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As China’s largest urban agglomeration with rapid growth of economy and population, the
development of the Central Plains Urban Agglomeration (CPUA) has been severely restricted
by environmental problems. Thus, the green development performance of the CPUA is worth
studying. This study used the panel data of 29 cities in the CPUA from 2003 to 2018 based on
the Slacks-based Measure and Global Malmquist–Luenberger index to measure the green
total factor productivity (GTFP) and its decomposition index of each city. A spatial econometric
model was developed to explore the factors affecting theGTFP of theCPUA. The results show
that the GTFP of the CPUA had an upward trend in 2003–2018, but the productivity level was
still low. There were significant spillover effect in the GTFP among different cities of the CPUA.
The results of the spatial measurement model show that technological progress, industrial
structure and solid waste environmental regulationhave a significant positive spillover effect on
the GTFP. The, fiscal expenditure, and informatization level also have positive impacts on the
GTFP. In the future, local government should provide technical and financial support for the
development of green industries in the CPUA, and accelerate the construction of
environmental protection infrastructures.

Keywords: green total factor productivity, global malmquist-luenberger index, spatial-temporal evolution, spatial
durbin model, central plains urban agglomeration

INTRODUCTION

Currently, an urban agglomeration is a center of economic, cultural and industrial activities. The data
related to global urban development show that cities accommodate more than 60% of the world
population. However, the excessive utilization of resources and environmental pollution have already
handicapped the development of urban agglomerations (Bank, 2017; Lewis, 2018; Li et al., 2019).
China has 10 of the 25 most polluted cities in the world (Wang et al., 2017). The emissions of sulfur
dioxide, wastewater, smoke, and dust in China rank first in the world, and 90% is generated in cities
(National Bureau of Statistics, 2019b). Therefore, how to reduce pollution and implement green
transformation during urbanization is key to realizing the Sustainable Development Goals of the
United Nations by 2030. China has continuously proposed planning for several urban
agglomerations with indicators regarding the environment, resource utilization, and industrial
structure to cope with urban environmental problems.
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As one of the national-level urban agglomerations, the Central
Plains Urban Agglomeration (CPUA) has the largest
agglomeration scale and the most concentrated population in
China. The goal of the CPUA in national planning is to become a
demonstration area for green ecological development and
become a new growth pole of China’s economy. However, the
CPUA is currently facing severe problems of pollution and
ecological damage. Most industries in the CPUA are resource-
consuming and pollution-intensive industries. Besides, the CPUA
is short of water endowment. The per capita water resources are
less than one-fifth of the national average, causing an imbalance
between the water supply and demand. In contrast, the discharge
of wastewater and the chemical oxygen demand in the CPUA
rank in the top five in China. Furthermore, air pollution seriously
exceeds standards. The concentration of sulfur dioxide exceeds
2DU1, which is more than 10 times the international carcinogenic
concentration threshold value. In the past five years, the serious
air pollution days of the CPUA accounted for 55% of the days in a
year. Moreover, the CPUA’s terrain characteristics and aerostatic
temperature inversion make pollutant diffusion more difficult.
Additionally, the per capita discharge of solid waste in the CPUA
is nearly 10 times that of the national average. All these facts
require a clarification of the mechanisms to improve urban
environmental management to stimulate the green
transformation of the CPUA.

Therefore, this paper aims to calculate the CPUA’s green total
factor productivity (GTFP) that is widely used to measure the
urban green development based on various resource and
environmental factors. We further clarify the GTFP’s temporal
and spatial evolution characteristics, and explore its driving
factors with a spatial econometric model. The paper is
organized as follows: Literature Review conducts the literature
review regarding the environmental studies in the Central Plains
Urban Agglomeration and the methods for calculating green total
factor productivity. Methods and Materials introduces the
research methods of Slacks-based Measure (SBM) and Global
Malmquist–Luenberger (GML) models and provides data
sources. Empirical Results Analysis aims to present the spatial
and temporal characteristics of the GTFP and provides the spatial
econometric regression results of the influencing factors of GTFP
in the CPUA. Discussion and Conclusion are the discussion and
conclusion, respectively. The research results will provide an
empirical reference for coordinating the rapid economic
development and environmental performance in the large-
scale urban agglomerations.

LITERATURE REVIEW

With the aggravation of the environment and resource
restriction, the mechanisms of urban sustainable development
are becoming increasing important in terms of the coordination
of the economy and environment, urban environmental quality,
and industrial structure adjustment. Regarding urban
environmental quality, a series of indictors (e.g., waste water,
exhaust gas, solid waste, carbon dioxide, and PM2.5) are often
used to monitor and control environmental quality (Chen et al.,

2019). Several scholars have studied the sources of PM2.5 in the
CPUA and discovered that motor vehicle exhaust was a main
source; additionally, the high PM2.5 concentration was
centralized in winter (Qiu et al., 2014; Liu et al., 2018; Liu
et al., 2019). Moreover, the adjustment of the industrial
structure can increase the ratio of low-energy industries and
promote industrial transformation, which is an effective measure
to stimulate urban green development (Porfiryev and Bobylev,
2018). As the environmental problems of urban development
become more intense, analyzing the performance and
mechanisms of urban green development is inevitable for
scientific decision-making for urban management.

The previous research on the performance of urban green
development mainly focused on evaluating the methods and
influencing factors of green development performance. Green
development refers to the measurement of economic and social
development levels that should consider environmental impact
and resource utilization. This concept can be specified by a set of
indexes to present environmental efficiency and sustainability in
economic development. Färe et al. (1992) first proposed the
measurement index of green development to analyze the
relationship between environmental pollution in the
papermaking industry and industrial development in
Switzerland (Färe et al., 1992). The evaluation of traditional
economic productivity in the early stage focused only on
economic output, and total factor productivity (TFP) was
frequently used to evaluate economic performance. The
expected output indicators of the economy (e.g., GDP and
industrial added value) were often used as the output
variables, while the negative externalities of economic and
social activities on environmental resources received less
attention. This result may cause the performance of economic
growth to be overestimated. As the calculating methods advance,
the level of green development can more accurately evaluate the
actual economic development. With the increasing constraints on
resource carrying capacity and environmental capacity, an
increasing number of scholars and government departments
regard the green development level as an important indicator
for regional economic development assessments (Oh, 2010; Ke
and Lin, 2017; Marimin et al., 2018). The green total factor
productivity (GTFP) has been widely used to measure the actual
level of socioeconomic development of resources and
environmental factors. To calculate the GTFP, the Frontier
methods considering technical inefficiency are mostly used,
mainly including data envelopment analysis (DEA) (based on
nonparametric methods), and stochastic Frontier analysis (SFA)
(based on parametric methods). DEA method can effectively
avoid the setting errors of equation form, making it easier to
operate (Sueyoshi and Goto, 2017; Han et al., 2018). Among the
DEA models, the Slacks-based Measure (SBM) can incorporate
the undesirable outputs in the aspects of environmental issues
(Sueyoshi and Goto, 2017). Moreover, the DEA model has often
been combined with index analysis, including the Malmquist
index, Malmquist–Luenberger (ML) index and global
Malmquist–Luenberger (GML) index. The Malmquist index
was first put forward by Malmquist in 1953 (Malmquist,
1953). However, this index may overestimate environmental
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efficiency because the index could not measure environmental
efficiency with undesirable outputs. Later, Chung et al. (1997)
developed the Shephard distance function into the directional
distance function and constructed a ML index, to reduce the bias
in the environmental efficiency measurement (Chung et al.,
1997). However, the ML index came with problems, such as
infeasible solutions of linear programming. To solve the
problems, Oh (2010) proposed a GML index (Oh, 2010). Since
then, the combination of the GML index and the non-radial
distance function has become a more scientific method for
measuring the GTFP.

Most studies on the GTFP have considered the influencing
factors such as policy, technology, management, scale, and
information. Yang et al. (2017) investigated the green
production performance of the steel industry in China using
the DEA and Luenberger index and noted that carbon emission
regulation policies have not played an effective role in emission
reductions and industrial development (Yang et al., 2017). Zhu
et al. (2018) analyzed the GTFP of the mining industry from 1991
to 2014 and found that gradual improvements in the
management efficiency of the mining industry have become an
important factor (Zhu et al., 2018). Wang and Feng (2015)
investigated the regional productivity growth of China from
2003 to 2011 with global DEA and discovered that the
declining scale and management efficiency were the two
obstacles to green productivity. Sanchez-Vargas et al. (2013)
found a nonlinear relationship between environmental
regulation and productivity in manufacturing research in
Mexico (Sanchez-Vargas et al., 2013). The nonlinear
relationship was also found by Wang and Shen (2016) in their
research on sub-industries of China, and it conformed to the
Porter hypothesis (Wang and Shen, 2016). Albrizio et al. (2017),
based on OECD national panel data studies, found that the
positive impact of environmental policy intensity on
productivity growth was reflected only in a short period of
time and weakened as it progressed from the global
production Frontier (Albrizio et al., 2017). Additionally,
Newman et al. (2015), based on more than 4,000 production
enterprises in Vietnam, noted that technological transfer and
investments abroad had a spillover effect on productivity
(Newman et al., 2015). Brock et al. (2004) found that
industrial structure promoted the separation of production
factors from highly polluting industries, thereby increasing the
GTFP. Other factors, such as marketization degree,
informatization level, fiscal decentralization and urbanization
rate, also influenced GTFP to some extent (Munisamy and
Arabi, 2015; Feng et al., 2017; Lin and Chen, 2018; Zhu et al.,
2018). In addition, spatial econometrics have been widely used to
investigate spatial spillover effect of the GTFP (Xie et al., 2019).

The previous literature has made fruitful achievements in
terms of GTFP, but three aspects still can be improved. First,
most studies on environmental pollution and green development
have focused on provincial or national scales or on industrial
scales, but fewer studies have focused on cities or microscales. In
addition, few studies focus on the green total factor productivity
of China’s Central Plains Urban Agglomeration which is an
agglomeration area with the most serious environmental

pollution. Second, most of the existing research methods use
the traditional DEA and Malmquist or Malmquist–Luenberger
index to decompose the index, which may have the problems of
infeasible solutions. Third, existing studies have not considered
the influence of regional heterogeneity on GTFP and pay less
attention to the spatial spillover effect of GTFP. Accordingly, our
study aims to study the green total factor productivity of the
Central Plains Urban Agglomeration in China based on the
combination of the SBM model and the GML index.
Moreover, the econometric model is used to explore the
spatial spillover effect of the green total factor productivity
and its influencing factors in the Central Plains Urban
Agglomeration.

METHODS AND MATERIALS

Sampling Sites
The study area, shown in Figure 1, is located in the central
and eastern parts of China and covers five provinces
(i.e., Henan, Hebei, Shanxi, Shandong and Anhui),
including 30 prefecture cities, forming an urban
agglomeration with close economic and social ties. In
2019, its GDP was 1,210.72 billion dollars, with an area of
2.87 square kilometers and a total population of 164.33
million, accounting for 12% of China’s population
(National Bureau of Statistics, 2019b). As China’s fourth
largest urban agglomeration, it undertakes the industrial
transfer from China’s eastern regions. The development
goal of this urban agglomeration is to be a new growth
pole and a green ecological development demonstration
zone by 2030 to promote the central and western regions
in China.

Methods
GTFP Measurement and Its Decomposition
The green total factor productivity (GTFP) is usually expressed by
an exponential method, and this paper adopts a non-radial SBM
model with an undesirable output and theGML index to calculate
the GTFP. At production time t, each city is taken as the decision-
making unit DMU. x,y,b represent the input vector, desirable
output vector and undesirable output vector, respectively. The
production possibility set Pt of DMU at production time t is
shown in Eq. 1:

Ρt(xt) � {(yt , bt)|xt}, t � 1, 2, 3 . . . ,Τ (1)

Where xt � (x1 . . . xn), yt � (y1 . . . ym), bt � (b1 . . . bk), and
n,m,k are the number of input factors, desirable outputs, and
udesirable outputs, respectively. The non-radial and non-angular
directional distance function on the technology set Ptcan be
shown as Dt(x, y, b) � max{β∣∣∣∣(y + βy, b − βb) ∈ Pt(x)}. The
global production possibility set of DMU at production time t
can be defined as PG � P1 ∪ P2 ∪ ...∪ PT . By referring to the
principle of the ML index, the GML index with an undesirable
output of city i at time t can be defined by two continuous
production possibility sets at t and t + 1, as shown in Eq. 2

Frontiers in Environmental Science | www.frontiersin.org June 2021 | Volume 9 | Article 6867253

Wang et al. Green Total Factor Productivity

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


GMLt+1t � (xt , yt , bt , xt+1, yt+1, bt+1)
� 1 + DG(xt , yt , bt)

1 + DG(xt+1, yt+1, bt+1)
(2)

In which the non-radial and non-angular SMB directional
global distance function with undesirable output refers to
DG(x, y, b) � max{β∣∣∣∣(y + βy, b − βb) ∈ PG(x)}. In addition, if
the production activity has more expected output but less
undesirable output, then GMLt+1t > 1, indicating an increase in
the GTFP; conversely, if GMLt+1t > 1, this condition indicates a
decrease in the GTFP. The GML index can be decomposed in a
similar way as the ML index, as shown in Eq. 3:

GMLt+1t � (xt , yt , bt , xt+1, yt+1, bt+1)
� 1 + DG(xt , yt , bt)

1 + DG(xt+1, yt+1, bt+1)
� 1 + Dt(xt , yt , bt)

1 + Dt+1(xt+1, yt+1, bt+1)
p[ 1 + DG(xt , yt , bt)/1 + Dt(xt , yt , bt)

1 + DG(xt+1, yt+1, bt+1)/1 + Dt+1(xt+1, yt+1, bt+1)]
� ΤΕt+1

TEt
p
ΤCt,t+1

t

ΤCt,t+1
t

� GECt+1
t pGΤCt+1

t (3)

Where GECt+1
t refers to the global technical efficiency change,

and this value can reflect the proximity degree of DMU toward
the Frontier side of global production at period t + 1 relative to
t. GTCt+1

t refers to the technical change index, weighing the
change in the optimal production activity gap between two
time periods, namely, the technical change. TE refers to the
technical efficiency. The GML,GEC,GTC indexes could be

transferred. Thus, an accumulative index could be obtained
through multiplication.

Econometric Model Setting
A prerequisite of spatial econometric analysis is to determine the
spatial distance between regions, and the spatial weight matrix is
used to measure the relationship between different regions in
terms of geographic distance or economic attributes. There are
three commonly used spatial weight matrices: adjacency matrix,
geographic distance matrix, and economic distance matrix
(Bivand and Piras, 2013). The GTFP refers to the input-output
efficiency under resource environment constraints, which are
greatly influenced by the degree of economic development
between areas. Therefore, to comprehensively reflect the
influence of multiple factors such as the geographical distance,
economic development level and social relationship on the spatial
correlation of the GTFP, this paper uses the economic distance as
the spatial weight matrix (Durbin, 1998). The economic distance

matrix is represented as We � 1/
∣∣∣∣∣∣∣gdpi − gdpj

∣∣∣∣∣∣∣(i≠ j),
We � 0 (i � j), where gdpi is the average level of economic
development of city i at t. Based on this, Moran’s I was used
to globally analyze the spatial dependence of the GTFP (Luo et al.,
2017), and Moran’s I is defined as shown in Eq. 4

I �
n∑N

i�1
∑N
j�1

wij(pi − p)(pj − p)
s2 ∑N

i�1
∑N
j�1

wij

(4)

Where I refers to the Moran’s index, Wij refers to the spatial
weight matrix, pi refers to the GTFP of each city, pi refers to

FIGURE 1 | Location of the study area in the CPUA.
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average GTFP of n cities, and S2 refers to the variance in the GTFP
of all cities. Moran’s index I is between −1 and 1, and a value
greater than 0 indicates a positive correlation of GTFP among
cities, while a value less than 0 represents a negative correlation.

To explore the spillover effect of the GTFP, the spatial panel
data model is established as shown in Eq. 5:

{ yit � τyi,t−1 + ρWyit + βxt + δWxit + μi + ct + εit
εit � λMεt + υit

(5)

Where τ refers to the first-order lag coefficient of the dependent
variable yit, andW refers to the spatial weight matrix.Wxit refers
to the spatial lagging of independent variable, and Wyit refers to
the spatial lagging of dependent variable. δ represents the
coefficient of the lagging item. ρ is the spatial autoregressive
coefficient. β refers to the marginal effect of the independent
variable on the dependent variable, corresponding to the direct
effect, indirect effect and total effect in the model regression
results. Xt represents the matrix of independent variables. μi , ct
refer to the individual effect and time effect, respectively. εit refers
to the random disturbance term. M refers to the spatial weight
matrix of the disturbance term, and λ refers to the spatial
autocorrelation coefficient. The common spatial econometric
model consists of the spatial autocorrelation model, spatial
autoregressive model, spatial error model and spatial Durbin
model (Lesage and Pace, 2010; Elhorst, 2014), and the
appropriate model will be selected according to the test results
of model null hypothesis (Xu et al., 2020), as shown in Table 1.

The dependent variable refers to the CPUA for weighing the
green development level of each city in the CPUA. The input
indicators for measuring the GTFP include the capital, labor,
land, and water resources. Among them, capital investment is
expressed by the fixed asset investment, and depreciation is based
on the year 2003. Labor and land indicators are represented by the
number of employed people and the area of urban construction
land at the end of the year, respectively, and the water resource is
measured by the total urban water use per year. The desirable
output is calculated by the actual GDP of each city. The
undesirable output is calculated by the three indicators of
wastewater, waste gas and solid waste, namely, industrial
wastewater discharge, industrial sulfur dioxide emissions and
industrial smoke or powder dust emissions. The descriptive
statistics of the input-output indicators for estimating the
GTFP are shown in Table 2.

In the model, the global technical change TECHC, green level
of industrial structure STRU and environmental regulation
intensity REGU are the core explanatory variables. The
technical change can reflect the degree of proximity of the

production activity toward the technical Frontier area, and it
is the technical support for the improvement of the GTFP and
comes from the GML index decomposition. The green level of
industrial structure is measured by the rationalization degree of
the industrial structure, and the improvement of the
rationalization of the industrial structure indicates that the
structural transformation capability and resource utilization
degree between industries have improved. Furthermore, the
greening of the industrial structure has become an important
factor in terms of achieving the coordinated development of
economic performance and environmental performance, and it is
the direction of regional green development. The level of
industrial greening is calculated using the method proposed by
Bin (2015), which is reflected by the degree of rationalization of
the industrial structure, and its formula is as follows:

INS � 1/{ ∑N
i�1
(Yi
Y)ln(Yi

Li
/YL)}. Where in, Yi, Y, Li, L respectively

refer to the output of industry i, regional gross output of industry
i, regional total labor force of industry i and total regional labor
force, respectively. In addition, the GTFP is affected by factors
such as the environmental regulation intensity, represented by
REGU, industrial agglomeration, represented by AGGLO, the
overall human capital status of the city, represented by
HUMC, financial investment, represented by FSCA, regional
informatization level and foreign direct investment, which are
represented by INF and FDI, respectively. The REGU was
calculated by the treatment ratio of industrial exhaust gas
(REGU 1) and that of smoke and dust (REGU 2). AGGLO
reflects the distribution of the labor force in a region and the
matching degree of distribution demand of the industry, and its
formula is as follows:

INAGGLOt
i � ⎛⎝Et

ij/∑
j
Et
ij
⎞⎠/⎛⎝∑

j�1
Et
ij/∑

i
∑
j
Et
ij
⎞⎠, where Et

ij refers to

the employed labor force in industry j of city i at period t. The
larger the value is, the higher the degree of the industrial
agglomeration is (Baldwin et al., 2010). The HUMC was
measured by the reflected by the number of urban labor. The
FSCA was measured by the governmental expenditure level. The
INF was calculated by the number of regional mobile phones
(Zhang et al., 2015). FDI was measured by the city’s foreign direct
investment quota The descriptive statistical analysis of the main
variables used in the model is shown in Table 3.

Data Sources
In this study, we acquired the data of 29 cities1 in the CPUA from
2003 to 2018, and the sample size is 464. The year of 2003 is used

TABLE 1 | Adaptability test of spatial econometric model.

Null hypothesis Model Effect

λ � 0 Spatial durbin model (SDM) Endogenous and exogenous interactions
λ � 0, δ � 0 Spatial autoregressive model (SAR) Endogenous interactions
τ � 0, δ � 0 Spatial autocorrelation model (SAC) Endogenous interactions
τ � ρ � 0, δ � 0 Spatial error model (SEM) Spatial dependence
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as the beginning year because the data of discharge gas,
wastewater and solid waste start to be recorded. The year of
2018 is the latest year of the updated data. The main data are
derived from theChina City Statistical Yearbook, China Statistical
Yearbook on Environment, China Statistical Yearbook for
Regional Economy, annual statistical yearbook of each city in
CPUA and Ministry of Housing and Urban-Rural Development.
The missing data in some years were supplemented by
interpolation, such as moving average and piecewise linear
methods. The statistical analysis software used in this study
include MaxDEA6.7, ArcGIS10.2 and Stata15.

EMPIRICAL RESULTS ANALYSIS

Temporal and Spatial Characteristics of the
GTFP
Figure 2 depicts the interannual dynamics of the cumulative
GTFP in the CPUA and sub-regions from 2003 to 2018. The
overall GTFP of the CPUA shows a volatile trend, and the later
rise is relatively sharp. In terms of regions, the difference in the
GTFP among the five regions is significant. Hebei and Anhui
provinces have higher productivity values, with an average annual
value of 1.9,2.2, respectively. Shanxi and Henan have lower
values, with an annual productivity of 1.1,1.4, respectively, and
the productivity of Shandong is at a medium level (1.5). From the
perspective of changes, the five regions showed a trend of steadily
increasing. In the last two years, there has been a sharp increase.
Hebei had the largest increase in the study period, followed by
that of Anhui, and Shanxi had the smallest change during the
study period. In addition, the regional difference in the GTFP was

significant. The city with the highest annual average value of
GTFP was Luohe (1.29), the lowest was Xinxiang (0.98), and the
former was 1.3 times the value of the latter.

Figure 3 shows the dynamic evolution of the three indexes of
the cumulative global productivity index (CGML), global
technical efficiency index (CGEC) and global technical change
index (CGTC) for the CPUA. As shown in Figure 3, the CGML
and CGEC indexes steadily increased, while the global technical
progress index showed alternating peaks and valleys throughout
the study period; thus, the index significantly changed and was
unstable.

The spatial distribution characteristics of the GTFP in the
CPUA in 2004 and 2018 were depicted with Arcgis10.2 software
as shown in Figure 4 From the perspective of interannual change,
the GTFP in the CPUA showed a gradual upward trend. In 2004,
the GTFP value of 55% of the cities in the CPUA was greater than
1, while in 2018, more than 83% of the cities had GTFP values
above 1. In terms of the spatial distribution, the GTFP of 55%
cities in the CPUA had apparent intercity differences. The three
cities with higher average GTFP in the CPUA were Luohe (2.28),
Fuyang (2.09) and Bengbu (1.80), and the three cities with the
lowest values were Xinxiang (0.83), Changzhi (0.85) and Handan
(0.92). Meanwhile, the cities with higher GTFP values, such as
Bengbu and Zhengzhou, were clustered together, and the cities
with lower GTFP, such as Handan and Changzhi, were clustered
together.

Empirical Results
Econometric Model Setting
Based on the economic distance spatial weight matrix, the global
Moran’s I test value of the GTFP of the 29 cities is shown in
Table 4. Except for the individual years, theMoran’s I value in the
remaining years rejected the null hypothesis of no spatial
autocorrelation (p < 0.1). Therefore, it is necessary to
introduce a spatial econometric model. It should be noted that
the insignificance of the CPUA Green Development Moran’s I in
the four years does not fully indicate that the spatial
autocorrelation of green development in these years does not
exist. The global Moran index examines the spatial agglomeration
between regions in the entire space, while the local Moran index
or the local Getis-Ord index can further measure the spatial
agglomeration near each region. Specifically, although the global
spatial autocorrelation indexes of 2009, 2012, and 2014 are not
significant, the local spatial autocorrelation indexes of these three
years, measured by the Getis-Ord index, all reject those with no

TABLE 2 | Statistical analysis of input-output variables.

Type Variable Unit Mean Std. Dev Min Max

Desirable output GDP Ten thousand yuan 14,160,000 9,852,505 1,200,000 81,000,000
Undesirable outputs Effluent Ten thousand tons 5,027.642 3,243.345 670 21,807

Sulfur dioxide Ton 38,969.329 31,351.922 1917 304,570
Dust Ton 25,365.494 26,408.150 971 301,827

Inputs Capital Ten thousand yuan 8,500,738 8,738,147 334,545 70,000,000
Land Square kilometer 77.220 53.339 22.8 410.34
Water Ten thousand cubic meters 8,119.628 6,296.492 1,030 37,724
Labor force Ten thousand people 49.741 29.163 14.67 200.854

TABLE 3 | Definition of variables and descriptive statistical analysis.

Variable Unit Mean Std. Dev Minimum Maximum

TECHC / 1.053 0.278 0.430 2.325
STRU / 3.660 3.777 0.807 24.814
REGU1 % 96.100 5.3 53.800 99.800
REGU2 % 49.100 32 0.100 99.000
AGGLO / 3.003 0.915 1.976 10.009
HUMC Million people 0.434 0.230 0.111 1.419
FSCA / 0.437 0.156 0.180 1.000
INFO Million households 0.792 0.497 0.120 3.510
FDI Million yuan 354.667 549.082 3.770 4,033.050
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spatial autocorrelation at a significant level of 1%. The original
hypothesis is that there is spatial autocorrelation, and there is also
a spatial agglomeration of GTFP near the cities in the Central
Plains urban agglomeration in these three years. Due to space
limitations, the local spatial autocorrelation index results of the
cities in CPUA in the three years are included in Supplementary
Tables S1–S3. In addition, the calculation of spatial
autocorrelation indicators such as the Moran index and
hypothesis testing only provides a preliminary test of whether
there is a spatial effect. In-depth testing relies on the
establishment of a formal spatial measurement model. The
subsequent spatial measurement model results prove the

existence of spatial effects. Therefore, it can basically be
explained that there is also a certain degree of spatial
autocorrelation in green development, and the phenomenon of
spatial agglomeration of green development industries has also
existed objectively.

Model Test
The Multicollinearity test refers to the fact that the explanatory
variables in the linear regressionmodel are distorted or difficult to
estimate accurately due to the existence of precise correlation or
high correlation. In order to test whether the model has multiple
collinearity problems, the variance inflation factor (VIF) is

FIGURE 2 | Cumulative GTFP in the CPUA and sub-regions from 2003 to 2018.

FIGURE 3 | Three cumulative GTFP indices in the CPUA from 2003 to 2018. Note: The geometric mean of the GTFP of the 29 cities in the CPUA is used as the index
of each year.
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usually used to test. The basic idea of detection is that when the
value of VIF is greater than 1, the closer the VIF value is to 1, the
lighter the multicollinearity, and vice versa. Usually 10 is used as
the judgment boundary. When VIF<10, there is no
multicollinearity; when 10 ≤ VIF<100, there is strong
multicollinearity; when VIF ≥ 100, there is severe
multicollinearity. Because the VIF results of all variables in
this model are less than 10, there is no multicollinearity
problem in this model. Multicollinearity test results shown in
Table 5 reflected that the variance inflation factor (VIF) of all

independent variables was less than 10, which rejects the null
hypothesis of multicollinearity; thus, there was no
multicollinearity problem in the model.

For the choice of panel model form, the Hausman test results
showed that the fixed effect was appropriate (p � 0.006 < 0.01).
Regarding the choice of spatial econometric model form, the
Wald and L ratio tests were performed to test the adaptability of
the spatial econometric model, in reference to Elhorst (2014). The
spatial autocorrelation coefficient of the independent variable ρ
and that of the independent variable λ were both significant at the
1% level, namely the p � 0.04 and p � 0.01 respectively, thus
rejecting the null hypothesis. Therefore, the SEM and SAR
models were excluded. The AIC and BIC were further used to
judge whether the SAC or SDM model was suitable, and the
results showed that the absolute values of the BIC and AIC values

FIGURE 4 | Green total factor productivity of the CPUA in 2004 and 2018.

TABLE 4 | Global moran index results.

Variable I Sd (I) Z P

gml2004 0.096 0.071 1.860 0.063
gml2005 0.479 0.093 5.519 0.000
gml2006 0.126 0.088 1.840 0.066
gml2007 0.131 0.094 1.774 0.076
gml2008 0.157 0.089 2.174 0.030
gml2009 0.052 0.093 0.949 0.343
gml2010 0.291 0.085 3.847 0.000
gml2011 0.154 0.092 2.058 0.040
gml2012 −0.013 0.091 0.254 0.799
gml2013 0.204 0.092 2.595 0.009
gml2014 0.091 0.091 1.394 0.163
gml2015 0.133 0.092 1.831 0.067
gml2016 0.233 0.092 2.927 0.003
gml2017 0.236 0.092 2.945 0.003
gml2018 0.234 0.092 2.936 0.003

TABLE 5 | Results of VIF test.

Variable VIF 1/VIF

TECHC 1.010 0.991
STRU 2.290 0.436
REGU1 1.170 0.854
REGU2 1.400 0.715
AGGLO 1.350 0.739
HUMC 1.930 0.522
FSCA 2.610 0.382
INFO 2.440 0.410
Mean 1.7528 0.6467
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increased, as shown in Table 6, indicating the spatial durbin
model (SDM) of the final model.

Influencing Factors of GTFP
This paper uses the maximum likelihood estimation method to
estimate the model parameters with the stata15.0 software. The
estimation results of the spatial panel model and OLS are shown
in Table 7. It is worth noting that the regression coefficient of the
variables in the SDM model different from the ordinary
regression coefficient, and the marginal effect of the
independent variable on the dependent variable is reflected by
the direct effect, indirect effect and total effect (Lesage and Pace,
2014). Due to the limited length of the paper, Table 7 only
presents the regression results of the total effects of the parameter
estimates of variables. The regression results of the direct effects
and indirect effects are detailed in Supplementary Table S4. It
can be seen fromTable 7 that the parameter estimation directions
of the explanatory variables of the two models are the same, and
the parameter values are different. For spatial effects, the MLE
estimation is more efficient than the ordinary least squares (OLS).

The Sigma2_e and log-likelihood shown in Table 7
indicated that the model had a higher level of fit. In
addition, the spatial autoregressive coefficient ρ was
apparently positive at the 1% level, there was a spatial
spillover effect in the GTFP. Therefore, the influence of an
inter-city spatial externality on the GTFP could not be
neglected when the influencing factors of regional GTFP
were studied. From the regression results of the SDM
model, technological progress had a positive impact on the
GTFP and was significant at the 1% level. The faster the
technology progressed, the larger the amplitude of the
GTFP improved. As the technological progress improved by
1 unit, the GTFP increased by 8.65 units. Regarding the
regression results of the indirect effect, the technological
progress of adjacent cities had a positively demonstrative
and spillover effect on the GTFP of the city. The industrial
structure positively influenced the GTFP at the 1% level, which
showed that the higher the rationalization of the regional
industry structure was, the higher the GTFP of the CPUA
was, and the higher the level of green development was.
Moreover, as the rationalization of the industrial structure
increased by 1 unit, the GTFP increased by approximately 1.69
units. In addition, the environmental regulation degree for
solid waste was positive at the 1% level. As the environmental
regulation of local solid waste increased by 1%, the local GTFP
increased by 3.6%. The environmental regulation of exhaust
gas was significantly positive at the 10% level. As the regulation
degree for exhaust gas increased by 1%, the GTFP increased by

1.83%. The influence of the informatization level on the GTFP
was also positive at the 10% significance level. Other variables
had no statistically significant effect on the GTFP.

DISCUSSION

For The results of Empirical Results Analysis reveal the status of
the GTFP of cities in the CPUA from 2003 to 2018. During this
period, the GTFP values of 29 cities in the CPUA showed an
upward trend. Meanwhile, there were significant differences
among different cities in terms of the GTFP. The number of
cities with GTFP values greater than one in the CPUA increased
by 28% during 2003–2018. The values of GTFP in the northern
and southern parts of the CPUA were relatively high, while the
values in the western and central regions were relatively low. The
city with the highest average value of GTFP (Fuyang) was
1.3 times the lowest value (Xinxiang). From the perspective of
the current urban green development pattern in the CPUA, the
western and central regions were the focus of GTFP
improvement. In 2017, the National Development and Reform
Commission issued the CPUA plan, and the plan noted that the
CPUA’s medium-term goal until 2020 is to build a green
development ecological demonstration zone. To ensure the
realization of the target, it is necessary to coordinate the green
synergy development of the CPUA. Therefore, the demonstration
role of green economy development in the southern region, which
has a high GTFP in the CPUA, cannot be ignored. At the same
time, the western and central regions with lower GTFP values
could be the focus of green development level improvement. In
addition, limited by the insufficient data of each city’s sub-

TABLE 6 | Adaptability test of SAC and SDM models.

Model N ll (model) df AIC BIC

SAC_fe 464 4.418,841 19 29.16232 103.875
SDM_fe 464 4.418,841 12 15.16232 62.34926

Note: AIC � −2*ln(likelihood) + 2*k; BIC � −2*ln(likelihood) + ln(N)*k, wherein k refers to the
number of parameters, and likelihood refers to the likelihood value.

TABLE 7 | Spatial panel model estimation results.

Variable SDM OLS

Coefficient Std. Err Coefficient Std. Err

TECHC 0.2911*** 0.0340 0.2118*** 0.0651
STRU 0.0226** 0.0123 0.0036 0.0056
REGU1 0.8853*** 0.3172 0.2108 0.2809
REGU2 0.1708*** 0.0516 0.1057*** 0.0217
AGGLO −0.0322 0.0229 −0.0100* 0.0057
HUMC 0.0033 0.0022 0.0090** 0.0040
FSCA 0.1857 0.2299 0.0643 0.0552
INFO 0.0022** 0.0009 0.0000 0.0002
W*TECHC 0.0361*** 0.0117 / /
W*STRU 0.0071 0.0052 / /
W*REGU1 0.4016*** 0.1972 / /
W*REGU2 −0.0154 0.0189 / /
W*AGGLO −0.015 0.018504 / /
W*HUMC −0.0008* 0.0004 / /
W*FSCA −0.1526 0.1144 / /
W*INFO 0.0002 0.0002 / /
N 464
R2 0.1670 0.1583
ρ (rho) 0.083***(4.7400) /
Sigma2_e 0.030***(14.2800) /
Hausman (chi2) 21.430***(0.0060) 126.330***(0.0000)
Log-likelihood 137.7070 /

Notes: t statistics in parentheses; *p < 0.1, **p < 0.05, ***p < 0.01.
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industry, the next research direction is to analyze the green
development of each city in the CPUA from the perspective of
industry heterogeneity.

Both the spatial distribution map and the spatial correlation
quantitative test indicate that there is a significant correlation in
the spatial GTFP among different cities of the CPUA. Specifically,
the spatial aggregation of high GTFP is presented, and cities with
low GTFP are clustered together. For example, the cities of
Bengbu and Zhengzhou are a cluster center with a higher
GTFP, while Handan and Changzhi are cities with a lower
GTFP. The spatial clustering of GTFP in the CPUA may be
related to the economic development mode and policy
implementation among cities; that is, cities with similar
economic development levels usually have similar development
modes. For example, Bengbu and Zhengzhou, which have high
GTFP, are two cities whose economic development modes are
based on high-tech industries, such as electronic information and
new materials, which have the characteristics of low energy
consumption and low pollutant emissions. Thus, green
economic development could promote the sustainability of
products and upstream and downstream industry chains, and
further contributes to improving the GTFP. In addition, there are
similarities in the environmental policies and development
policies implemented for places with close economic
development level, and the implementation of environmental
protection policies with a specific intensity and scope will bring
about the corresponding level of urban green development.

From the perspective of influencing factors of GTFP in the
CPUA, the results show that technological progress has a
significant positive impact on the GTFP, reconfirming the
contributions of technological innovation on urban green
development (Zhang et al., 2018). The possible reason is
that technological progress represents more advanced
technologies for wastewater, waste gas treatment, and
reduced pollutant discharge and discharge rate. From the
perspective of Zhengzhou and Bengbu, which have high
GTFP values, the two cities’ governments increased
investments in science and technology by 123 times and
362 times, respectively, from 2003 to 2018 (Department of
Urban Social and Economic Survey, 2019), and the
investments in science and technology increased
significantly. However, in terms of relative quantities, the
proportion of science and technology investments in each
city in the CPUA is still low, with values mostly less than
7% (National Bureau of Statistics, 2019a). From the
perspective of spatial impact, technological advances in
other cities have a significant spillover effect on the GTFP
in the region. The reason is that technological progress in other
cities brings external economies to enterprises or industries in
the region through technology replication and information
sharing, which improves the GTFP. The reason why industrial
structure optimization can promote the improvement of GTFP
lies in that, on the one hand, the more rational industrial
structure means that the traditional economic production
mode that relies on high pollution and high energy and
resources input has been gradually eliminated and shifts to
the economic production mode driven by the tertiary industry.

This process is accompanied by the transformation of
industrial energy use, thereby promoting the green
production of industries and products. On the other hand,
industrial transformation will also promote the improvement
of environmentally friendly concepts and awareness. It is
worth noting that the rationalization of the industrial
structure in the region has no significant impact on the
GTFP in the surrounding areas. This may be because that
the industrial structure optimization of the region is often
accompanied by the reconfiguration of factors and the transfer
of high-energy-consuming industries to surrounding areas. At
the same time, the economic growth brought about by
industrial optimization in the region will stimulate the
surrounding governments to blindly build redundant
industries, resulting in resource allocation inefficiency and
environmental pollution problems, in turn, inhibiting the
GTFP in the surrounding areas. Hence, the channel of
spillover effect of industrial structure rationalization on
GTFP needs to be addressed, and its synergistic effect on
the green development level across regions should be
considered.

The strengthening of environmental regulation has a positive
effect on the GTFP of the CPUA. Compared with the
environmental regulation of waste gas, solid waste
regulation has a better effect on the improvement of GTFP
in the CPUA. The environmental regulation of the local solid
waste can improve the GTFP in this region, possibly because
the environmental regulation of solid waste can stimulate the
transformation and upgrading of the industrial structure.
Interestingly, the marginal effect of environmental
regulation of solid waste on GTFP is significantly greater
than that of waste gas, indicating that the environmental
management of solid waste enhancement contributes more
to regional GTFP than does waste gas environmental
regulation. Compared with waste gas, solid waste is less
likely to spread, and the pollution source is relatively fixed.
On the other hand, the purification process of solid waste is
less technically difficult, resulting in less undesirable output.
Therefore, its management and control are more effective and
more stable. Thus, for regions with low GTFP, it is necessary to
take the reduction of solid waste or greening treatment as a
breakthrough in improving the level of urban green
development in short term. In addition, other municipal
solid waste environmental regulations have a spillover effect
on the GTFP in this region, which may be affected by the
demonstration effect of inter-city solid waste policies. The
environmental regulation of waste gas has a significant effect
on the GTFP in this region. However, the spillover effect of
other cities’ waste gas environmental regulations on GTFP in
the CPUA has not been shown, mainly because waste gas
pollution of surrounding cities is greatly affected by wind
direction, temperature and other natural factors,
undermining the role of waste gas regulations in promoting
green development in the region.

Regarding other control variables, the informatization has a
positive effect on GTFP, but the informatization in one region has
no positive demonstration effect on its surrounding GTFP. This
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result indicates that the overall coordination between the cities in
the CPUA is low in terms of the dissemination and sharing of
information, and the inter-regional information interconnection
must be improved. The increases in local human capital have no
significant impact on the local GTFP, but it has a negative impact
on the GTFP in the surrounding area. The reason may be that,
despite the increase in local human capital, in the context of
regional vicious competition, there are restrictions on the flow of
talents and the radiation of quality education resources between
regions. Thus, one region’s increase in local human capital does
not play a role in promoting the overall GTFP of the
surrounding areas.

CONCLUSION

All Based on SBM model and GML index, this paper estimated
the GTFP of 29 prefecture-level cities in the CPUA from 2003 to
2018. In addition, the econometric model considering spatial
correlation effects was used to analyze the influencing factors of
urban GTFP in the CPUA. The research results showed that from
2003 to 2018, the GTFP of the CPUA had an upward trend, but
the GTFP value was still low. There were significant regional
differences among cities in the CPUA. The areas with high GTFP
were concentrated in the central and northern regions of the
CPUA. Moreover, there was a significant positive spatial
correlation of GTFP in the CPUA, forming a high-
concentration area centered on Zhengzhou and Bengbu and a
low-concentration area centered on Handan and Changzhi. The
results of the urban spatial econometric empirical model showed
that technical advance and environmental regulations had the
greatest marginal effects on GTFP. Furthermore, industrial
structure, fiscal expenditure and informatization had a positive
influence on GTFP, and the technical progress and
environmental regulation of solid waste had significant
positive spillover effects on GTFP. Therefore, the northern and
southern cities with high levels of green development should play
a demonstration role to influence the central and western cities
with low levels of green development, to coordinate and promote
the green development level of the CPUA.

Based on the GTFP results of CPUA, as well as the green
development and socio-economic status of each region, in order to
improve GTFP, the following targeted countermeasures and
suggestions are puts forward: 1) Because of the central and
northern regions of CPUA, such as Handan and Changzhi,
whose development level of GTFP is relatively lagging. For
these cities, we should take key green development and
upgrading measures, reduce the proportion of energy
consumption type industrial structure, and increase the clean
energy type industrial structure. 2) In view of the significant
regional differences and spillover effects of GTFP, it is necessary
to give full play to the demonstration effect and balance the level of
green development between cities. 3) For the promotion function

of technology progress on GTFP, the government should increase
research and development subsidies for green technologies as well
as strengthen the cultivation of innovative talents, which are the
driving force of technological advances, and promote the
industrialization of energy conservation and environmental
protection technology and exert the long-term promotion effect
of technological progress on regional green development. In terms
of industrial development, financial support, innovation platforms
and institutional guarantees should be provided for the growth of
low-carbon industries. Regarding environmental protection
infrastructures, the government should accelerate the
construction of environmental protection facilities for coal-fired
power plants in cities of the CPUA, sewage treatment plants for
enterprises and supporting pipe networks, and facilities for the
treatment of solid waste and urban household garbage and
hazardous waste.
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