natural wetland has decreased from 3.53 million hm2 to only
0.81 million hm2 in Sanjiang Plain, becoming one of the fastest
reduction areas of natural wetland in China, with 91% of the
reduced wetland being transformed into farmland (Song K. et al.,
2014). The cropping pattern in this area is one crop a year, sowing
in mid-May, harvesting in mid-October, and plowing in
November. However, the area of restored wetlands has
gradually increased since the 1990s owing to the establishment
of wetland nature reserves in the Sanjiang Plain.

Sampling Method
We selected eight sampling sites: one reclaimed marshland which
has grown soybean field for more than ten years, six sites that
have been abandoned for 1, 4, 8, 13, 17, and 27 years after growing
soybeans for about 10 years, and one natural marsh. All the sites
we selected are adjacent to rivers with similar hydrological
conditions and topographies, which were formed due to
alluviation. The plants in restored marshes showed an obvious
transition trend from weed meadow (Commelina communis,
Polygonum persicaria, Bidens tripartite, Echinochloa caudate)
to Deyeuxia angustifolia and Carex schmidtii (Jin et al., 2020).
The vegetation information of the study site is shown in Table 1.
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FIGURE 1 | Location of the sampling sites in Sanjiang Plain, Northeast China. SF, soybean field; R1, R4, R8, R13, R17, and R27, restored sites after 1, 4, 8, 13, 17,
and 27 years of farmland abandonment; NM, natural marsh.

TABLE 1 | Properties of the plant in different sites.

Site Restoration
year

Location Height % Coverage % Aboveground
biomass g.m−2

Belowground
biomass g.m−2

Dominant species

SF 0 N48°09′05.82″ 24.00 ± 3.04d 38.33 ± 7.64c 110.88 ± 17.15f 57.75 ± 8.15e Glycine max
E134°35′34.9″

R1 1 N48°04′17.4″ 49.83 ± 9.65c 36.02 ± 18.75c 289.1 ± 14.42e 92.44 ± 4.49e Commelina communis and
Eragrostis pilosaE134°32′55″

R4 4 N48°04′05.36″ 61.14 ± 1.68bc 46.58 ± 12.06bc 342.3 ± 29.74d 218.90 ± 13.07d Deyeuxia angustifolia, E. pilosa
E134°31′54.60″ Polygonum persicaria, and

Bidens tripartita
R8 8 N48°03′37.97″ 76.33 ± 11.12ab 66.17 ± 12.00ab 428.47 ± 61.71ab 609.55 ± 35.82c D.angustifolia, Carex schmidtii,

and Phragmites australisE134°31′46.66″
R13 13 N48°08′18.86″ 53.01 ± 17.58c 56.17 ± 18.72abc 358.73 ± 22.76cd 638.00 ± 20.17c D.angustifolia, C.schmidtii

E134°34′49.70″
R17 17 N48°08′19.80″ 56.78 ± 12.57c 58.06 ± 8.83abc 409.7 ± 22.23bc 874.88 ± 32.28b D.angustifolia, C. schmidtii and

Spiraea salicifoliaE134°35′06.78″
R27 27 N48°08′52.95″ 61.67 ± 7.26bc 72.14 ± 5.84a 391.2 ± 9.58bcd 634.70 ± 15.23c D.angustifolia, C.schmidtii, and

S .salicifoliaE134°35′41.48″
NM N48°08′54.86″ 84.42 ± 3.83a 78.02 ± 3.46a 465.01 ± 29.83a 1,230.2 ± 68.79a D.angustifolia and C.schmidtii

E134°36′05.51″

Note: SF, soybean field; R1, R4, R8, R13, R17, and R27, restored after 1, 4, 8, 13, 17, and 27 years of farmland abandonment; NM, natural marsh.
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The soybean field and restored sites had been planted with
soybeans for about 10 years before they were abandoned.
Restored sites mainly rely on both the remaining seed bank
of the restoration land and the hydrological conditions and
vegetation of the natural marsh to achieve natural restoration.
The natural marsh is dominated by two local typical wetland
species of D.angustifolia-C.schmidtii. In each site, three 20 ×
20 m plots were randomly set, and fifteen soil cores were
collected by stainless steel sampler (5 cm diameter) after
litter on the soil surface was removed. Each collected soil
core with five layers (0–10 cm, 10–20 cm, 20–30 cm,
30–40 cm, 40–50 cm). The soil samples were stored in
ziplock bags and brought back to the laboratory. Each soil
sample was divided into two portions with one portion being
stored at 4°C for the measurement of soil microbial biomass
carbon and nitrogen (MBC and MBN) and available nitrogen
(AN, NH4

+-N and NO3
−-N), and the other portion being air-

dried for enzyme activity analyses and soil physico-chemical
analyses (Ma et al., 2020).

In each sampling site, three 1 × 1 m quadrats were placed for
the vegetation survey. Aboveground biomass was measured by
harvesting all the aboveground plants. For belowground biomass
in three quadrats, we obtained three complete cores of 0–50 cm
depth at 10 cm intervals. The soil cores were put into 0.5 mm
mesh sieve bags and cleaned. All plant samples were dried at 60°C
to constant weight and weighed.

Laboratory Analysis
Soil bulk density (BD) was determined using the ring cutting
method (5 cm inner diameter and 5 cm height). Soil moisture
content (MC) was determined by drying the soil samples at
105°C for 24 h. Soil pH was determined using a
potentiometric pH meter (SevenCompact S210, Swiss)
(soil:water, 1:5). The total phosphorus (TP) was
determined by the tcolorimetrical method with H2SO4-
HClO4 as the digester. The available phosphorus (AP) was
determinded by the colorimetrical method with HCl-H2SO4

as the digester. The total potassium (TK) was determined by
acid fusion-flame spectrophotometry. Soil organic carbon
(SOC) was determined by the dry combustion method and
analyzed with a Multi N/C 2100 TOC analyzer (Analytik
Jena, Germany). The available nitrogen (AN, NH4

+-N and
NO3

−-N) was extracted with 1 mol/L KCl and then filtered.

The total nitrogen (TN) was extracted by adding concentrated
sulfuric acid and mixed catalyst to the soil sample, heating at high
temperature, and then filtering. The filtrate of TN and AN was
analyzed with an automatic continuous segmented flow analyzer
(AA3, Seal Analytical, Germany). Soil MBC and MBN contents
were determined by the fumigation-extraction method (Brookes
et al., 1985; Vance et al., 1987). Soil information of the sampling site
is shown in Table 2.

Soil β-glucosidase (GLU) activity was assayed using the
substrate analogue para-nitrophenyl-β-d-glucopyranoside
and expressed as μg p-nitrophenol (PNP) g−1.h−1 (Eivazi
and Tabatabai, 1988). Soil invertase (INV) and urease
(URE) activities were measured using conventional
colorimetric methods (Song Y. et al., 2014). Before INV
activity determination, soil samples were incubated with
15 ml of 8% sucrose solution and 5 ml of phosphate buffer
(pH 5.5) at 37°C for 24 h, and INV activity expressed as mg
glucose g−1.24 h−1. Before URE activity determination, soil
samples were incubated with 10 ml of 10% urea solution
and 20 ml of citric acid buffer (pH 6.7) at 37°C for 24 h,
and URE activity expressed as mg NH4

+-N g−1.24 h−1. Soil
catalase (CAT) activity was determined by shaking soil
samples with H2O2 as substrate for 20 min, then back-
titration with a standard solution of 0.1 N KMnO4 and
expressed as a mL.g−1 dry sample at 20 min (Wang et al., 2012).

To better illustrate the influence of restoration of reclaimed
marshes on soil enzyme activities, we calculated the geometric
mean of enzymatic activities (GME), because it can reflect the
overall enzyme activity levels (Hinojosa et al., 2004). The GME
was calculated as follows:

GME � (GLU × INV × CAT × URE)1/4, (1)

where GLU, INV, CAT, and URE represent β-glucosidase,
invertase, catalase, and urease, respectively.

Statistical Analysis
One-way ANOVA was performed by the least significant difference
(LSD) test (p < 0.05) to analyze the differences in soil microbial
biomass carbon and nitrogen, enzyme activities, soil physico-
chemical properties, and plant properties across different sites.
The statistical analyses were performed by SPSS ver. 20.0 (SPSS
Inc. United States). We applied the single sample K-S test in SPSS
and the variance homogeneity test in one-way ANOVA to test the

TABLE 2 | Soil physico-chemical properties at the 0–50 cm depth in the eight sites (mean ± SD, n � 3).

Site SOC g.kg−1 TN g.kg−1 C:N An mg.kg−1 TP g.kg−1 AP mg.kg−1 TK g.kg−1 BD g.cm−3 pH MC %

SF 15.05 ± 0.18h 1.16 ± 0.01g 12.94 ± 0.12f 13.32 ± 0.3f 0.64 ± 0.05g 13.12 ± 0.19a 6.36 ± 0.06a 1.25 ± 0.04a 5.26 ± 0.01a 32.25 ± 0.12h
R1 30.25 ± 0.41g 2.08 ± 0.04f 14.55 ± 0.10e 20.04 ± 1.38e 1.30 ± 0.02e 6.56 ± 0.42b 7.02 ± 0.06a 0.93 ± 0.01b 5.19 ± 0.02b 55.89 ± 0.31g
R4 48.13 ± 0.11f 2.69 ± 0.03e 17.90 ± 0.24d 22.21 ± 0.2e 1.23 ± 0.03f 5.23 ± 0.13c 7.13 ± 0.1b 0.81 ± 0.05c 5.15 ± 0.02c 69.85 ± 0.5f
R8 77.63 ± 0.44d 3.83 ± 0.02c 20.28 ± 0.24c 34.7 ± 0.48c 1.95 ± 0.02b 5.18 ± 0.18c 6.58 ± 0.4b 0.56 ± 0.01f 4.96 ± 0.04e 123.45 ± 0.77c
R13 74.6 ± 0.54e 3.61 ± 0.03d 20.66 ± 0.04c 45.33 ± 3.34b 1.21 ± 0.02f 1.98 ± 0.11e 6.52 ± 0.02b 0.62 ± 0.01e 5.05 ± 0.02d 117.22 ± 1.24d
R17 83.42 ± 1.24c 3.92 ± 0.05c 21.29 ± 0.34b 27.71 ± 0.57d 1.41 ± 0.06d 1.77 ± 0.15e 6.46 ± 0.06b 0.6 ± 0.04ef 4.94 ± 0.01e 130.48 ± 0.24b
R27 84.73 ± 0.48b 4.14 ± 0.03b 20.45 ± 0.24c 31.63 ± 1.4c 1.82 ± 0.01c 3.82 ± 0.15d 6.43 ± 0.02b 0.68 ± 0.02d 4.82 ± 0.01f 109.08 ± 0.28e
NM 191.91 ± 0.90a 8.15 ± 0.16a 23.56 ± 0.35a 98.22 ± 3.42a 2.31 ± 0.02a 3.61 ± 0.14d 4.8 ± 0.08c 0.39 ± 0.01g 4.66 ± 0.01g 198.48 ± 0.46a

Note: Different lowercase letters indicate significant differences (p < 0.05) among different sites. SOC, soil organic carbon; TN, total nitrogen; AN, available nitrogen; TP, total phosphorus;
AP, available phosphorus; TK, total potassium; BD, bulk density; MC, moisture content; SF, soybean field; R1, R4, R8, R13, R17, and R27, restored sites after 1, 4, 8, 13, 17, and 27 years
of farmland abandonment; NM, natural marsh.
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normal distribution and variance homogeneity of the data,
respectively. Spearman correlation matrix was used to examine
the relationships of soil microbial biomass, enzyme activities, the
GME with the properties of soil physico-chemical and plant via the
package “corrplot” in R 3.5.0 software. The influences of soil
physico-chemical and plant properties on soil microbial carbon
and nitrogen, and soil enzyme activities were evaluated by
redundancy analysis (RDA). RDA was conducted using the
Canoco 5.0 software (Microcomputer Power Inc. Ithaca, NY).

RESULTS

Soil MBC and MBN Contents
The restoration time had significant effects on MBC and MBN
contents (p < 0.05, Figure 2). The average MBC and MBN
contents had significant differences in all sites (p < 0.05,
Figure 2C), except for the MBN content between R13 and
R17 sites (p � 0.70). The average MBC content of restored
sites increased with restoration time, except for soil MBC
content in the R13 site which was lower than in the restored
R8 site. MBN content increased before 8 years of restoration and
then fluctuated. The MBC and MBN contents in the R1, R4, R8,
R13, R17, and R27 sites were significantly higher than those in the
soybean field (p < 0.05). After 27 years of restoration, the MBC
and MBN contents were 15.7 and 3.2 times of those in the

soybean field, respectively. The largest contents of MBC and
MBN in the restored sites were 7.78%, 27.76% lower than those in
natural marshes, respectively. Soil MBC and MBN contents
decreased with soil depth at all sites (p < 0.05, Figures 2A,B).
The highest contents of MBC (4,834.29 mg.kg−1) and MBN
(373.27 mg.kg−1) appeared at 0–10 cm in the natural marsh,
while the lowest contents of MBC (27.54 mg.kg−1) and MBN
(10.71 mg.kg−1) appeared at 40–50 cm in the soybean field. The
differences in MBC and MBN contents of different sites in the
surface layers (0–30 cm) were more obvious than those in the
bottom layers (30–50 cm). For example, the MBC and MBN
contents showed no significant difference at 30–40 cm and
40–50 cm in the R4, R8, and R17 sites with the R1 site (p > 0.05).

Soil Enzyme Activities
The average activities of GLU, INV, CAT, and URE in the restored
sites were significantly higher than in the soybean field but lower
than in the natural marsh (p < 0.01, Figures 3E,F). After 27 years of
restoration, the activities of GLU, INV, CAT, and URE were 3.5, 4.7,
2.7, 1.5 times of those in the soybean field, respectively. The largest
activities of GLU, INV, CAT, and URE in the restored sites were
34.3, 26.74, 36.07, and 7.38% lower than those in natural marshes,
respectively. A similar trend was observed in that the fluctuation of
the average GLU, INV, andURE activities increased with restoration
time (Figures 3E,F). However, the restoration rate of GLU and URE
activities was fast in the first 8 years of restoration and then slowed

FIGURE 2 |Distribution of MBC (A) andMBN (B) at 0–50 cm depth of soil, and the averageMBC andMBN contents in different sites (C). SF, soybean field; R1, R4,
R8, R13, R17, and R27, restored sites after 1, 4, 8, 13, 17, and 27 years of farmland abandonment; NM, natural marsh. Different lowercase letters in (A) and (B) indicate
significant differences between different layers in the same site (p < 0.05). Different uppercase letters in (C) indicate significant differences of the average value of the five
layers between different sites (p < 0.05).
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down. The CAT activity increased with restoration time except for
the R27 site, in which it declined compared to R17 (Figure 3F).

The activities of GLU, INV, CAT, and URE decreased
significantly with soil depths in all sites (Figures 3A–D). The
highest activities of GLU, INV, CAT, and URE appeared at
0–10 cm in the natural marsh, which were 6.6, 3.9, 2.9, and
1.6 times than those in 40–50 cm of the same site, respectively.
The highest GLU and CAT activities of restored sites appeared at
0–10 cm of the R8 site, which were 9.2 and 5.0 times than those in
40–50 cm of the same site, respectively (Figures 3A,C). The
highest INV and URE activities of restored sites appeared at
0–10 cm in the R27 sites, which were 5.6 and 1.6 times than those
in 40–50 cm of the same site, respectively (Figures 3B,D).

The GME was obtained based on the calculation of four soil
enzyme activities in this study. The variation of GMEwas affected by
restoration time and soil depth. The average GME had significant
differences among all sites (p < 0.05, Figure 4B) except for the GME
between R8 and R17 sites and between R17 and R27 sites. The
growth rate was fast in the first 8 years of restoration and then slower
down. After 27 years of restoration, the GMEwas 2.9 times than that
in the soybean field, but was 31.15% lower than the natural marsh.
The GME declined with soil depths (Figure 4A). The largest GME
appeared at 0–10 in the natural marsh, which was 3.2 times than that
in 40–50 cm of the same site. The highest GME of restored sites
appeared at 0–10 cm in the R27 sites, which were 5.0 times than that
in 40–50 cm of the same site.

FIGURE 3 | Distribution of soil enzyme activity at the soil 0–50 cm depth (A–D) and average soil enzyme activity of different sites (E–F). GLU, β-glucosidase; INV,
invertase; CAT, catalase; URE, urease. SF, soybean field; R1, R4, R8, R13, R17, and R27, restored sites after 1, 4, 8, 13, 17, and 27 years of farmland abandonment;
NM, natural marsh. Different lowercase letters in (A–D) indicate significant differences between different layers in the same site (p < 0.05). Different uppercase letters in
(E–F) indicate significant differences of the average value of the five layers between different sites (p < 0.05).
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Relationships of Soil Microbial Properties
With Environmental Factors
The relationships of soil microbial biomass, enzyme
activities with environmental factors (soil physico-
chemical and plant properties) were shown by the
Spearman rank correlation matrix (Figure 5). Soil
microbial biomass, enzyme activities, and GME were

negatively correlated with BD, pH, AP (p < 0.001), and
TK (p < 0.05). Among enzyme activities, GLU activity was
negatively related to AP (p < 0.05), and its relationship with
TK was negative but not significantly.

Soil MBC and MBN contents, and enzyme activities were
positively correlated with MC, SOC, TN, C:N ratio, AN, TP,
AGB, BGB, H, and Cover (p < 0.001). The first two axes of the

FIGURE 4 | Distribution of the geometric mean of enzyme activity (GME) at the soil 0–50 cm depth (A) and the average GME in different sites (B). SF, soybean field;
R1, R4, R8, R13, R17, and R27, restored sites after 1, 4, 8, 13,17, and 27 years of farmland abandonment; NM, natural marsh. Different lowercase letters in (A) indicate
significant differences between different layers in the same site (p < 0.05). Different uppercase letters in (B) indicate significant differences of the average value of the five
layers between different sites (p < 0.05).

FIGURE 5 | Correlation matrix of soil microbial biomass, enzyme activities, soil physico-chemical properties, and plant properties. The correlation coefficient
(r-value) is represented by different colors. ***p < 0.001; **p < 0.01; *p < 0.05. BD, bulk density; MC, moisture content; SOC, soil organic carbon; TN, total nitrogen; AN,
available nitrogen; TP, total phosphorus; AP, available phosphorus; TK, total potassium; H, plant height, Cover, plant coverage; AGB, aboveground biomass; BGB,
belowground biomass; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; GLU, β-glucosidase; INV, invertase; CAT, catalase; URE, urease; GME,
geometric mean of enzyme activity.
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RDA (Figure 6) accounted for 99.6% of the MBC and MBN
variance, with the first axis accounting for 99.54% of the
variance (Figure 6A). Soil C:N ratio, pH, MC were the
most important factors affecting soil MBC and MBN
contents, explained 98.6% of the total variance. The first
two axes of the RDA accounted for 99.68% of the enzyme
activities variance, with the first axis accounting for 99.24% of
the variance (Figure 6B). Soil C:N ratio, TN, and MC were the
most important factors affecting soil enzyme activities,
explained 98.9% of the total variance.

DISCUSSION

Response of Soil Microbial Biomass to
Restoration of Reclaimed Marshes
Our results showed an increasing trend of MBC and MBN with
restoration time (Figure 2). The results support part of our first
hypothesis that soil microbial biomass will increase over
restoration time. This result is consistent with previous studies
(Song et al., 2012; Zhang et al., 2018; Feng et al., 2019; Morales-
Londoño et al., 2019) on the changes of soil microbial biomass in
the process of ecosystem restoration after abandonment. Song
et al. (2012) reported that the soil MBC content increased in the
restored sites with restoration time after 12 years of farmland
abandonment. Several recent studies also reported the increase of
soil MBC and MBN contents after the ecosystem restoration
(Zhang et al., 2018; Feng et al., 2019; Morales-Londoño et al.,
2019). Our study also showed an increasing trend of soil MBC
and MBN during the 27 years of restoration. However, after
27 years of restoration, the MBC and MBN contents were still

lower than those of the natural marsh. Soil MBC and MBN
contents increased with restoration time may be attributed to the
following reasons. Firstly, the restoration of vegetation increased
plant coverage and above and below ground biomass (Table 1),
which caused the increase of SOM and nutrient elements
availability (Table 2), thus improving the soil microbial
environment and the soil microbial process (Allison and
Jastrow, 2006; Wang et al., 2017; Li et al., 2020). Secondly, the
increasing MC of restored sites creates an anaerobic condition of
the soil, resulting in lower decomposition of SOM after the
farmland abandonment (Yang et al., 2019), which is conducive
to carbon and nitrogen accumulation. MBC and MBN were basic
fractions of soil active carbon and nitrogen pools and were
positively related to SOM (Schnürer et al., 1985). Therefore,
the increase of carbon and nitrogen is beneficial to the
increase of microbial biomass. The variation of MBC and
MBN contents after farmland abandonment indicates that they
can be used as sensitive indicators of ecosystem response to the
natural restoration of reclaimed marshes.

The contents of MBC and MBN decreased with soil depth in all
sites, which is consistent with findings of the recent studies (Feng
et al., 2019; Mgelwa et al., 2019). This result may be related to the
decrease of the substrate input of plant residues (such as roots and
secretions) reduced with soil depth, which directly caused the MBC
and MBN contents with soil depth (Wichern et al., 2003).

Response of Soil Enzyme Activities to
Restoration of Reclaimed Marshes
Our results of soil enzyme activities partly supported our first
hypothesis that soil enzyme activities of the restored sites would

FIGURE 6 | Redundancy analysis (RDA) of the effect of soil physico-chemical properties and plant properties on soil microbial biomass (A) and enzyme activities
(B). BD, bulk density; MC, moisture content; SOC, soil organic carbon; TN, total nitrogen; AN, available nitrogen; TP, total phosphorus; AP, available phosphorus; TK,
total potassium; AGB, aboveground biomass; H, plant height; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; GLU, β-glucosidase; INV, invertase;
CAT, catalase; URE, urease; GME, geometric mean of enzyme activity.
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increase with restoration time though there were fluctuations in the
later stage of restoration. Our results are similar to previous studies
that soil enzyme activities increased during natural restoration after
farmland abandonment in the restored rangeland ecosystems (Raiesi
and Salek-Gilani, 2018). Plant restoration after farmland
abandonment had a positive effect on the enzyme activities
which was due to increased organic matter input and improved
soil physico-chemical and microbial properties (Cao et al., 2008;
Shang et al., 2014). Moreover, continuous and abundant input of
organic matter can provide sufficient nutrients for the growth of
microorganisms and also increase the surface adsorption of organic
matter by enzymes and their substrates (Raiesi and Salek-Gilani,
2018; Yu et al., 2019). Our results indicate that even after 27 years of
farmland abandonment, the four enzyme activities in the restored
sites still could not reach the level of the natural marsh. The results
are similar to a recent study showed that soil enzyme activities after
45 years of farmland abandonment were lower than those in the
natural sites (Raiesi and Salek-Gilani, 2018). It may take a longer
time (or hundreds of years) for the soil enzyme activities of
abandoned farmland to recover to the level of natural marshes,
because the hydrology, soil, and vegetation of these restored sites
have not recovered to the same level as those of natural marshes.

Our results also showed that there were significant differences
of soil enzyme activities across the five soil depths in all sites (p <
0.05, Figures 3A–D). The soil enzyme activities decreased with
soil depth in all sites, which were consistent with the previous
reports (Zhang et al., 2015; Bai et al., 2018). This result was related
to the fact that there are more organic matter and plant roots in
the surface soil depth than in the deeper soil, which leads to the
decline of the enzyme activities with soil depth (Xiao et al., 2015;
Ma et al., 2020).

Similar to the four enzyme activities, the GME was also higher in
the restored sites than that in the soybean field but lower than in the
natural marsh. This result also responses to the finding by Raiesi and
Salek-Gilani (2018) that the GME increased with farmland
abandonment time. Besides, the growth rate of GME was faster
in the early stage than in the later stage of restoration. The result may
be due to fluctuation of the plant biomass, SOC and TN contents in
the later stage of restoration (Table 1 and 2) because they are the
main sources of nutrients and energy for the survival of soil
microorganisms. Compared with a single enzyme, the GME has
a more stable temporal variability (Paz-Ferreiro and Fu, 2016),
which can better reflect the relationship between soil enzyme
activities and environmental factors in the process of restoration.

Relationships of Soil Microbial Properties
With Soil Physico-Chemical and Plant
Properties
Natural restoration after farmland abandonment had great
influences on the soil physico-chemical properties, plant
properties, and microbial properties (Li et al., 2020; Zhang et al.,
2016). In our restoration chronosequence, plant biomass, height,
coverage, and nutrients content significantly increased compared to
the soybean field (Table 1 and 2), which is consistent with the
previous studies (Li et al., 2018; Marton et al., 2014b; Wang H. et al.,
2011). In this study, soil MBC, MBN, the four soil enzyme activities,

and the GME were positively correlated with MC, SOC, TN, C:N
ratio, AN, TP, AGB, BGB, H, and Cover (p < 0.001), and were
negatively correlated with BD, pH (p < 0.001) (Figure 5). These
results support our second hypothesis that soil microbial biomass
and enzyme activities have significant relationships with soil
physico-chemical characteristics and plant properties. Wang et al.
(2020) also found that soil GLU,URE, CATwere positively related to
SOC, TN, TP, MC (p < 0.01), but INV was only positively related to
SOC (p < 0.01) and TN (p < 0.01). Li et al. (2018) found that soil
microbial biomass and enzyme activities had significant positive
relationships with SOC, TN, and negative relationships with BD, and
pH. Plant characteristics (biomass, height, coverage) also had
significant effects on soil enzyme activities (Araujo et al., 2013;
Qiang et al., 2020). RDA showed that among these affecting factors
of soil and plant properties, the C:N ratio, pH, and MC were crucial
explanatory factors affecting soil MBC and MBN contents
(Figure 6A). The C:N ratio, TN, and TP were crucial
explanatory factors affecting the soil enzyme activities and the
GME (Figure 6B).

Soil C, N, and P can regulate the available nutrients for soil
microbes, thus affecting the microbial properties and the changes
in the soil C: N stoichiometry during the process of restoration of
reclaimed marshes. The C:N ratio can reflect the degree of
decomposition of SOM, and a high soil C:N ratio can slow
down the decomposition rate of SOM, which is beneficial to
the accumulation of carbon and nitrogen (Baisden et al., 2002;
Marty et al., 2017). Soil MC as the main property of marsh plays
an important role in restoration of reclaimed marshes. With the
increase of marsh MC, the permeability of soil becomes weaker,
which can depress soil respiration, inhibiting organic carbon
decomposition (Pan et al., 2015), thus gradually minimizing
the difference in hydrology conditions between restored
marshes and natural marshes (Yang et al., 2019). Soil MC
could also affect the production and turnover of enzymes by
mediating the microbial biomass content (Steinweg et al., 2013).
Soil pH can not only regulate the decomposition and
mineralization of SOM but also influences the species and
activities of microorganisms and the rate of soil enzymes
participating in biochemical reactions (Dick et al., 2000). The
decrease of soil pH will reduce the decomposition rate of soil
organic matter (Mazurczyk and Brooks, 2018). Therefore, high
soil C:N ratio, MC, and low pH contribute to the increase of soil
microbial biomass content and enzyme activities in this study.

CONCLUSION

This research provided evidence for the responses of soil microbial
biomass and enzyme activities to national restoration of reclaimed
marshes. Compared with the soybean field, restoration of reclaimed
marshes significantly increased the soil MBC and MBN contents, soil
enzyme activities, and the GME of the restored sites. The MBC
content increased with restoration time and the MBN content
increased in the first 8 years of restoration and then slowed down
in the studied sites. Generally, the GLU, INV, CAT activities, and the
GME increased in the first 8 years of restoration and then fluctuated.
TheCAT activity increased in the first 17 years of restoration and then
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decreased in the R27 site. However, the MBC andMBN contents, soil
enzyme activities of all these restored sites were lower than the natural
marsh. Our results indicate that soil microbial properties can be
gradually restored through natural restoration, but it may take a long
time. We found that in the observed environmental factors, soil C:N
ratio, pH,MC,TN, andTPwere the key factors affecting soilmicrobial
biomass and enzyme activities.
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