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Recent studies have shown that predictive models can supplement or provide alternatives
to E. coli-testing for assessing the potential presence of food safety hazards in water used
for produce production. However, these studies used balanced training data and focused
on enteric pathogens. As such, research is needed to determine 1) if predictive models can
be used to assess Listeria contamination of agricultural water, and 2) how resampling (to
deal with imbalanced data) affects performance of these models. To address these
knowledge gaps, this study developed models that predict nonpathogenic Listeria
spp. (excluding L. monocytogenes) and L. monocytogenes presence in agricultural
water using various combinations of learner (e.g., random forest, regression), feature
type, and resampling method (none, oversampling, SMOTE). Four feature types were used
in model training: microbial, physicochemical, spatial, and weather. “Full models” were
trained using all four feature types, while “nested models” used between one and three
types. In total, 45 full (15 learners*3 resampling approaches) and 108 nested (5 learners*9
feature sets*3 resampling approaches) models were trained per outcome. Model
performance was compared against baseline models where E. coli concentration was
the sole predictor. Overall, the machine learning models outperformed the baseline E. coli
models, with random forests outperforming models built using other learners (e.g., rule-
based learners). Resampling produced more accurate models than not resampling, with
SMOTE models outperforming, on average, oversampling models. Regardless of
resampling method, spatial and physicochemical water quality features drove accurate
predictions for the nonpathogenic Listeria spp. and L. monocytogenes models,
respectively. Overall, these findings 1) illustrate the need for alternatives to existing E.
coli-based monitoring programs for assessing agricultural water for the presence of
potential food safety hazards, and 2) suggest that predictive models may be one such
alternative. Moreover, these findings provide a conceptual framework for how suchmodels
can be developed in the future with the ultimate aim of developing models that can be
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integrated into on-farm risk management programs. For example, future studies should
consider using random forest learners, SMOTE resampling, and spatial features to develop
models to predict the presence of foodborne pathogens, such as L. monocytogenes, in
agricultural water when the training data is imbalanced.

Keywords: Listeria, Listeria (L.) monocytogenes, machine learning, predictive modeling, agricultural water, food
safety, class imbalance, SMOTE (synthetic minority over-sampling technique)

HIGHLIGHTS

• Pathogen contamination of water used for agriculture poses
a public health risk

• Existing ag water quality standards (AWS) are insufficient
for ensuring food safety

• Predictive models may provide an alternative to AWS for
assessing hazards in water

• Data imbalance needs to be addressed when developing
models for use in the field

• SMOTE resampling to address imbalance generated the
most accurate predictive models

INTRODUCTION

Given the number of high-profile, multistate outbreaks linked to
fresh produce over the last two decades, preharvest produce safety
is of increasing concern to government and industry stakeholders
as well as consumers (Newell et al., 2010; Zhu et al., 2017). This is
evidenced by the publication or revision of national regulations
[e.g., the United States Food Safety Modernization Act (FSMA);
Kleinwechter and Grethe (2006), FDA (2015), UN FAO (2017)],
inter-governmental agreements [e.g., Faour-Klingbeil and Todd
(2018), US FDA (2020)], voluntary grower agreements [e.g., the
Leafy Greens Marketing Agreement; California Leafy Greens
Marketing Agreement (2017)], and food safety guidance
documents [e.g., Chapin et al. (2020), Corona et al. (2010),
Gorny (2005), McEntire et al. (2019), National Berry Crops
Initiative (2009), Nutrition, n.d.; Osborne et al. (2020), US
FDA (2017)] as well as stakeholder feedback in surveys and at
topical summits (Minor et al., 2019; Wall et al., 2019). Despite the
widespread recognition that produce safety is a concern, there is
some debate over the best way to manage preharvest
environments to mitigate contamination risks (Wall et al.,
2019). For instance, FSMA’s Produce Safety rule established a
microbial water quality standard for surface water used for
produce production (FDA, 2015). The standard states that
growers must create a microbial water quality profile for each
water source using 20 water samples collected over 2–4 years, and
that the geometric mean and 90th percentile of E. coli in these
samples must be <126 CFU/100-ml and <410 CFU/100-ml,
respectively (FDA, 2015). However, recent studies conducted
in several US produce-growing regions (e.g., Southeast,
Southwest, Northeast) have found that compliance with the
proposed standard is not associated with a reduced risk of
pathogen presence at the time of water use (Havelaar et al.,
2017; Truitt et al., 2018; Weller et al., 2020b). Indeed, Havelaar

et al. (2017) used data from Florida ponds to examine the
predictive accuracy of the proposed standard and found that
1) variability in log10 E. coli levels was three-fold higher than the
estimates used when drafting the standard, and 2) the sample size
in the proposed standard (N � 20 samples) failed to capture this
variability resulting in imprecise mean and 90th percentiles
estimates. Havelaar et al. (2017) also noted that this bias was
exacerbated by limitations associated with E. coli enumeration
methods. In addition, to specific concerns about the proposed
FSMA standard, there is also considerable debate in the scientific
literature, and produce safety community, about the efficacy of
using E. coli to indicate the potential presence of food safety
hazards in agricultural water. Indeed, multiple studies failed to
find an association between E. coli levels and foodborne pathogen
detection, found a negative association between E. coli levels and
pathogen detection, or found that the direction and strength of
this association was region, waterway, and/or pathogen-specific
[e.g., (Harwood et al., 2005; McEgan et al., 2013; Bradshaw et al.,
2016; Weller et al., 2020b)]. Thus, there is a clear need for
alternative strategies for identifying produce safety hazards in
surface waterways that provide water for produce production.

Interest in the application of predictive modeling, machine
learning, and other computational approaches to food production
has also increased over the past few decades. Due to the
emergence of digital agriculture and the concomitant
recognition of preharvest produce safety as a public health
concern, there has been substantial interest in the use of
digital agriculture for preharvest produce safety applications.
Despite this interest, only a limited number of studies have
developed and tested machine learning models to predict
when and where foodborne pathogens are likely to be present
in produce pre-harvest environments. Specifically, the authors are
aware of 1) a New York study that developed and validated
models to predict Listeria spp., and L. monocytogenes presence in
produce field soils (Strawn et al., 2013; Weller et al., 2016), 2) a
Florida study that developed and validated models to predict
Salmonella presence in irrigation ponds (Polat et al., 2019), and 3)
a New York study that developed and validated models to predict
Salmonella and pathogenic E. coli presence in streams used for
irrigation (Weller et al., 2020c). Overall, the results from these
studies are encouraging; each study used an independent dataset
for model validation, and found that predictive models were able
to accurately predict pathogen presence and/or outperform
baseline learners (Weller et al., 2016; Polat et al., 2019; Weller
et al., 2020c). Moreover, studies that developed models to predict
microbial contamination of other environments, such as
recreational water and poultry farm soils, also concluded that
machine learning models could be a useful tool for managing
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microbial hazards in the given environment (Efstratiou et al.,
2009; Francy et al., 2013; Francy et al., 2014; Golden et al., 2019).
However, almost all of these studies used a continuous outcome
(e.g., concentration of the bacteria), used balanced training data
or did not account for imbalance in the training data. Imbalanced
data refers to when there are substantially fewer positive samples
than negatives samples (or vice versa). This causes a problem
since predictive models trained using imbalanced data can
achieve relatively good accuracy by assigning the majority
class to all samples (e.g., predicting all samples to be negative).
Thus, there is limited evidence from applied produce safety
studies on how different strategies for addressing imbalance
can affect model performance. Similarly, no peer-reviewed
study, to the author’s knowledge, has developed models to
predict Listeria contamination of surface water used for
produce production. Thus, the primary aims of this study
were to determine 1) if machine learning could be used to
develop models that accurately predict Listeria presence in
agricultural water sources in the Northeastern US, and 2) the
impact on predictive performance of different methods for
dealing with imbalanced training data. Since collecting certain
data types [e.g., field-collected, lab-generated microbial water
quality data vs. weather data publicly available through an
online portal] requiredifferent levels of capital, computational,
and training investment to growers, a secondary aim of this study
was to assess the relative information gain associated with using
different feature types to build predictive models. The models
developed here are not deployable models, and should not be
used to guide on-farm decision-making. Instead, this study
provides the conceptual framework that future studies can
build upon to develop and incorporate field-ready models into
on-farm decision-support tools (i.e., to develop deployable
models). As such, this study was designed to complement
existing studies that provide guidance on how machine
learning approaches can be used to develop models to predict
enteric pathogen presence in agricultural water using balanced
training data Polat et al. (2019), Weller et al. (2020c), and Listeria
spp. presence in field environments (Weller et al., 2016; Golden
et al., 2019). While we acknowledge that Salmonella and
pathogenic E. coli are the primary organisms of concern in
surface water used for produce production, Listeria spp. and L.
monocytogeneswere used as models organisms here because 1) we
lacked access to suitable (i.e., imbalanced) data on Salmonella and
pathogenic E. coli contamination of agricultural waterways, and
2) L. monocytogenes is a foodborne pathogen of concern whose
presence in agricultural water could lead to recalls and illness
when contamination carries through to the finished product
(Garner and Kathariou, 2016).

MATERIALS AND METHODS

Study design
This study used the datasets collected in 2017 Weller et al.
(2020b) and 2018 Weller et al. (2020a) to test and train the
models, respectively. While these data were previously published,
the published studies focused on 1) characterizing associations

between pathogen detection and environmental factors, 2)
identifying sources of pathogen contamination, and 3)
assessing the impact of sampling and laboratory methods on
pathogen detection (Weller et al., 2020a; Weller et al., 2020b).
Conversely, the current study focuses on the 1) development and
comparison of predictive models using different algorithms and
feature types, 2) impact of resampling methods (to address data
imbalance) on model performance, and 3) identification of
features that drive model accuracy. Moreover, unlike previous,
applied studies that developed models to predict the presence of
food safety hazards in agricultural water using balanced presence-
absence Polat et al. (2019), Weller et al. (2020c) or continuous
Weller et al. (2021) data, the current study focuses on predicting
Listeria contamination using moderately (nonpathogenic Listeria
spp.) and severely (L. monocytogenes) imbalanced presence-
absence data (Table 1).

The sampling and laboratory methods for the training and test
data were the same except for differences in the 1) number of
sampling sites (6 in 2017, and 68 in 2018), and 2) frequency of
sampling (15–34 visits per site in 2017, and 2 to 3 visits per site in
2018; Table 1). The sampled streams were located in the same
geographic region (Upstate New York), and each dataset represents
a single growing season (May to August in 2017, and April to
October in 2018). At each sampling visit, 1) a 10-L grab sample
(GS) was collected and tested for Listeria spp. and L.
monocytogenes, 2) a 1-L GS was collected for E. coli
enumeration, and 3) physicochemical water quality data were
collected as previously described (Weller et al., 2020a; Weller
et al., 2020b). Weather data for each sampling visit, and the
preceding 30 days were downloaded from the NEWA station
(newa.cornell.edu) closest to the sample site as previously
described Weller et al. (2020a), Weller et al. (2020b), Weller
et al. (2020c), while spatial data were downloaded from publicly
available sources (see Supplementary Table S1). Average air
temperature and solar radiation, and total rainfall were
calculated for 0–1, 1–2, 2–3, 3–4, 4–5, 5–10, 10–20, and
20–30 days before sample collection. All spatial analyses were
performed using ArcGIS version 10.2 or R version 3.5.3. The
inverse-distance weighted percentage of each land cover class 1)
in the whole watershed, 2) within the stream corridor (i.e., within
60m of the stream channel), and 3) in the flood plain was
calculated as previously described (King et al., 2005). In addition
to characterizing land cover, we also determined if potential point
sources of contamination were present upstream of each site as well
as the density of these point sources (Supplementary Table S1).
Summaries of these features in the training and test data (e.g.,
ranges, average values) can be found in the supplemental material
of Weller et al. (2020a) and Weller et al. (2020b), respectively.

All samples were stored at 4°C and processed <18 h after
collection. During processing, each 10-L GS was filtered through
a modified Moore swab (mMS; (Sbodio et al., 2013)). After
filtration, each mMS was transferred to a sterile Whirl-Pak
and processed as described previously (see github.com/
wellerd2/Laboratory-Protocols for the protocol). Briefly, 225 ml
of buffered Listeria enrichment broth (BLEB; Becton Dickinson,
Franklin Lakes, NJ) was added to each Whirl-pak. After
incubating at 30°C for 4 h, Listeria selective enrichment
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supplement (Oxoid, Cambridge, United Kingdom) was added.
After incubation for a total of 24 and 48 h at 30°C, 50 μl of
enrichment were streaked onto L. monocytogenes plating medium
(LMPM; Biosynth International, Itasca, IL) and Modified Oxford
agar (MOX; Becton Dickinson). The LMPM and MOX plates
were incubated for 48 h at 35 and 30°C, respectively. Up to 4
presumptive Listeria colonies were sub-streaked from MOX to
LMPM. After these LMPM plates were incubated at 35°C for 48 h,
up to 2 presumptive L. monocytogenes (blue on LMPM) colonies
and up to 2 presumptive nonpathogenic Listeria spp (white on
LMPM) colonies were selected for confirmation by amplification
and sequencing of the partial sigB gene (Nightingale et al., 2005;
Den Bakker et al., 2010; Bundrant et al., 2011). It is important to
note, that for ∼15% of samples in the training dataset, only 9 L
were processed as described above; the remaining liter was filtered
through a 0.45 um filter. The filter was then transferred to a sterile
Whirl-pak bag, and processed using a modified version of the
protocol above (i.e., using 90 instead of 225 ml of BLEB). For this
subset of 2018 samples, if either the mMS or 0.45 um filter were
confirmed as Listeria spp (excluding L. monocytogenes) or L.
monocytogenes-positive than the sample was considered positive
for the given target.

Statistical Analyses
All analyses were performed in R (version 3.5.3; R Core Team,
Vienna, Austria). Baseline models were created using existing
water quality standards (Environmental Protection Agency, 2012;
US FDA, 2015). Since each standard is based on an acceptable
level of E. coli being present in the sample, samples with E. coli
levels below this level were predicted to be negative for the target
(Listeria spp. excluding L. monocytogenes or L. monocytogenes),
while samples above this level were predicted to be positive. It is
important to note that since L. ivanovii was not isolated in the
present study, Listeria spp. excluding L. monocytogenes will
henceforth be referred to as nonpathogenic Listeria spp. The
cut-offs considered were: 126, 235, and 410 MPN of E. coli/100-
ml (Environmental Protection Agency, 2012; US FDA, 2015). The
epiR and exact2x2 packages were used to calculate performance
measures for each baseline model. Boxplots were used to visually
compare E. coli levels between Listeria positive and negative
samples in the training and test data.

Predictive Models
The 15 learners used in the present study were selected to ensure
comparability with previous studies focused on predicting

foodborne pathogen presence in preharvest environments
i.e., [(Strawn et al., 2013; Golden et al., 2019; Polat et al., 2019;
Weller et al., 2020c)]. All models were trained using the 2018
dataset Weller et al. (2020a), and tested using 2017 dataset
(Weller et al., 2020b). Separate models were developed to
predict the presence of nonpathogenic Listeria spp., and L.
monocytogenes. Hyperparameter tuning was performed to
maximize area under the curve (AUC) via repeated 3-fold
cross-validation. After model tuning and training, predictive
performance was assessed using the test data. By using the
2018 data to train the models and the 2017 data to test the
models, the impact of overfitting on performance estimates was
reduced. The probability threshold was tuned to maximize kappa
score, since the values of several performance measures (e.g.,
sensitivity) are dependent on this threshold. Prior to model
development, the training and test data were merged, and all
features were centered and scaled. The training and test data were
then split into separate datasets. Studies focused on developing
deployable, field-ready models (i.e., models that can be used to
build tools, such as smartphone-based applications, that growers
can use to guide on-farm decision-making) should center and
scale the training data, and then use the means and standard
deviations from the training data to center and scale the test data.

During model development, between one and four types of
features were used: 1) microbial water quality features; 2)
physicochemical water quality features and temperature
collected at the time of sample collection; 3) spatial features
based on data extracted or calculated using geographic
information systems; and 4) weather features based on
weather data obtained from stations between <1 and 26 km
from the sampling site [see Supplementary Table S1 for a
complete list of each feature type; see (Weller et al. (2020a),
Weller et al. (2020b) for summaries for the feature data]. Models
built using all four feature types were designated “full models.”
The 15 learners used to build the full models can be grouped into
1) tree-based learners, 2) ensemble learners (or forests), 3)
regression, rule-based learners, and 4) support vector
machines [SVM; for descriptions of each learner as well as its
(dis)advantages and tunable parameters see (Bischl et al., 2016b;
Kuhn and Johnson, 2016; Weller et al., 2020c; Weller et al.,
2021)]. Separately from the full models, “nested models” were
developed to assess the relative information gain associated with
using different feature types for model training. Five of the 15
learners used to build the full models were selected to build the
nested models. Nine nested models were then built for each of

TABLE 1 | L. monocytogenes and Listeria spp. (excluding L. monocytogenes)a prevalence in the training and test datasets.

Dataset No. of Prevalence (no. Pos. Samples/Total samples) Year (citation)

Sampling sites Visits per site L. monocytogenes Nonpathogenic Listeria spp.

Training 68 2–3 10% (20/191) 28% (53/191)b 2018 (Weller et al., 2020a)
Test 6 15–34 15% (27/180) 31% (55/180)c 2017 (Weller et al., 2020b)

aSince L. ivanovii was not isolated here, Listeria spp. (excluding L. monocytogenes) is referred to as nonpathogenic Listeria spp. throughout the paper.
bThe following Listeria species were detected and included in this composite category: L. innocua (11/191), L. marthii (5/191), L. seeligeri (21/191), and L. welshimeri (16/191).
cThe following Listeria species were detected and included in this composite category: L. innocua (9/180), L. marthii (11/180), L. rustica (1/180), L. seeligeri (25/180), and L. welshimeri (15/
180). Note that several samples tested positive for multiple nonpathogenic Listeria species, which did not occur in the test data.
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these five learners using between one and three of the feature
types (see Supplementary Tables S2–S3; Figures 1–4).
Performance measures for each model were calculated and
visualized graphically. The top-ranked models for each
outcome were identified by 1) ranking models based on AUC,
F1-score, and kappa score, and 2) averaging each model’s rank for
these 3 measures. A larger rank indicates better performance;
models that tied were assigned the same rank. The performance
of the top-ranked models for each outcome was visualized using

density, ROC, and split quantiles plots. Explanations on how to
interpret these plots are included in the figure legends.

Since the prevalence of nonpathogenic Listeria spp. and L.
monocytogenes was below 30% in the training data, the training
data was considered imbalanced (Table 1); specifically only 10
and 28% of the samples included in the training data
were positive for L. monocytogenes and non-pathogenic
Listeria spp., respectively (Table 1). As a result, the L.
monocytogenes can be considered severely imbalanced and

FIGURE 1 | Area under the curve (AUC) and Kappa score for models that predict nonpathogenic Listeria spp (excluding L. monocytogenes) presence in New York
agricultural water. To facilitate readability models are faceted into full (left column) and nested (right column) models, and by resampling method [no resampling (top row),
oversampling (middle row), and SMOTE (bottom row)]. The dotted red lines indicate the cut-offs for AUC (0.50) and Kappa score (0.00) below which model’s
performance is no better than chance.
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the non-pathogenic Listeria spp. data can be considered slightly
imbalanced. Depending on the learner used, imbalanced
outcomes data can result in inaccurate models that are
biased toward the dominant class (e.g., the resultant model
may call all novel samples L. monocytogenes-negative since that
is the dominant class in the training data). Twoways for correcting
this imbalance were considered here, oversampling and synthetic
minority oversampling technique (SMOTE); models were also run
without correcting for imbalance and are referred to as no

resampling models (Chawla et al., 2002; Bischl et al., 2016b).
Briefly, oversampling randomly duplicates (with replacement)
samples representing the minority class (i.e., Listeria-negative
samples), while SMOTE generates novel observations of the
minority class. SMOTE works by randomly selecting an existing
sample with the minority class, and then interpolating the feature
data for this observation and its next nearest neighbors to create a
new “novel” observation. While other approaches (e.g.,
undersampling, which eliminates majority class observations from

FIGURE 2 |Sensitivity and 1-Specificity for models that predict nonpathogenic Listeria spp. (excluding L. monocytogenes) presence in New York agricultural water.
To facilitate readability models are faceted into full (left column) and nested (right column) models, and by resampling method [no resampling (top row), oversampling
(middle row), and SMOTE (bottom row)]. The dotted red lines represent perfect chance (i.e., a model that falls on the line has the same odds of correctly predicting
nonpathogenic Listeria spp. status as an unbiased coin toss).
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the dataset) exist, they were not considered here due to the nature
of the training dataset (e.g., the small sample size makes
undersampling impractical). For each learner-feature
set combination, separate models were built using each
approach for addressing data imbalance. In oversampling,
samples with the minority class value (i.e., nonpathogenic Listeria
or L. monocytogenes positive samples) are randomly selected with
repetition and added to the dataset until the prevalence of the
minority class equals 30%.

RESULTS AND DISCUSSION

The present study used existing datasets to train Weller et al.
(2020a) and test Weller et al. (2020b) models to predict the
probability of Listeria monocytogenes and nonpathogenic Listeria
spp (i.e., Listeria spp. excluding L. monocytogenes) being present
in streams used to source water for produce production in New
York state. Given the imbalanced nature of the training data
(Table 1), one aim of the current study was to assess the impact

FIGURE 3 | Area under the curve (AUC) and Kappa score for models that predict L. monocytogenes presence in New York agricultural water. To facilitate
readability models are faceted into full (left column) and nested (right column) models, and by resampling method [no resampling (top row), oversampling (middle row),
and SMOTE (bottom row)]. The dotted red lines indicate the cut-offs for AUC (0.50) and Kappa score (0.00) below which model’s performance is no better than chance.
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on predictive performance of different methods for dealing with
imbalanced training data. The other study aim was to generate
information that can guide future efforts on how machine
learning approaches can be used to develop models to predict
foodborne pathogen presence in agricultural water (e.g., feature
types and learners that future models should focus on). It is
therefore important to note that the models developed here are
not field-ready models (i.e., models that can be used on-farms to
guide risk mitigation efforts), and instead provide a framework

that future studies can build upon to develop field-ready models.
It is important to note that 1) these future efforts should focus on
pathogens of greatest concern in agricultural water (i.e., EHEC
and Salmonella) and 2) nonpathogenic Listeria spp. and L.
monocytogenes were used here because we lacked access to
suitable Salmonella and pathogenic E. coli data. However, L.
monocytogenes is a foodborne pathogen of concern and L.
monocytogenes contamination of agricultural water may lead
to human illness.

FIGURE 4 | Sensitivity and 1-Specificity for models that predict L. monocytogenes presence in New York agricultural water. To facilitate readability models are
faceted into full (left column) and nested (right column) models, and by resampling method [no resampling (top row), oversampling (middle row), and SMOTE (bottom
row)]. The dotted red lines represents perfect chance (i.e., a model that falls on the line has the same odds of correctly predicting L. monocytogenes status as an
unbiased coin toss).
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Baseline Models Built using Binary E. coli
Cut-offs were Unable to Predict
Listeria-Positive or Listeria-Negative
Samples
In total, we developed 6 baseline models [2 microbial
targets*3 E. coli cut-offs], 90 full models [2 microbial targets*15
learners*3 resampling approaches] and 268 nested models [2
microbial targets*5 learners*3 resampling approaches*9 feature

sets]. The three resampling approaches used were 1) no resampling
(i.e., the raw data were used), 2) SMOTE resampling, and 3)
oversampling. The three baseline models were unable to accurately
differentiate L. monocytogenes or non-pathogenic Listeria spp.
positive samples from Listeria negative samples. (Figures 1–4).
The best performing L. monocytogenes and non-pathogenic
Listeria spp. baseline models, which used the 410 CFU/100-ml
cut-off, were ranked 81st and 65th, respectively, while the top-
performing full/nested models were ranked 176th and 181st,

TABLE 2 | Summary of the top-ranked full and nested models for predicting nonpathogenic Listeria spp (excluding L. monocytogenes) and L. monocytogenes presence in
New York streams, including how these top-rankedmodels compared to baselinemodels created using existing water quality standards (EPA, 2012; US FDA, 2015). It is
important to note that a higher model ranks indicates a better performing model. For example, the best-performing nonpathogenic Listeria spp. and L. monocytogenes
models were ranked 181 and 176, respectively; the difference in the value of the top-ranked models for nonpathogenic Listeria spp. and L. monocytogenes is due to the fact
that the models with a tied rank were assigned the same value.

Learner (features) Resample approacha Rank AUCb DORc Kappad MCCe

Nonpathogenic Listeria
Binary FIB cut-off modelsf

126 MPB/100-ml — 67th — 0.7 −0.10 −0.09
235 MPB/100-ml — 66th — 0.6 −0.11 −0.10
410 MPB/100-ml — 65th — 0.3 −0.20 −0.20

10 Top-performing full and nested modelsf

Conditional forest (full model) SMOTE 181th 0.73 6.1 0.40 0.39
Conditional forest (full model) None & over 180th 0.73 5.4 0.37 0.37
Node harvest (full model) Over 179th 0.72 6.0 0.40 0.39
Regularized random Forest(Full model) SMOTE 178th 0.74 5.5 0.37 0.37
Regularized random forest (full model) None 170th 0.72 5.0 0.34 0.34
Partial decision Trees (nested model, physicochemical & weather) SMOTE 162nd 0.67 5.1 0.36 0.36
SVM with linear hyperplane (nested model, spatial) Tieg 152nd 0.71 4.6 0.33 0.32
Random forest (nested model, spatial) Tieg 148th 0.70 4.6 0.33 0.32
Partial decision Trees (nested model, spatial) SMOTE 143rd 0.68 4.6 0.33 0.32
Ridge regression (nested model, microbial & turbidity) SMOTE 141th 0.64 4.8 0.34 0.34
Ridge regression (nested model, spatial) SMOTE 141th 0.68 4.6 0.33 0.32

Listeria monocytogenes
Binary FIB cut-off models
126 MPB/100-ml — 89th — 0.8 −0.07 −0.05
235 MPB/100-ml — 93rd — 1.0 0.00 0.00
410 MPB/100-ml — 81st — 0.9 −0.02 −0.01

10 Top-performing full and nested modelsf

Random forest (nested model, physicochemical) None 176th 0.60 3.3 0.20 0.20
SVM linear (nested model, microbial & turbidity) Over 173rd 0.57 4.5 0.22 0.23
SVM linear (full model) SMOTE 172nd 0.58 2.4 0.14 0.15
Partial decision Trees (nested model, microbial, physicochemical, and weather) SMOTE 165th 0.57 2.3 0.14 0.14
Random forest (nested model, microbial) SMOTE 164th 0.56 4.1 0.19 0.19
Random forest (nested model, microbial & physicochemical) None 159th 0.58 2.3 0.13 0.13
Evolutionary optimal Trees (full model) SMOTE 152nd 0.56 1.9 0.09 0.11
K-nearest neighbor (full model) None 149th 0.54 4.1 0.17 0.19
Ridge regression (full model) Over 149th 0.55 1.9 0.10 0.11
SVM linear (full model) None 139th 0.53 2.0 0.06 0.11

aTo assess the effect of resampling on model performance, two resampling methods [oversampling (Over) and synthetic minority oversampling (SMOTE)] as well as no resampling (None)
were used to develop three, separate models for each outcome-learner-feature type combination.
bArea under the Curve. AUC ranges between 0 and 1, with AUC � 1.0 indicating perfect prediction. AUC ≤ 0.5 indicates that the model’s performance is equal to or worse than chance.
cDiagnostic Odds Ratio. DOR ≤ 1 indicates a poor performing models (i.e., a model where a positive prediction is associated with a sample testing negative for the target microbe), while a
DOR > 1 indicates that a positive prediction is associated with the sample testing positive for the target.
dKappa score represents how much better the model performs compared to a model that randomly calls novel samples pathogen positive or negative. A score ≤ 0.0 indicates that the
model is no better than random, while a score � 1 indicates a model that always correctly identifies novel samples.
eMatthew’s Correlation Coefficient. MCC ranges between−1 (the model always incorrectly predicts pathogen status) and 1 (the model always correctly predicts pathogen status). MCC ≤
0.0 indicates that the model is no better than a model that randomly predicts pathogen status.
fTo assess the relative information gain associated with using different feature types to build the models, two sets of analyses were performed. In the first set, each learner and the full set of
features (Supplementary Table S1) were used to develop full models. In the second set, the features listed in Supplementary Table S1 were divided into four groups: microbial;
physicochemical water quality and temperature data collected on site; weather data obtained from NEWA weather stations; and spatial. Nested models were then built using different
combinations of these feature types.
gThe performance measures for the models built using each of the three resampling methods for the given combination of learner and feature type were exactly the same. This indicates
that regardless of the resampling method used the same model was generated.
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respectively (Table 2, Supplementary Tables S2–S3; note, a larger
rank indicates better performance). For all baseline models,
performance measures were equal to or below the cut-offs (e.g.,
a AUC of 0.50) used to identify models that outperformed a
random classifier (Table 2). Although performance measures were
calculated using the test dataset, the baseline models performed
similarly when predictions were made on the training data
(Supplementary Figure S1), indicating that using binary E. coli
cut-offs to assess if Listeria was potentially present in agricultural
surface water is not effective. This result is not surprising since
multiple studies have found that agricultural and recreational
water standards based on binary E. coli cut-offs were
insufficient for assessing food safety hazards in surface
waterways (Thoe et al., 2014; Havelaar et al., 2017; Truitt et al.,
2018; Weller et al., 2020c). The poor performance of the baseline
E. coli models in the present study is also consistent with the
conceptual basis behind E. coli-based monitoring programs.
Specifically, E. coli is an indicator of fecal contamination, and
its use is predicated on the assumption that foodborne pathogen in
agricultural water are of fecal origin (Busta et al., 2006; Chapin
et al., 2014; Uyttendaele et al., 2015). However, L. monocytogenes is
an opportunistic pathogen, and both L. monocytogenes and non-
pathogenic Listeria species exist as free-living populations in non-
host environments [e.g., soil, water; (Vivant et al., 2013)]. As such,
fecal indicators, like E. coli, may be ill-suited to assessing the
potential presence of Listeria in surface water. Overall, the findings
of this and other studies [e.g., Havelaar et al. (2017), Truitt et al.
(2018)] are illustrative of the need for alternative or supplementary
strategies to existing E. coli-based monitoring programs for
assessing and managing food safety hazards in surface water
used for produce production (e.g., predictive model-based
applications), particularly for microbial hazards that are not
predominantly fecal in origin. Moreover, the fact that the
machine learning models outperformed the baseline E. coli
models in the present study suggests that machine-learning
models may be useful for predicting when and where Listeria is
likely to be present in surface water used for produce production.

While Ensemble and Black-box Learner
Performance was Robust to Resampling for
Moderately Imbalanced Data, Models Built
using Synthetic Minority Oversampling
(SMOTE) Outperformed, on Average,
Models Built using Oversampling or without
Resampling
Six of the top-ranked non-pathogenic Listeria spp. models were
built using SMOTE resampling, two were built without resampling
(i.e., where imbalance was not corrected), and one was built using
oversampling. On average, nonpathogenic Listeria spp.models built
without resampling performed worse than models built using the
same learner and features (i.e., pairedmodels), but using SMOTE or
oversampling (Figures 1, 2; Supplementary Table S3). When
paired, nonpathogenic Listeria spp. models were compared, the
SMOTE models outperformed the oversampling or no resampling
models 43%of the time, the oversamplingmodels outperformed the

SMOTE and no resampling models 25% of the time, and the no
resamplingmodels only outperformed the resamplingmodels 6% of
the time (Supplementary Table S3). It is important to note that, the
performance measures for 14 nonpathogenic Listeria spp. models,
including two of the top-rankedmodels, were the same regardless of
resampling approach used (Table 2). These ties indicate that,
regardless of the resampling method, the same model was
generated; as such, these learners appear invariant to data
imbalance. Indeed, the effect of resampling, as evidenced by
differences in paired model rankings, was more pronounced for
nonpathogenic Listeria spp. models built using tree-based learners
compared to models built using ensembles (e.g., forests), black-box
learners (e.g., SVMs), or regression learners (Figures 1, 2; Table 2;
Supplementary Table S3). Similarly, the effect of resampling was
more pronounced for nested models built using individual feature
types compared to full models or nestedmodels built usingmultiple
feature types (Figures 1, 2; Table 2; Supplementary Table S3). For
the L. monocytogenes models, four of the top-ranked models were
built without resampling, four were built using SMOTE resampling,
and two were built using oversampling (Table 2). However, models
built without resampling performed substantially worse compared
to SMOTE and oversampling models overall (Figure 3;
Supplementary Table S2). In fact, when paired models were
compared, the no resampling models ranked higher than the
resampling models only 10% of the time, while the SMOTE
models were ranked highest 57% of the time. Similarly, models
with no resampling accounted for 53% of L. monocytogenesmodels
that performed the same as or worse than random classifiers, while
the oversampling and SMOTE models only accounted for 31 and
16%, respectively, of thesemodels. Thus, just like the nonpathogenic
Listeria spp. models, using SMOTE to address data imbalance
appeared to produce better performing L. monocytogenes models
(Figures 3, 4; Table 2; Supplementary Table S2).

It is important to note that the impact of not resampling was
substantially higher for the L. monocytogenes models compared to
the nonpathogenic Listeria spp. models (Figures 1, 3). Twenty-
seven L. monocytogenesmodels built without resampling performed
worse than a random classifier compared to only seven
nonpathogenic Listeria spp. models built without resampling
(Supplementary Tables S2–S3). Since the L. monocytogenes data
were severely imbalanced and the nonpathogenic Listeria spp. data
were only slightly imbalanced, such a finding is logical, since it is
well-established that the degree of training data class imbalance
affects model performance (Japkowicz, 2000; Bischl et al., 2016a;
Kuhn and Johnson, 2016). In fact, resampling approaches were
developed to overcome this phenomenon. Although our finding that
SMOTE models, on average, outperformed oversampling models
may be specific to our dataset, oversampling replicates existing cases
in the training data and can thus cause overfitting (Batista et al.,
2004; Chawla et al., 2004). Overfitting produces a model that can
describe the training data well but is not generalizable to novel
datasets; an independent test dataset was used here to minimize the
impact of this when calculating performance measures. Since
SMOTE resampling was developed to overcome this and other
limitations of oversampling Chawla et al. (2002), Fernández et al.
(2018), it is unsurprising that SMOTE outperformed oversampling
in the present study. Overall, our findings suggest that future
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projects aimed at developing deployable models to predict pathogen
presence in agricultural water should implement resampling to
address class imbalance. When considering how to implement
resampling in these future studies, it is should be noted note that
the effect of resampling on model performance may be learner
specific (Prati et al., 2015). For example, Prati et al. (2015), found
that the impact of class imbalance on model performance was
dependent on the learner used, with SVMs being the least affected by
class imbalance and rule-based learners, like JRip, being the most
affected. This finding is consistent with the results of the present
study, where the effect of class imbalance was more pronounced for
nonpathogenic Listeria spp. models built using tree-based learners
compared to ensemble, black-box and regression learners. Thus,
despite the fact that in our study SMOTE resampling appears to
produce better performing models compared to oversampling,
additional research is needed to confirm this conclusion. As
such, future studies may want to consider learners whose
performance appears relatively invariant to resampling method
(e.g., SVMs as opposed to JRip).

While Random Forests Outperformed all
Other Learners, SVMs Models were also
Consistently Ranked Among the
Top-Performing Models Regardless of
Resampling Approach used
Random forests accounted for 6 and 3, respectively, of the ten
top-ranked nonpathogenic Listeria spp. and L. monocytogenes
models (Table 2). One SVM model, two PART models, and 2
regression models were also among the 10 top-ranked
nonpathogenic Listeria spp. models, while 3 SVM models, 1
PART, and 1 regression model were also among the top-ten L.
monocytogenesmodels (see Table 2 for all 10 top-rankedmodels).
Visual inspection of the graphs comparing nonpathogenic
Listeria spp. model performance shows random forest, SVMs,
and regression models consistently clustering in the top right of
Figure 1, and in the top left of Figure 2, indicating good
performance regardless of resampling method or feature types
used in model development. While SVM, regression, and nested
random forest models for L. monocytogenes cluster in the top
right of Figure 3 (indicating better performance compared to the
other L. monocytogenesmodels), overall poor model performance
(as indicated by the number of models with AUC < 0.50) prevents
drawing a definite conclusion based on comparisons between
learners for the L. monocytogenesmodels. Despite this limitation,
we can conclude that for both the nonpathogenic Listeria spp.
and L. monocytogenesmodels, models built using the cTree, JRip,
and CART learners were consistently among the worst
performing models (Figures 1, 3). Overall, these findings are
consistent with past studies that compared the ability of models
built using different learners to accurately predict pathogen
presence in farm and freshwater environments (Pang et al.,
2017; Avila et al., 2018; Golden et al., 2019; Weller et al.,
2020c). For example, one study Weller et al. (2020c) that
compared the ability of models built using different learners to
predict enteric pathogen presence in agricultural water also found
that forest and SVM learners outperformed other learner types.

Similarly, a study, that developed models to predict Listeria
presence in feces and soil collected from pasture poultry
farms, compared the performance of boosted forests and
random forests and showed that good predictive accuracy
(AUC between 0.7 and 0.9) could be achieved using forest-
based learners (Golden et al., 2019). Another study that used
regression and random forest to characterize associations between
weather conditions and Listeria presence in environmental samples
collected from a mixed produce-dairy farm found that both
regression and random forest models performed well with
AUCs between 0.80 and 0.92 (mean � 0.83), and 0.70 and 0.88
(mean � 0.80), respectively (Pang et al., 2017). In general, random
forest and SVM algorithms are more robust to missingness and
correlation/collinearity between features, and are better able to
account for complex relationships between multiple features (e.g.,
interaction, hierarchical relationships) than regression methods.
Overall, our findings suggest that future studies focused on
developing deployable models to predict pathogen contamination in
surface waterways used to source water for produce production
should focus model development efforts on random forest, SVM, or
regression learners but not tree- or rule-based learners. Moreover,
since ecological datasets often suffer from data complications (e.g.,
missing data due to breaking probes, storms, etc.) and past studies
have shown that complex interactions between environmental and
anthropogenic features impact microbial water quality (Wilkes et al.,
2009; Bradshaw et al., 2016;Weller et al., 2020b), SVMs and random
forest learners may be better suited to the development of deployable
models than regression learners.

Models Built using Spatial Features
Outperformed Models Built using Other
Feature Types When Predicting
Nonpathogenic Listeria Spp.
When resampling method is ignored, certain patterns become
evident amongst nested models (Supplementary Figure S6). For
instance, the spatial nonpathogenic Listeria spp. models
consistently outperformed the nested models built using
microbial, weather, and physicochemical water quality (Figures
1, 2). In fact, regardless of resampling method, when features were
ranked by impact on predictive accuracy (using permutation
variable importance) in the top-ranked, non-pathogenic Listeria
spp. full model, 9 of the 13 features with the greatest impact were
spatial features associated with topography, soil type and run-off
potential, watershed size, and potential sources of contamination
(Figure 5). Such findings are consistent with past studies that
found strong associations between spatial factors and pathogen
contamination of both surface water and produce preharvest
environments (Ivanek et al., 2009; Strawn et al., 2013; Chapin
et al., 2014; Linke et al., 2014; Stea et al., 2015; Falardeau et al., 2017;
Harrand et al., 2020). For instance, Stea et al. (2015) compared
Listeria spp. contamination in two Nova Scotia, Canada
watersheds, and found that Listeria spp. was more prevalent in
rural (38%) than urban (22%) watersheds. Similar to the study
reported here, Ivanek et al. found that topographical factors were
associated with Listeria spp. isolation from water samples in New
York natural environments (Ivanek et al., 2009).

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 70128811

Weller et al. Predicting Listeria Contamination of Water

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Unlike the nonpathogenic Listeria models, the spatial L.
monocytogenes nested models consistently performed equal to
or worse than random, suggesting that, for the streams
represented in the test data, use of spatial features was not
informative when predicting L. monocytogenes presence.
Instead, weather and physicochemical water quality parameters
appeared to drive predictive accuracy for the L. monocytogenes
models (Figure 5). However, this may be an artifact of the data
used here. Specifically, 1) the training data were collected from a
large number of sites (N � 68) visited 2–3 times each, 2) the test
data were collected from six sites each visited 15 to 34 times, and
3) the fact that the microbial water quality has been shown to vary
considerably over small spatial scales for the sampled streams
(Weller et al., 2020a; Weller et al., 2020b). These three factors,
when coupled with the low prevalence of L. monocytogenes
detection (Table 1), means that spatial signals could be missed
since combinations of spatial and temporal features that facilitate
L. monocytogenes contamination of surface water (e.g., being
downstream of a pasture during a rain event) may not be
represented in the test dataset. It is important to note that these

limitations are less likely to affect the nonpathogenic Listeria results
due to the greater prevalence of nonpathogenic Listeria in the
present study (Table 1). To overcome these limitations, future
studies that aim to develop and validate deployable models for
L. monocytogenes should ensure that, for both the training and test
data, 1) sufficient sites are sampled to capture variation in spatial
factors even when prevalence is low (e.g., 10%), 2) each site is
sampled with sufficient frequency to capture rare, stochastic
contamination events, 3) the sampling sites are representative of
agricultural waterways in the given region, and 4) sufficient samples
are collected so, even if pathogen prevalence is low, there are
sufficient positives to capture relevant spatial and temporal signals.

CONCLUSION

The findings from this study are consistent with past studies
focused on predicting enteric pathogen presence in agricultural
water Polat et al. (2019), Weller et al. (2020c), fecal indicator
levels in agricultural water Buyrukoğlu et al. (2021), Weller et al.

FIGURE 5 | Variable importance plots showing the ranking of each feature used to develop the 1) full nonpathogenic Listeria spp (excluding L. monocytogenes)
conditional forest models since the SMOTE model was the top-ranked nonpathogenic Listeria spp. model, and 2) nested, physicochemical L. monocytogenes random
forest models since the no resampling model was the top-ranked L. monocytogenesmodel; Table 2). The x-axis of each plot is normalized variable importance (VI), and
the features on the y-axis are arranged from greatest impact (higher VI) to lowest impact (lower VI) on predictive accuracy. For the nonpathogenic Listeria spp.
forests, only the thirteen top-ranked features are shown to facilitate readability. Bottom, stream bottom substrate; Elev., elevation; Soil A, hydrologic soil type-A.
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(2021), and Listeria presence in preharvest environments (Strawn
et al., 2013; Weller et al., 2016; Pang et al., 2017; Golden et al.,
2019). Our findings and those of these previous studies indicate
that machine learners can be used to develop models that
accurately predict pathogen presence in agricultural water. In
fact, our findings suggest that predictive models were able to more
accurately assess Listeria contamination status for New York
stream than models created using existing E. coli-based water
quality standards. As such, predictive models could be
incorporated into on-farm risk management plans and used to
help growers make evidence-based risk management decisions in
real-time. However, the present study isa proof-of-concept study
aimed at addressing three key knowledge gaps surrounding 1) the
utility of predictive models for assessing Listeria contamination
risks in streams that provide water for produce production, 2) the
utility of different strategies for addressing class imbalance when
developing these Listeria models, and 3) the type of features that
should be used when developing these Listeria models. As such,
future studies are needed to develop robust, deployable models
that can be used to guide on-farm decision-making. Our findings
provide guidance on the how future studies can develop these
models; these studies will require substantially larger datasets than
the dataset used in the study presented here. Specifically, our
findings suggest that using SMOTE resampling to address class
imbalance will result in more accurate models as will the use of
random forest learners. While our findings suggest that spatial
features are uninformative when assessing L. monocytogenes risks,
this may be an artifact of the sampling strategy usedwhen collecting
the training and test data. Given the fact that spatial features were
more informative than any other feature type for predicting
nonpathogenic Listeria spp. presence, future studies should still
consider spatial features when developing models to predict
L. monocytogenes in agricultural water. Conversely, physicochemical
water quality parameters were strongly associated with accurately
predicting L. monocytogenes presence in the current study and
should be included as features in future studies focused on
developing deployable L. monocytogenes models.
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