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Nowadays, rapid increases in anthropogenic activities have resulted in increased
greenhouse gases (GHGs; CO2, CH4, N2O) release in the atmosphere, resulting in
increased global mean temperature, aberrant precipitation patterns, and several other
climate changes that affect ecological and human lives on this planet. This article reviews
the adaptation and mitigation of climate change by assessing carbon capture, storage,
and utilization by fruit crops. Perennial plants in forests, fruit orchards, and grasslands are
efficient sinks of atmospheric carbon, whereas field crops are a great source of GHG due
to soil disturbance, emission of CH4 and/or N2O from burning straw, and field
management involving direct (fuel) or indirect (chemicals) emissions from fossil fuels.
Thus, there is a need to establish sustainable agricultural systems that can minimize
emissions and are capable of sequestering carbon within the atmosphere. Fruit orchards
and vineyards have great structural characteristics, such as long life cycle; permanent
organs such as trunk, branches, and roots; null soil tillage (preserving soil organic matter);
high quality and yield, which allow them to accumulate a significant amount of carbon.
Hence, the fruit plants have significant potential to sequester carbon in the atmosphere.
However, the efficiency of carbon sequestration by different fruit crops and their
management systems may vary due to their growth and development patterns,
physiological behavior, biomass accumulation, and environmental factors.
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INTRODUCTION

The worldwide population is expected to be around 9.1 billion by 2050, which would be 34% higher
than the existing population (UN, 2019). This will enhance the food demand to match the needs of
the rising population. Horticultural commodities, in general, and fruits, in particular, have been
designated as the sources of nutraceuticals (Sharma et al., 2021). The global mean surface
temperature increment of pre-industrial values has reached up to 0.87 ± 0.10°C during the
2006–2015 decade (Hoegh-Guldberg et al., 2018). According to the Fifth Assessment Report
(AR5) of the Intergovernmental Panel on Climate Change (IPCC), 2013–2014, the mean global
temperature of the land and the ocean showed a warming of 0.85°C, i.e., range b/w 0.65–1.06°C
during 1880–2012 (Wolf et al., 2017). The main reason behind this increase is anthropogenic
interference (Hartmann et al., 2013; Stocker et al., 2013). An IPCC Special Report has confirmed that
the rise in the mean temperature globally affected peoples, different ecosystems, and livelihoods
worldwide. Moreover, climate change might obstruct progress toward a world without hunger for all
people. A robust change in global pattern is noticeable in the effects of the inclination of temperature
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on sustainable crop production. Due to climate change, the
steadiness of food systems might be at risk because of the
short-term variability in the supply chain (Wheeler and Von
Braun, 2013). However, the prospective consequences are less
clear at provincial scales, but climate change will directly impact
food security in areas that are susceptible to hunger and
malnutrition (IPCC, 2018). Similarly, it indirectly influences
the household and individual earning and causes loss of access
to drinking water and damage to health. The emissions of
greenhouse gas (GHG) is inclining globally day by day, but
many practices are available to maintain the emission of these
gases, the most prevalent one being the cultivation and
conservation of trees like fruit orchards or agroforestry
(Boonen, 2015; Kumar and Sharma, 2015; Kumar et al., 2020;
Sarkar et al., 2021; Thakur et al., 2021). This practice might be a
vital solution to reduce the emission of harmful gases and has
many positive effects on the environment, also known as
“climate-smart cultivation” (Brown et al., 1995; Canadell and
Raupach, 2008; Nair et al., 2010; Shaffer, 2010; Zanotelli et al.,
2013; Chakrabarti, 2017). Fruit cultivation is considered a
potential tool of good agricultural practices that might be
reduced by the impact of climate change (Rana and Rana,
2003; Jhalegar et al., 2012). Hence, the combination of trees,
usually in different systems, increases productivity, improves the
nutrient cycle, and helps maintain the ecological balance because
of the “biological carbon sequestration potential” (Ospina, 2017;

Rana et al. 2020; Kumar et al. 2021; Rai et al., 2021; Sheikh et al.,
2021; Tamang et al., 2021). Given the above-mentioned fact, this
review article showed the complete effect of fruit crops on carbon
sequestration, that is, the process by which carbon source is taken
from the atmosphere and stored in another place. The present
article mainly focuses on assessing the above-ground biomass
(AGB) and below-ground biomass (BGB) of fruit orchards and
their corresponding carbon stocks so that net contributors of
GHG to the atmosphere could be estimated. Besides, mitigation
measures are also suggested to reduce the C-stock and GHG
emissions from fruit orchards in the future under CO2

enrichment and global warming.

RELATIONSHIP BETWEEN FRUITS TREE
AND CARBON SEQUESTRATION

Carbon sequestration in terrestrial ecosystems is the process of
net exclusion of carbon sources like CO2 from the environment or
reducing its emissions from terrestrial ecosystems and storing
them into another form in a productive manner (IPCC, 2018).
The process of removal of carbon through photosynthesis process
in green plant (vegetation) in which inclined CO2 uptake from
atmosphere takes place and CO2 is stored in different
photosynthetic or non-photosynthetic parts such as trunks,
branches, leaves, and roots of the plants (IPCC, 2018). Carbon

FIGURE 1 | Schematic diagram of carbon pools in an apple tree (redrawn from Buchmann and Schulze, 1999). The yearly NEP, GPP, and NPP are 403 g Cm−2,
1,346, and 906 g Cm−2 year−1, respectively. The average NECB indicates significant potential for CO2 sequestration. OM/OA: organic manures/organic amendment;
GPP: gross primary production; NPP: net primary production; NEP: net ecosystem production; NECB: net ecosystem carbon balance; NBP: net biome productivity; RA:
autotropic respiration; RH: heterotrophic respiration; Harvest: fruit production; RECO: ecosystem respiration.
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sequestration of soil induction of the possible amount of organic
carbon (OC) into the soil also reduced the amount of atmospheric
C (De Moraes Sá and Lal, 2009). CO2 gas is a chief source of the
atmospheric greenhouse effect depiction (Figure 1). From 1951,
the rapid changes in the level of CO2 took place, hence
influencing global climate changes. According to NASA, the
concentration of CO2 globally was 416.14 ppm up to March
2021 (NOAA, 2021). However, many other gases such as
methane (CH4), water vapor (H2O), ozone (O3), and nitrous
oxide (N2O) also play a vital role in climate change because of
their higher global warming potential compared to the CO2

(Barbera et al., 2018). Land management practices are one of
the important factors affecting carbon sequestration (Lal, 2018).
The alteration in the global carbon balance occurs through
anthropogenic activities such as burning of fuel, production of
cement (67%), and agriculture and land use changes (33%)
(Friedlingstein et al., 2020). Perennial crops, such as citrus,
apple (orchards), kiwifruit, and grapes (vineyards), are
significantly important for converting more atmospheric
carbon compared to annual crops like flowers and field crops
(Robertson et al., 2000; Xiao et al., 2003; Kalcsits et al., 2020).

In general, crops have some structural characteristics that
allow them to capture more carbon sources because of their
life cycle and large photosynthetic activity (Bationo et al., 2007;
Xu et al., 2019). In addition, fruit growers not only depend on the
quantity they produce but also on quality to enhance income
(grape berry color and shape). Some fruit crops show less
potential in terms of yield because of less distribution of
carbon to the fruits than that of high-yielding crops (Kumari
et al., 2020). Hence, the net primary production (NPP) is
prevalent in the accumulation C cycle or distributed into the
permanent structures of the tree. NPP is the distinction between
total photosynthesis and respiration in flora and fauna and is
assessed through estimating the quantity of the new organic
matter (OM) formed, i.e., in living plants under a specific time
given time (Clark et al., 2001; Levesque et al., 2019). There is
limited literature available on the potential of fruit crops to
sequestering carbon and environmental service. However, fruit
orchards greatly influence sustainable development under
changing climate scenarios (FAO, 2010). However, the benefit
to the fruit growers is restricted or limited as compared to forest
and plantation crops (Xiaoetal., 2003; Liu et al., 2018), but with
the emergence of Kyoto protocol fruit, orchardists can derive
their remuneration via carbon trading and gaining creditability
(Page et al., 2011).

Fruits farming is a sustainable system of production where
solar energy can be utilized at different levels, soil resources can
be used efficiently and cropping intensity can also be altered
(Nimbolkar et al., 2016). The system consists of three main
components: main crop, filler crop, and intercrops, which
occupy three different tiers in the production system
(Nimbolkar et al., 2016). Orchards are recognized for carbon
storage because they can capture a large quantity of C in their
vegetative organs for a longer period of time (Nardino et al.,
2013). Like orchards, soil is the primary terrestrial carbon sink
globally (Hammad et al., 2020). However, its sequestering
potential depends on several factors, such as climate, type of

soil, crop and vegetation, and management practices (Meena
et al., 2020). The carbon stored in soil organic matter (SOM) is
affected by the addition of dead plant materials and loss of carbon
through respiration, the microbial status process, and soil
disturbance (natural and human disturbance) (Koné and Yao,
2021). The carbon capture process can be done by different plant
organs: trunks, branches, leaves, flowers, fruits, and roots (Henry
et al., 2020). There are various fruit trees, namely, avocado,
banana, citrus, mangosteen, and mango, which significantly
increase the rate of photosynthesis, thereby increasing the tree
biomass. By applying CO2 at 800 ppm for one year, Schaffer
(2009) has ameliorated the photosynthesis rate by 40–60%
compared to ambient CO2 concentration in mangosteen. The
heavy bearing ability of fruit trees has a great tendency to increase
carbon capturing from the atmosphere and store it in the form of
cellulose (Patil and Kumar, 2017; Zade et al., 2020). Fruit
orchards can significantly contribute to sustainable fruit
production under changing climate scenarios in tropical and
sub-tropical areas (FAO, 2010; Nath et al., 2019).

CARBON SEQUESTERING IN TREES AND
SOILS

Fruit orchards might play an important role in climate change via
the sequestration of carbon, biological growth (increasing biomass),
and deforestation (increasing carbon emissions) (Hammad et al.,
2020; Khan et al., 2021). The process of photosynthesis is that a tree
can capture the little amount of carbon stored in the form of
carbohydrates and return some of the amount to the atmosphere
through the respiration (Figure 1) process (Nunes et al., 2020).
Carbon is stored not only in tree biomass but also in soils (Sedjo and
Sohngen, 2012). Therefore, carbon present in the plant tissue is
either consumed by humans (fruits) or added to the soil in the form
of litter when the plant dies and decomposes (Patil and Kumar,
2017). Carbon is stored in the soil in the form of soil organic matter
(SOM) (Cotrufo et al., 2019). It is a combination of carbon
compounds formed after the decomposition of plant and animal
tissues (Khatoon et al., 2017). These materials can be developed with
the help of soil biotas such as protozoa, nematodes, fungi, and
bacteria and then are associated with soil minerals (Zhang et al.,
2021). Thereafter, carbon can remain stored in soils for a long time
or can rapidly return back to the atmosphere via the respiration
process by soil microbes (Sharma et al., 2018; Zhang et al., 2021).
Various factors like climatic conditions, natural vegetation, soil
physicochemical properties, drainage, and human land use affect
the amount of carbon and the length of time carbon is stored in soil
(Wiesmeier et al., 2019).

FACTOR AFFECTING CARBON
SEQUESTRATION IN FRUIT CROPS

Numerous factors influence the carbon sequestration in fruit
crops. Out of these factors, latitude, water availability, plant age
and species, nutrients, temperature, and atmospheric gases highly
influence the carbon sequestration rate.
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Solar Radiation
Solar radiation is one of the important factors by which the
photosynthesis process is directed (Pawar and Rana, 2019). The
photosynthesis process depends on light duration intensity and
the duration (Hüve et al., 2019) and further regulates the
metabolic process of carbon in fruit trees. The rapid increase
in carbon sequestration rate was found to increase significantly
with incoming solar radiation (Gough et al., 2012; Rao et al.,
2021). Moreover, the intensity of light increases or decreases the
pattern of the carbon storage (Shaver et al., 1992).

Water Availability
Like light, water availability to the plants is also part of the
photosynthesis process (Pawar and Rana, 2019). The availability
of water affects NPP because the moisture content helps increase
leaf area index (LAI) (Li et al., 2020). The density of foliage is
directly proportional to the productivity of the tree because of the
more capturing tendency for carbohydrates molecules (DeMattos
et al., 2020). However, water scarcity will cause wilting of plants
due to reduced photosynthetic activity, falling C uptake, and less
carbon capture (Gower, 2001).

Nutrients Requirement
Nutrients are a vital component for several internal biological
processes because crops species cannot complete their life cycle
events in the absence of this element (Jones, 1997). There are 17
essential nutrient elements required for the tree species and the
role of each nutrient element is specific to a specific plant species
(Das and Avasthe, 2018). The tree foliages consist of variable
numbers and amounts of nutrients (Gough et al., 2012). Trees
species are able to proliferate themselves with an optimum supply
of nutrients; therefore, a greater amount of carbon is sequestered
(Pawar and Rana, 2019; Sharma et al., 2021).

Temperature
Temperature is an important ecophysiological factor that affects
the ratio of plant growth and development (Restrepo-Díaz et al.,
2010). The metabolic activities are also influenced by the rate of
temperature. If the rate of temperature increases, then metabolic
activities (photosynthesis and respiration) also increase
significantly up to optimum temperature and then decline
rapidly (Pawar and Rana, 2019). For this reason, temperate
fruit crops capture the least amount of carbon in the winter
because the canopy is leafless (winter dormancy). In contrast,
more carbon is captured in the summer when the temperature is
increased and carbon is gained via the photosynthesis process
(Gough et al., 2012).

Atmospheric Gases
The concentration of atmospheric gases (particularly CO2 and
O3) affects the rate of carbon sequestration. The rate of
atmospheric CO2 levels affects carbon availability to the
plants. Karberg et al. (2005) have revealed an increase in NPP
(20%) with an increase in the rate of CO2. Unfortunately, some
harmful compositions like ground-level ozone might be increased
with the increment of carbon values in the atmosphere; therefore,
NPP rate has decreased (Pregitzer et al., 2008).

CARBON CAPTURE OF LONG RESIDENCE
WOODY, LEAF, FRUIT, AND ROOTS

The atmospheric CO2 is absorbed during the photosynthesis
process; the carbohydrates and their accumulation follow
anabolic pathways (Farquhar and Sharkey, 1982; Kumar et al.,
2017). Similarly, the loss occurs through green and non-green
organs via the process of respiration (Haslam and Treagust, 1987;
Yu et al., 2018; Chen and Chen, 2019). The accumulated portion
is conglomerated with organic compounds; later on, it is
distributed into different plant parts, leading to the formation
of new biomass, represented as the net primary production (NPP)
(Clark et al., 2001). Gross primary product (GPP) and NPP are
the prime phases of the carbon cycle under ecosystems where
GPP is the aggregate CO2 level adjusted by photosynthesis,
i.e., signifying the ability of crops to collect carbon and energy
(Badawy, 2011). C losses occur at the ecosystem level because of
the respiration of heterotrophic organisms under the soil (Rh)
(Wang et al., 2019). The main difference between NPP and Rh is
denoted as net ecosystem production (NEP). NEP is a vital
ecological factor that signals out of the photosynthesis or
respiration, which is a dominant factor used in assessing the
ecosystem potential (Rodda et al., 2021). Moreover, net ecosystem
carbon balance (NECB), particularly in agricultural systems,
increases or decreases the carbon level by cultivation over a
passage of time (Antar et al., 2021), as depicted in Figure 2. It
is also dependent on the value of carbon that comes in via organic
amendments and moves out via end-products like fruits or
timber (Oviedo-Ocaña et al., 2021).

Literature available on carbon fluxes under fruit crop and NPP
and GPP for horticultural crops, especially fruit crops (Ceschia
et al., 2010; Marín et al., 2016; Shi et al., 2017; Khalsa et al., 2020),
is summarized in Table 1. Fruit trees (woody, leaf, fruit, and
roots) represent a valuable portion of land use in various areas
and have an important role in capturing net carbon dioxide sink
and storing carbon compounds in the permanent woody parts of
the fruit tree (Scandellari et al., 2016; Chamizo et al., 2017; Tezza
et al., 2019). Moreover, the prospect of using organic manures or
soil amenders may ameliorate the capability of fruit orchards
systems as CO2 sink. In horticultural systems, in terms of the
addition or removal of carbon over time, for example, during
cultivation (NECB), the volume of carbon entry depends on the
amount of manure applied to the crop, and produce like fruits is
an example of carbon removal. Furthermore, planting orchards is
a valuable land use form worldwide.

Scandellari et al. (2016) have analyzed the biomass, NPP and
NECB, and net carbon balance by either direct or eddy covariance
methodology. They showed that above-ground NPP ranged
between 10 and 20 t ha−1 with direct methodology, whereas
the below-ground NPP was reduced by 20 percent from the
total NPP. The carbon removal through the fruit system ranged
between 2 and 3 t ha−1. Fruit orchard ecosystems had shown
significant results on the net ecosystem productivity, ranging
from 4.30 to 7.5 t C ha−1 yr−1in Apple-2 and Grape-1,
respectively. Moreover, NECB, ranging 0.6–5.9 t C ha−1year−1,
indicates potential carbon capturing through long residence
woody, leaf, fruit, and roots and storage of the carbon
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(Scandellari et al., 2016). Bhatnagar et al. (2016) have reported
that carbon accumulation values in fruits ranged 32–41%,
whereas the other structural organs like twigs, branches, and
stems stored ∼25% of the total carbon. Hence, Nagpur mandarin
is regarded as another vital sink for carbon partitioning of around
6 kg C−1 tree−1yr−1 (2.5 Mg C−1ha−1yr−1). Khalsa et al. (2020)
have shown that the application of nitrogen (N) supplement
an orchard enhanced the capturing of more C, thus lowering the
net global warming potential (GWP) in a California almond

orchard. In this intensive system, 309 kg N ha−1 yr−1 fertilizer N
rates also increased the net primary productivity (Mg C ha−1), N
productivity (kg N ha−1), and net nitrogen mineralization (mg
N kg−1 soil d−1). Wu et al. (2012) have analyzed the carbon
sequestration capability in apple orchards and stated that the
capability of trees for carbon sequestration is enhanced when they
reach 18 years of age and declines with age. The net carbon sink
and C storage (biomass) in Chinese apple orchards are between
14 and 32 Tg C and 230 and 475 Tg C, respectively, from 1990 to

FIGURE 2 | Relationship between fruit trees and carbon sequestration.

TABLE 1 | Carbon fixation (NPP, NEP, and NECB) by different fruit tree orchards.

Tree/vine/tree ecosystem NPP (g C ha−1yr−1) NEP NECB References

Agroforestry system and citrus 17.7 Marín et al. (2016)
Tropical palm plantation 16.1 Navarro et al. (2008)
Tropical forests 12.5 Grace 2004
Citrus trees 11.4 Quiñones et al., 2013
Kiwi fruits 8.0 Facini et al., 2007
Apple 5.2–13.3 Wu et al. (2012)
Apple
“Gala” 11.81 4.30 to 7.5 t C ha−1 y−1 0.6 to 5.9 t C ha−1 y−1 Scandellari et al. (2016)

Apple
“Fuji” 17.44

Peach
“Supercrimson” 9.94

Citrus
“Tarocco” 11.88
Grape 9.96
Cocoa 18.8 Morel et al. (2019)
Peach 11.7–17.5 t C ha−1 year−1 31 90 g Cm−2 yr−1–730 g Cm−2 yr−1 Montanaro et al. (2021)
Oil palm plantation 121.7 Melenya et al. (2015)
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2010. The calculated net carbon sequestration in the apple from
1990 to 2010 was approx. 4.5% of the total net carbon sink in the
terrestrial ecosystems in China. Therefore, apple production
systems can be considered an important carbon sink in fruit
culture (Wu et al., 2012). Similarly, many reports on carbon
emission in various crops have been confirmed by other
researchers globally (Piao et al., 2009; Bhatnagar et al., 2016;
Marín et al., 2016; Shi et al., 2017; Khalsa et al., 2020).

Kumar et al. (2019) have used various models for estimating
biomass of plants, i.e., 225 mg ha−1 with biomass accumulation
and carbon storage reduced by roots followed by twigs and leaves
and branches. Mehta et al. (2016) have reported a similar result in
fruit orchards, i.e., fixation by the fruit crop is higher than that of
annual and herbaceous crops. The mean AGB and BGB was
13.21 kg tree−1, where the above-ground contribution maximum
share was 76% and the below-ground contribution was 24%. The
maximum carbon was stored by the fruit biomass
(2.10 Kg tree−1), followed by roots and branches in a six-year-
old citrus plant in a plantation orchard. Many reports have
studied the potential of carbon sequestration in many fruit
orchards, mainly perennials species, which is the key point in
mitigating climate change scenario (Marín et al., 2016). Navarro
et al. (2008) have assessed carbon accumulation in vegetative
organs of palm trees, which was approximately 16.1 Mg C−1

ha−1 yr−1. Likewise, Janiola and Marin (2016) have suggested
that tropical fruit trees, like mango, are more capable of
accumulating more carbon in fifteen-year-old orchards,
i.e., 45 Mg C−1 ha−1 yr−1. Similarly, the carbon
(1750 g C−1m2 yr−1) accumulation rates were found in citrus
Pernice et al. (2006). Further, Rossi et al. (2007) have assayed
the carbon storage (1,160 g C m−2) in kiwifruit cv. Hayward
within seven months. Various researchers have confirmed that
orchards like citrus, wine grape, apple, olive, peach, hazelnut, and
orange could be a substantial sink for atmospheric carbon
(Liguori et al., 2009; Granata et al., 2020). Similarly, any
agricultural practices, like the use of organic manures or AM
fungi, may act as carbon sinks (Shi et al., 2017; Sharma et al., 2018;
Verbruggen et al., 2021). Several studies have shown that the

application of organic manures improves the physicochemical
properties of soil (Evanylo et al., 2008; Bravo et al., 2012; Sharma
et al., 2018; Sharma et al., 2021) and ameliorates root
development (Baldi et al., 2010; Sarita et al., 2019). Granata
et al. (2020) have quantified the CO2 sequestered by Corylus
avellana L. (hazelnut) orchards. They have reported that the total
amount of CO2 accumulated by hazelnut was 58.8 ±
9.1 Mg ha−1 year−1, where the highest value of carbon
capturing is in May (12.4 ± 2.0 Mg CO2 ha

−1 month−1).
Hence, not only is the cultivation of hazelnut is important
from the nut production point of view, but it also has a
greater role as a carbon sink. Ganeshamurthy et al. (2019a)
have estimated the AGB and BGB carbon in the mango orchards
in different states, ranging from 776.9 to 1,574 kg tree−1

(Table 2). The above reports have suggested that fruit
orchards may act as a great means for carbon accumulation
in biomass. Hence, this pool of carbon fixation might help
reduce atmospheric CO2. Thus, fruit culture could play an
efficient role in mitigating climate change scenarios.

CONCLUSION AND THE WAY FORWARD

After careful deliberations, it can be concluded that climate change
due to different anthropogenic activities could potentially disturb
improvement toward a world without hunger. A robust and
coherent global pattern is discernible of the impacts of climate
change on crop productivity that could have consequences for
food availability. Various fruit crops like apple mango, citrus, and
grapes have shown their potential roles in sequestrating carbon, thus
enhancing biological yield. The carbon sources also improve the NPP,
NEP, and NECB of various fruits compared to those of annual crops.
The calculation of C biomass gives an idea about the quantity and
quality of carbon available in the area and how it behaves in tree
species compared to the annual crops, where the carbon is eventually
degraded to GHGs to the environment causing global warming and
climate change. The recommendation of suitable mitigation measures
is also given in order to reduce GHG emissions. Hence, crop-fixing

TABLE 2 | Effect of different fruit tree species on biomass and carbon sequestration with special reference to age and spacing.

Crop Botanical name Biomass
kg/tree or vine

Age Year old Spacing Country Carbon sequestration References

Apple Malus domestica
Borkh.

224.08 18 3 × 5 m China 6,871.8 C−1 m2−1 yr−1 Wu et al. (2012)

Litchi Litchi chinensis 8.42 7 10 × 10 m India 30.81 Mg ha−1 Kanime et al., 2013
Mango Mangifera indica 27.02 15 10 × 10 m 98.90 Mg ha−1

Chinese plum Prunus saliciana 8.05 5 5 × 5 m 29.40 Mg ha−1

Apple Malus domestica
Borkh.

India 0.01–35.00 MT ha−1 Attar et al. (2016)

Apricot Prunus americana 0.04–61.22 MT ha−1

Walnut Juglans regi 0.35–62.50 MT ha−1

Citrus Citrus reticulata India 217 g C−1m2−1yr−1 Bhatnagar et al. (2016)
Nagpur
Mandarin

C. reticulata 5.94 6 India 1.65 t ha−1 Mehta et al. (2016)

Mango Mangifera indica 733.025 India 73.59 t ha−1 Ganeshamurthy et al. (2019a)
Mango Mangifera indica 269.07 Konkan, India 26.91 t ha−1 Ganeshamurthy et al. (2019b)
Hazelnut Corylus avellana 17 5 × 5 m Italy 58.8 Mg ha−1 year−1 Granata et al. (2020)
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carbonmight help reduce atmospheric CO2 and has a great capability
of CO2 capture, storage, and utilization of carbon sources.

Various crops have a tremendous potential toward
sequestering the carbon; however, the potential of many
fruit trees is still unexploited. Hence, there is an urgent
need to know the carbon sequestration potential in fruit crop
species. A smart approach is required to develop and identify
suitable propagation methods, systems, and appropriate tree
species to ameliorate carbon storage and enhance fruit
production.
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