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Land-use change in the Colombian Llanos due to agro-industrial expansion affects
biodiversity. This change alters species occurrence probability, consequently impacting
species’ composition. For some species, the occurence probability increases with land-
use changes, while it stays unchanged or decreases for others. This interspecific variation
in the response to land-use change may be mediated by functional traits, among other
factors. We investigated response functional traits to land-use changes and their influence
on the occurrence probability of bird species in the Colombian Orinoquia region. We
compiled data for 13 morphological and life-history traits of 364 species recorded in
forests, savannas, rice fields, palm oil crops, and livestock pastures in the piedmont and
flooded savanna landscapes. We used a novel framework to identify response functional
traits (i.e., traits with a significant effect on occurrence probability) through multiple
statistical tests. We used random forest models to identify response functional traits to
land-use change for pairwise comparisons of natural vs. agricultural land use types. For the
functional traits, we estimated the influence of their states as trait attributes on species’
responses to land-use changes. We identified functional groups based on hierarchical
clustering analysis. Functional groups corresponded to different levels of response, that is,
different changes in probability occurrence. Land-use changes altered the
multidimensional space of bird traits (i.e., functional diversity), implying modifications in
species’ composition, functional redundancy, and functional group turnover. Functional
traits were similar for random forest classifications of the same natural cover but differed
among landscapes. In the piedmont forests, social behavior—migratory status—was a
functional trait combination common to all classifications, while foraging behavior-nest
location trait combination was common to all forests scenarios in flooded savannas
landscape classifications. Migratory status was a functional trait for all savanna
classifications. Functional groups described the impacts of land-use changes on bird
assemblages. Identification and characterization of these groups using trait attributes can
help predict species’ responses to land-use changes and guide conservation efforts
toward groups with decreased occurrence probability, including recommendations for
agricultural practices that can reduce impacts on the Orinoquia biodiversity.
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INTRODUCTION

The loss and degradation of natural habitats due to land-use
changes are among the main drivers of biodiversity loss (Foley
et al., 2005; Millenium Ecosystem Assessment, 2005; Baan et al.,
2013; Deinet et al., 2018). It is estimated that vertebrate
populations decreased by at least 60% worldwide and 89% in
the Neotropics between 1970 and 2014, where more than half was
due to loss and degradation of natural habitats (Deinet et al.,
2018). Agriculture is the primary driver of land-use changes
(Lambin et al., 2001; Meyfroidt et al., 2013). Understanding its
effects on biodiversity can help identify practices that lessen these
impacts, predict and mitigate future biodiversity changes, and
design monitoring approaches for conservation strategies,
including sustainable agriculture (Wezel et al., 2014). The
Sustainable Development Goals program promotes sustainable
agriculture and reduces its effects on the degradation of natural
habitats. Such sustainability could be supported by developing
indicators that aid in understanding and predicting the impacts of
anthropic pressures and the design and monitoring of
conservation strategies (Burtchart et al., 2010; Biodiversity
Indicators Partnership, 2011).

Traditionally, land-use impacts on biodiversity are measured
using taxonomic metrics (based on the species count), limiting
the possibility of thoroughly understanding the effects of
anthropic activities (Branquinho et al., 2019). However, the
impact may occur at different levels of biodiversity (e.g.,
genetic, species, and ecosystem), as well as in the underlying
mechanisms that sustain it, leaving taxonomic metrics telling
only part of the story (Flynn et al., 2009; Mouillot et al., 2013;
Pearson et al., 2014; Titeux et al., 2016). Taxonomic metrics do
not take into account the multidimensional space that each
species represents and assume them as units of ecological
equivalence, for instance, regarding their effects on the
ecosystem and their survival probabilities (Chave, 2004; De
Souza et al., 2013; Luck et al., 2013; Córdova-Tapia and
Zambrano, 2015). Accordingly, the taxonomic approach
should be complemented with additional ecological metrics to
better understand the impacts of land cover transformations on
biodiversity, leading to better-informed strategies to prevent or
mitigate them (Pereira et al., 2013).

Functional ecology studies assign values to each species based
on functional traits and their different states as the range of
functional attributes it occupies within the multidimensional
space representing species assemblage (Luck et al., 2012). We
refer to trait attributes as different values, levels, or states of a trait.
Functional traits can be classified into effect or response traits
(Luck et al., 2012). The former describes the effect patterns of a
species assemblage on ecosystem processes (e.g., dispersal
strategy), while response traits describe responses of a species
assemblage to environmental disturbances or changes (Hooper
et al., 2002; Lavorel and Garnier, 2002; Naeem andWright, 2003).
Therefore, the effect trait analysis allows describing the ecosystem
functions, while the response trait analysis is useful in
understanding the assemblage’s responses to the impacts of
environmental disturbances. The functional response refers to
the influence of functional traits on the response of the

assemblage to environmental changes. Functional trait analyses
are based on the collection of multiple individual traits and the
assessment of their effects on ecosystems or responses to
ecosystem disturbance, leading to the identification of the
functional groups of species that represent particular effects or
response patterns (Diaz and Cabido, 2001; Hooper et al., 2002;
Luck et al., 2012). These add up to our understanding of how
ecosystems function and their tolerance to disturbances. Global
meta-analyses conducted to assess the impacts of anthropic
interventions on bird assemblages show a decrease in
functional diversity and describe the implications of these
changes for the provision of ecosystem services (Flynn et al.,
2009; Newbold et al., 2013; Bregman et al., 2014; Matuoka et al.,
2020).

The Colombian Llanos or the Orinoquia region is a region of
great environmental heterogeneity that supports a high biological
diversity (Romero Ruíz et al., 2004; Lasso et al., 2010, 2011). In
recent decades, socioeconomic development has accelerated the
expansion of livestock farming, oil exploitation, and agribusiness
related to oil palm crops, rice, and others, which have exposed the
region to the socioecological transformation processes of
uncertain environmental and socioeconomic impacts (Romero
Ruíz et al., 2004, 2011; Andrade et al., 2009). Furthermore,
current national policies promote the Orinoquia region as the
focal area for agricultural expansion, with 56% of this region
being part of the agricultural frontier and available for
agricultural activities (UPRA, 2021). This generates an urgency
for developing mechanisms to assess and account for the
potential impacts that this transformation could impose on the
biodiversity and for integrating this information into decisions
that support the region’s sustainable development.

We identified “response functional groups” to land-use
changes from natural to agricultural land cover types to
identify and understand patterns of changes in bird
assemblages in response to land cover transformation. We
determined the response of a set of functional traits
(functional response traits) to changes of natural land cover
(forests and savannas) to agriculture (livestock, rice, and oil
palm crops) in the Llanos piedmont (LP) and flooded savanna
(FS) landscapes of the Colombian Llanos. We identified the
functional response patterns to land-use changes and the
functional traits and attributes that modulate such responses.
These functional groups and response patterns are helpful
indicators to assess land-use change impacts and monitor
biodiversity in response to agricultural activities.

MATERIALS AND METHODS

Study Area
The Colombian Llanos is a savanna-dominated region with high
ecosystem diversity, it is bounded by the Orinoco River basin in
the north of South America and extends for about seventeen
million hectares and covering three general types of large-scale
landscapes (i.e., LP, FS, and the Altillanura) (Romero Ruíz et al.,
2004). Due to its extension, there are sites with a greater number
of bird records, for instance, there are more complete datasets of
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avifauna both in natural and agricultural covers for LP and FS
than Altillanura. Therefore, our study focused on LP and FS
landscapes (Figure 1), which include around 54 and 69% of all
bird species present in the entire region, respectively
(Acevedo-Charry et al., 2014). The Colombian Llanos
has an annual average temperature ranging between 25
and 28°C, showing a binomial rain regime with a dry
period between January and April, and a rainy season
from March to December with higher precipitation in
June (IDEAM, 2021).

The Llanos piedmont is an ecotone landscape between the
mountain ranges of the Andes at 1,100 m elevation and the
Orinoco plains at 400 m, characterized by erosional ridges,
alluvial terraces, mountains, and piedmont forests (Romero
Ruíz et al., 2004). However, anthropic intervention changed
the natural landscape by turning over 80% of the area into a
matrix dominated by livestock pastures, crops, and degraded
natural ecosystems. Forests currently represent around 10% of the
landscape distributed in small fragments and riparian vegetation
(IDEAM, 2017).

The flooded savanna corresponds to a “flooded landscape”
between 0 and 400 m elevation characterized by seasonally
flooded savannas, riverine forests, wetlands, and swamps
(Figure 1) (Romero Ruíz et al., 2004). Anthropic
intervention in this landscape has transformed at least
20% of the area, making it fit mainly for livestock
pastures, and crops, degrading natural ecosystems until
reduce them as patches around rivers. In the FS landscape,

forests comprise around 10% of the territory, while seasonally
flooded savannas represent around 60% (Figure 1) (IDEAM,
2017).

Data Collection
We compiled species occurrence data from bird surveys taken
between 2000 and 2018 in the FS and LP landscapes. We
generated an occurrence database from survey data and
referred publications that included bird records at the species
level with associated data on the date, locality, coordinates, and
land cover types (Gilroy et al., 2015; López-Ricaurte et al., 2017;
GBIF.org, 2018; Diaz Lopez et al., 2020; Rodríguez Posada et al.,
2020). We classified records in the FS landscape as natural (forest
or savanna) or agricultural (livestock pastures, rice fields, or oil
palm crops). In the LP region, records of the natural land cover
corresponded only to forests, while agricultural land uses include
the same classes used in the FS landscape. We verified species
occurrences based on the most updated bird species checklist for
this region (Acevedo-Charry et al., 2014) and followed the
taxonomical classification proposed by Remsen et al. (2021).

Trait Data
We performed a systematic literature review on studies
concerning functional diversity in birds. We examined with
particular emphasis on studies covering the Colombian LLanos
region and global studies that analyzed functional traits in the
anthropic cover, compared functional diversity between natural
and anthropic covers, or analyzed functional response traits to

FIGURE 1 | Study area. Colombian Orinoquia landscapes. Modified from (Romero Ruíz et al., 2004; IDEAM, 2017).
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anthropic disturbances. We chose 13 potential response traits to
environmental changes, following the selection framework for
vertebrate response traits as proposed by Luck et al. (2012),
including morphological and life-history traits that could
influence birds’ responses to land-use changes based on a
literature review (see Supplementary Material S1). The life-
history traits considered were social behavior, diet, migratory
status, foraging stratum, foraging behavior, and nest location,
which were compiled from the scientific literature (Hilty and
Brown, 1986; Ridgely et al., 1989; Restall et al., 2007; Ridgely and
Tudor, 2009; Birds of the World, 2021). Morphological traits
included bill depth, bill width, wing length, tail length, culmen
length, tarsus length, and weight. These were measured on
specimens collected in the Orinoquia region and preserved in
Colombia’s biological collections at the Instituto de Ciencias
Naturales of the Universidad Nacional de Colombia, Instituto
Alexander von Humboldt, and Museo de Historia Natural of the
Pontificia Universidad Javeriana (Stiles et al., 2017; Córdoba
Córdoba et al., 2018; Laverde Rodríguez et al., 2018). We
measured six adult specimens of every species, three females
and three males, depending on availability. If not enough
individuals were available, we would complete the information
with measures reported in the literature. We averaged
morphometric species values for each species. Morphometric
measures were taken only by the first author to minimize
interobserver bias. However, for 5% of the species, we
obtained morphometric data from field reports, which may
have added bias due to differences in measurements between
preserved and live individuals or between observers. The
databases of life-history and morphometric traits collected are
available in the EDI data repository (Rincon-Parra, 2021).

Data Analysis
We generated pairwise classificationmodels between each natural
and agricultural land cover type for each landscape. These
predictive models mg(X,Y) were fitted using a random forest
analysis (RF). The RF algorithm is a statistical machine learning
classifier that uses an X training dataset for k independent
variables to estimate classification patterns of a categorical
dependent variable Y through n decision trees. Each decision
tree is divided hierarchically into j dichotomous decision nodes
according to the information provided by every independent
variable hk for classifying Y, followed by the selection of the best-
fit branching classification output I(.). n decision trees are
combined into a fitted consensus predictive decision tree
according to the equation (Breiman, 2001; Cutler et al., 2007):

mg(X,Y) � ∑k
k�1 I(hk(X) � Y)

k
−max
j≠ y[∑

k
k�1 I(hk(X) � j)

k
] (1)

The model mg(X,Y) is tested through cross-validation on an
X test dataset including the same independent variables. The
model’s predictive power is assessed by estimating the predictive
error and complementary success rates (Breiman, 2001; Liaw and
Wiener, 2002). Importance values given by the Mean Decrease
Accuracy metric represent the importance of each variable for Y

classification, with their statistical significance obtained through
comparison with null distribution models for each variable
(Breiman, 2001; Liaw and Wiener, 2002; Eric and Archer,
2020). Through partial dependence analysis (fhki

(Y)), we
estimate the importance value of each variable attribute hki as
the marginal effect of hki if all other variable attributes were kept
constant for Y classification (Friedman, 2001; Cutler et al., 2007;
Hastie et al., 2009). Given the number of Y classes C, the partial
dependence equation is:

f hki(Y) � log[phki(X)] − 1
C

∑C
hki�1

logphki(Y) (2)

For every pairwise classification model, we considered all the
compiled species traits as the independent variables hk and their
presence in natural or agricultural land covers as Y, based on the
species occurrence data. We identified traits or trait combinations
that indicated a response to land-use changes for each pairwise
classification, based on a four-step process, including the RF
model fitting with 5,000 (n) trees, 5,000 permutations, and
subsamplings without replacement to avoid problems related
to unbalanced data (Sun et al., 2009; Tillé and Matei, 2016).
First, we calibrated the RF model for each classification using a
stepwise backward and forward recursive elimination of traits
and selected the trait combinations with a classification success
rate of at least 0.5 (Genuer et al., 2010; Hapfelmeier and Ulm,
2013; Speiser et al., 2019). Second, we selected models that
included only significant traits after comparison with null
models (p-value<0.1) (Eric and Archer, 2020). These traits can
all be considered functional response traits. However, since
collinearity may affect the model fitting, we filtered out traits
based on the multicollinearity assessment of partial dependence
results across models (Pearson coefficient > 0.7). Finally, we fit
the model with the combination of the selected traits, which
corresponded to response functional traits to land-use changes
that influenced the species occurrence probability in each land
cover type (Breiman, 2001; Liaw and Wiener, 2002; Eric and
Archer, 2020).

RF models with high success rates represent a high probability
of species with a particular trait pattern occurring differentially in
the classified land cover types. In contrast, RF models with low
success rates suggest the lack of significant differences in trait
patterns among compared land cover types. High success rates
also indicate a high probability of change in the species
occurrence as a response to land-use changes as determined
by their traits.

We estimated the importance of attributes’ combinations of
response functional traits through partial dependence analysis
(Breiman, 2001; Liaw and Wiener, 2002; Eric and Archer, 2020).
We standardized partial dependence values on a scale between −1
and 1, in which an attribute’s combination closer to 1 indicated an
increased probability of species with those attributes occurring in
the agricultural land cover. In contrast, values closer to −1
indicated an increased probability of species with those
attributes occurring in the natural cover. Thus, in a land-use
change scenario (e.g., forests to livestock pastures, and savannas
to oil palm crops), species with attribute combinations with
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values closer to −1 would experience a decrease in their
occurrence probability, while those with attribute
combinations with values closer to 1 would result in increased
occurrence probability. On the other hand, species with attribute
combinations with partial dependence values around zero do not
show a particular response pattern to land-use changes.

We applied a hierarchical cluster analysis to the species
characterized by the partial dependence values of attributes
combinations to identify functional response groups. The
number of functional groups was defined by multiscale
bootstrap resampling (Hennig, 2020). Functional groups
corresponded to cluster-wise, highly stable groups
(i.e., stability values higher than 0.75) (Hennig, 2007; Hennig,
2020).

RESULTS

We collected 11,444 records representing 364 species, 193 in LP
and 357 in FS. The two landscapes shared 186 species, while 171
were exclusively reported in FS, and only seven were recorded in
LP. In the two landscapes, natural land covers showed greater
species richness than agricultural ones, accounting for 21% of the
total bird species recorded in LP, and for 38 and 36% of the total
bird species in forests and savannas of FS, respectively (Figure 2).

Of the 13 traits measured and estimated for all species, 11
corresponded to response functional traits alone or in trait
combinations for at least one classification. Tail length and
weight were the only traits that did not show a functional
response to land-use changes. Overall, functional response
traits were similar for RF pairwise classifications of the same
natural cover but differed among landscapes (Figure 3). For a
given natural land cover, all possible classifications’ included at
least one response trait or a trait combination common to all for a
given natural land cover. In LP forests, social behavior–migratory
status was identified as a response trait combination in all
classifications. For LP forests’ livestock classification, foraging
the stratum diet and migratory status–culmen length correspond
to additional trait combinations showing a functional response,
while foraging behavior–nest location and foraging
stratum–tarsus length were added to social behavior–migratory
status in the forests’ rice classification (Figure 3). Foraging

behavior–nest location (FB-NL) was common to all RF forest
models and is the only trait combination in classifications with
livestock and oil palm crops. In the FS landscape forests’ rice
model, supplementary trait combinations corresponded to bill
width–foraging stratum–nest location, bill depth–foraging
stratum–nest location, and nest location–wing length
(Figure 3). Despite nest location and foraging stratum being
shared across trait combinations in this latter classification, we
found no correlation between them. In savannas of the FS
landscape, the migratory status was in pairwise classifications,
combined with social behavior in the livestock and oil palm
classification and with the foraging stratum in the rice
comparison (Figure 3). Higher numbers of identified
functional response traits corresponded to higher success rates
in RF models (Figures 3, 4). These rates were the highest (>0.7)
for forests’ rice scenarios in both landscapes (i.e., there is, on
average, a 70% chance of species differing between land cover
classes, given their response traits), followed by the FS savannas’
rice classification (0.65) (Figure 4). All RF classifications,
including oil palm, resulted in similar success rates in both
landscapes, that is, there is, on average, a 50% probability of
species differing between the natural land cover and oil palm,
given their response traits. The forests’ livestock classification
showed a slightly higher success rate in LP (0.6) than in FS (0.55).
The success rate of the FS savannas’ livestock (0.51) suggested a
close to random chance of correctly classifying species into
savanna or livestock based on their attributes of response
traits (Figure 4). However, these rates represent the
classification probabilities for all species in the assemblages,
overlooking the differences in the functional group’s responses.

We found similar numbers of functional groups (10–13) for
all pairwise classifications (i.e., land-use change scenarios),
except for forests’ rice and savannas’ rice scenarios in the FS
landscape, for which the number of functional groups reached
20 and 17, respectively (Figure 5, Supplementary Material
S2). Most scenarios produced homogeneous functional groups
with low variability in their partial dependence values.
Scenarios resulting in groups with more variable partial
dependence values corresponded to classification models
with morphometric traits as functional response traits
(Figure 5). For example, LP forests’ livestock response traits
included culmen length, LP forest’s rice included tarsus length,

FIGURE 2 | Bird species richness collected according to the land cover type and landscape. Landscapes: LP: Llanos piedmont; FS: flooded savannas.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 6897455

Rincon-Parra et al. Functional Diversity of Orinoquia Birds

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


FIGURE 3 | Importance of response functional traits. The y-axis represents the probability of influence of each trait to predict changes in species occurrence due to
land-use changes. Confidence intervals represent the probabilities of the influence of trait combinations of each trait to predict species occurrence changes. We
calculated probability values from RF models with individual and combined traits. (A). Land-use change scenarios from forests to agricultural covers in the Llanos
piedmont (LP) landscape; (B). land-use change scenarios from forests to agricultural covers in the flooded savanna (FS) landscape; (C). land-use change scenarios
from natural savannas to agricultural covers in the FS landscape. Traits: BD: bill depth length at the base level; BW: bill width length at the base level; WL: wing length; CL:
culmen length; Tarl: tarsus length; SB: social behavior; D: diet; MS: migratory status; F: foraging stratum; FB: foraging behavior; NL: nest location. Asterisk brackets
indicate significance values of traits estimated from the mean decrease accuracy metric (MDA) after five thousand permutation null models for each combination trait by
scenario. * p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.
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and FS forest rice included bill width, bill depth, and wing
length.

In all cases, land-use changes resulted in groups’ turnover,
with the occurrence probability decreasing for a proportion of
groups (i.e., partial dependence value closer to −1) and increasing
(i.e., partial dependence value closer to 1) or staying unchanged
for others (i.e., partial dependence values around zero) (Figure 5).
In terms of functional groups, LP forests’ rice scenario resulted in
the largest proportion of groups (0.45), suffering a reduction in
occurrence probability. In contrast, a change of LP forests to
livestock reduced the occurrence probability in 17% of functional
groups and 27% of species, representing the smallest proportion
of groups with reduced occurrence probability across all land-use
change scenarios. Savannas’ rice scenario in FS savannas’ rice
scenario resulted in the largest proportion of functional groups
(0.47) with increased occurrence probability, while only 15%
groups in the FS forests’ rice scenario, the smallest proportion
among all scenarios, experienced an increment (Figure 5).

On average, the proportion of functional groups with
decreased occurrence probability (0.32) was similar to that of
groups with increased occurrence probability (0.31). Land-use
change scenarios involving forest transformation resulted in
similar or slightly larger proportions of groups with decreased
occurrence probability than increased probability. However, FS
savannas changes showed a higher proportion of groups with
increased occurrence probability (0.42) than decreased
probability (0.28).

The number of species differed among functional groups,
influencing the response pattern for functional groups across
land-use change scenarios (Figure 5). The largest proportion of
species (0.59) with decreased occurrence probability
corresponded to the FS forests’ livestock scenario, followed by

the FS forests’ rice scenario (0.51), and the LP forests’ oil palm
scenario (0.49). The highest proportion of species with increased
occurrence probability appeared in the FS savannas’ livestock
scenario (0.42), followed by FS savannas’ rice scenario (0.40). The
average proportion of species across all scenarios with decreased
occurrence probability was higher (0.42) than that of species with
increased occurrence probability (0.25). In contrast with the
results by functional groups, in the FS savannas scenarios, the
proportion of species with decreased occurrence probability
(0.43) was larger than that with increased probability (0.34)
(Figure 5). On average, the occurrence probability for around
a third of the functional groups (0.37) and species (0.33)
remained unchanged across land-use change scenarios.

In all LP forest scenarios, functional groups with reduced
occurrence probability included the traits and attribute
combinations: (1) resident migratory status and solitary social
behavior or (2) resident migratory status and opportunistic
gregarious social behavior. Accordingly, functional groups with
increased occurrence probability corresponded to 1) local
migratory and social behavior in flocks or 2) continental
migratory and social behavior in flocks. In LP forests’ livestock
scenarios, functional groups with increased occurrence
probability were also characterized by a long culmen, piscivore
or insectivore diet, and foraging in water and ground. At the same
time, groups with decreased occurrence probability corresponded
showed such as a short culmen, insectivore diet, and foraging in
the understory. The LP forests’ rice scenario exhibited increased
occurrence probability in groups that forage in water and have
long tarsus, while groups with short tarsus and foraging in all
forest levels characterized groups with decreased occurrence
probability. Similarly, this probability decreased for groups
characterized by gatherer foraging behavior and nesting in

FIGURE 4 | Predictive success rates of the classification of RF models for changes in species occurrence probabilities (according to traits) in land-use change
scenarios. The x-axis represents predictive success to classify species in natural covers, and y-axis represents predictive success to classify species in agricultural
covers. The points represent the predictive success of each scenario in which high predictive rates mean a high probability of the change of species occurrence
probabilities as a response to land-use changes. (A). Land-use change scenarios from forests to agricultural covers in the Llanos piedmont (LP) landscape; (B).
land-use change scenarios from forests to agricultural covers in the flooded savanna (FS) landscape; (C). land-use change scenarios from natural savannas to
agricultural covers in the FS landscape.
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FIGURE 5 | Response functional groups to land-use change scenarios. The x-axis represents the functional groups by land-use change and the y-axis the range of
their partial responses to change. Responses nearest to 1 and -1mean groups with species with a high probability to increase or decrease, respectively, their occurrence
probability after the change. * Number of species by group. (A). Land-use change scenarios from forests to agricultural covers in the Llanos piedmont (LP) landscape;
(B). land-use change scenarios from forests to agricultural covers in the flooded savanna (FS) landscape; (C). land-use change scenarios from natural savannas to
agricultural covers in the FS landscape.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 6897458

Rincon-Parra et al. Functional Diversity of Orinoquia Birds

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


cavities and branches but increased for groups with hunter
foraging behavior (Figure 3, Supplementary Material S3). In
FS forest scenarios with livestock and oil palm, functional groups
with gatherer foraging behavior, nest location in branches, and
cavities had reduced occurrence probability. However, functional
groups with gatherer foraging behavior and foraging on the
ground resulted in increased probability. In addition to these
traits, groups with short wings, foraging in all forest levels, narrow
bill, and hunter foraging behavior had reduced occurrence
probability in FS forests’ rice scenarios. This probability
increased for groups with long wings, a long bill or narrow
bill, and foraging in water (Figure 3, Supplementary
Material S3).

In all savannas scenarios of the FS landscape, functional
groups characterized by a resident migratory status showed
lower occurrence probability, while groups with a local
migratory status had increased probability. Moreover, both
livestock and palm scenarios reduced probability for groups
with solitary social behavior and increased probability for
those with opportunistic social behavior or in flocks. In FS
savannas rice scenarios, occurrence probability decreased for
groups with foraging in the understory and increased for
groups with foraging in water (Figure 3, Supplementary
Material S3).

DISCUSSION

Our results described probabilistic response patterns of bird
assemblages to land-use changes and indicate that these
responses are nonrandom but rather deterministic trait-
mediated. This is the first study studying functional response
traits of birds in the Orinoquia region to estimate functional
groups’ responses to land-use change scenarios and identifying
the traits and attributes that determine them. It should be noted
that, since morphological traits obtained from collection
specimens could not be linked to specific land cover types, we
assumed no intraspecific variation in these traits across different
land cover types. For future studies, we recommend that
morphometric variables are measured directly in the field,
considering the land cover type on which individuals are sampled.

Shared response traits or trait combinations identified for all
pairwise classifications of the same natural land cover type,
indicate the presence of common functional response patterns
of species assemblages to environmental disturbances. Changing
forests to agricultural lands in LP influenced species occurrence
probabilities based on their migratory status and social behavior,
independently of the agricultural land cover type. Resident and
solitary or opportunistic gregarious species would tend to
disappear when replacing forests with agriculture, which could
be associated with higher forest specialization in resident species
and increased detectability of solitary species in more open
vegetation, resulting in increased predation risk and reduced
food availability (Hutto, 1989; Newton, 1998; Thiollay and
Jullien, 1998; Sridhar et al., 2009; Barbe et al., 2018). This also
explains why local or continental migratory species that flock are
favored by transformation to agriculture (Smith et al., 2001;

Goldstein et al., 2003; Barbe et al., 2018). Similarly, forest
conversion to agriculture in the FS landscape affected species
occurrence based on foraging behavior and nest location, while
migratory status influenced species responses in all savanna
classifications. Additional trait combinations mediated the
distinct responses exhibited in individual land-use change
scenarios.

Classification models differed in their success rates, with
models including rice showing higher rates than others. High
rates indicate that selected response traits can effectively explain
the differences in species occurrence probabilities between
natural and agricultural land cover types. However, the success
rates for models involving oil palm crops and cattle were close to
0.5, suggesting a poor classification performance of the RF model.
Potential explanations for this poor performance include missing
functional traits that could be important for the classifications
considered in this study and model limitations by focusing solely
on traits while ignoring other factors influencing species
occurrence probabilities (Newbold et al., 2013). However,
identifying functional groups and their responses suggests a
potential bias in success rate estimation when all species are
assumed equal. When functional group responses are highly
variable, their increasing and decreasing response patterns
cancel each other out, which does not allow the RF model to
classify assemblages between land cover types differentially. This
highlights the idea that posterior functional group evaluation can
provide a better picture of the impact of environmental pressures
on species assemblages.

Different studies have shown that the functional diversity of
bird communities varies depending on particular environmental
conditions such as environmental gradients and the
transformation of the landscape (Clavero and Brotons, 2010;
Bregman et al., 2014; Jarzyna et al., 2020). Our results show that
changes in land use determine the occurrence of species with
particular traits because anthropic disturbances produce changes
in the functional spectrum of traits (Mayfield et al., 2010; Aiba
et al., 2016). The scale of analysis of this research encompasses the
response functional patterns to land-use changes of natural
covers by anthropic ones as a process related to the
transformation of the landscape. However, functional diversity
analysis at finer scales could consider environmental gradients or
of anthropic transformation to obtain more detailed results. For
example, from a taxonomic perspective, the Colombian Llanos
present the greatest changes in bird species toward areas with a
greater altitudinal and latitudinal gradient (Acevedo-Charry,
2017; Trujillo and Henao-Cárdenas, 2018), for which it would
be interesting to analyze patterns of functional diversity in future
studies.

The identity of natural systems is determined by the functional
traits that make them up, and their resilience is based on
maintaining their functional space (Allen et al., 2005;
Gladstone-Gallagher et al., 2019; Roberts et al., 2019).
Differential responses between functional groups result in a
turnover of functional groups and species, modifying the
functional space of traits between land cover types, thus
resulting in changes in the species number, composition,
functional diversity, and functional redundancy (i.e., frequency
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of representation of the same attribute traits) (Figure 5). The
direction of these changes would depend on the proportion of
functional groups showing a particular response (increase,
decrease, or neutral) in occurrence probability and the number
of species represented in these groups. When a larger proportion
of functional groups containing a larger proportion of species
increased their occurrence probability, an increase in functional
diversity and species number increase as expected. However,
none of the scenarios considered in this study showed this
pattern. In the FS savannas rice scenario, a larger proportion
of functional groups increased their occurrence probability, but
the proportion of species represented in these groups (0.4) was
similar to those in groups experiencing a decrease in occurrence
probability (0.38), suggesting an increase in functional diversity
and a species turnover. When a larger proportion of functional
groups increases their occurrence probability, but the proportion
of species represented in these groups is the smallest (e.g., FS
savannas oil palm), the functional diversity might increase but
with low functional redundancy and a reduction in species
numbers.

Consequently, a larger proportion of functional groups with
decreased occurrence probability than with increased probability
suggests a decline in functional diversity. This occurred in all FS
forest scenarios and LP forests’ rice scenarios. In these scenarios,
the proportion of species in the groups with decreased occurrence
probability was also larger, indicating a reduction in species
numbers. This decline in species richness was greater for the
FS forests’ livestock scenario, followed by the FS forests’ rice
scenario, where these groups accounted for more than 50% of the
species. In contrast, in the FS forests’ oil palm scenario, a smaller
percentage of species (20%) are represented in the functional
groups with decreased occurrence probability, while 68% are
included in the groups with neutral responses, suggesting
smaller changes in species composition.

Land-use change scenarios that caused stronger responses on
the functional group occurrence probability implied significant
changes in the vegetation structure, mainly resulting in a
simplification of the habitat complexity (Batisteli et al., 2018).
This can be related to the habitat hypothesis, in which higher
habitat heterogeneity, as indicated by its structural complexity,
provides higher diversity of niches and thus sustains a higher
diversity (Hurlbert, 2004; Tews et al., 2004). In turn, this may be
reflected in the functional niche of organisms and groups so that
higher spatial heterogeneity can lead to higher functional richness
(Wiescher et al., 2012; Nooten et al., 2019). Increased diversity
due to habitat complexity is not generalizable from taxonomic
metrics (Tews et al., 2004; Cousin and Phillips, 2008), but
complex habitats provide a high diversity of conditions from a
functional perspective, increasing the diversity of functional
groups. It should be noted that habitat structural complexity is
just one heterogeneity dimension; thus, analyzing other landscape
configuration metrics and environmental variability would lead
to a better understanding of the species assemblages’ responses
(Stein et al., 2014; Tuanmu and Jetz, 2015).

The identification of the functional trait combination nest
location–foraging behavior in all FS forest scenarios illustrates the
importance of assessing combined traits. Neither nest location

nor foraging behavior was significant as individual traits in any
forest scenario. Species that obtain resources through active
search in different substrates (gatherer foraging behavior) were
common in different land-use scenarios as part of functional
groups that differed in their responses to land-use changes, based
on the nest location attribute (Martin and Possingham, 2005; Hua
et al., 2016; Sitters et al., 2016). Groups that forage by gathering
and nest in tree cavities would suffer a decrease in occurrence
probability because they usually forage vertically in the forests.
The loss of vertical structures by deforestation would reduce
habitat availability for foraging and nesting. In contrast, groups
that forage by gathering and nest on the ground showed higher
occurrence probabilities in agricultural areas as they would find
an increased availability of open areas for nesting with sparse
vegetation on which they scratch in search of food.

The methodological framework we used relied on probabilistic
models to describe the impact of land-use changes on bird
assemblages and the functional groups, traits, and attributes
that explain the species response pattern. RF models estimate
the response probabilities of bird assemblages and the occurrence
probabilities of groups of species with particular traits that
mediate the response to land-use changes. This method allows
one to overcome one of the most significant challenges in
studying functional diversity, that is, developing statistical
procedures to assess and identify functional traits (Ricotta and
Moretti, 2010; Luck et al., 2012; Villéger et al., 2017). Unlike
previous studies on functional response diversity (Mouillot et al.,
2013), our analyses estimated response functional groups, not just
as species clusters with similar traits, but rather as groups of
species with similar responses influenced by their traits. Thus,
functional response groups should be defined based on their
responses rather than on their traits (Hooper et al., 2002; Lavorel
and Garnier, 2002; Naeem and Wright, 2003).

Our results coincide with previous studies assessing the
impacts of agricultural transformation on birds in this region
and showing a decrease in bird species richness in agricultural
land cover types compared to natural ones (Edwards et al., 2015;
Gilroy et al., 2015; Tamaris-Turizo et al., 2017). Few studies
explored the impacts of land-use changes on functional diversity
in the Orinoquia region. Prescott et al. (2016) concluded that
functional diversity is greater in forests than in oil palm crops and
livestock pastures in the FS landscape, while López-Ricaurte et al.
(2017) found a decrease in taxonomic richness and functional
diversity in livestock pastures and oil palm crops for bird
assemblages of savannas.

Potential applications of our results include using species that
represent response functional groups (e.g., in LP little wrens are
vulnerable while medium size water birds of prey benefit from
changing forest to livestock) as indicators to monitor impacts of
land-use change on the Llanos biodiversity (Supplementary
Appendix S4). In addition, changes in the composition of
response functional traits associated with agricultural land
cover could reflect changes in functional processes of
ecosystems that may impact the provision of ecosystem
services. We have explored how the different bird
communities within and between land-cover respond to
change. However, there is room to inquire about how these
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remaining functional communities’ impact or affect the land-
cover themself. We suggest assessing effect functional traits to
understand these effects on ecosystem processes and services. Our
results indicate that agricultural practices can be improved to
reduce impacts on species with particular response trait attributes
that are mostly affected by land-use change (Supplementary
Material S4).

The analysis of response functional groups can be used as a
predictive tool on the impact and/or monitoring of land-use
changes on biodiversity, so that strategies to avoid or mitigate
them can be designed and implemented. Furthermore, the
functional response traits and species representing functional
groups can be used as indicators of the assemblage responses to
changue as improved agricultural practices or conservation
actions in agricultural areas. Patterns of functional traits
expose conditions that can be targeted in the design of
management strategies to minimize the impacts of agricultural
expansion, while the identification of response functional groups
support the identification of indicator species for monitoring the
impact of such strategies on biodiversity in the Colombian
Llanos.
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