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Soil organic matter (SOM) content is an effective indicator of desertification; thus,
monitoring its spatial‒temporal changes on a large scale is important for combating
desertification. However, mapping SOM content in desertified land is challenging owing to
the heterogeneous landscape, relatively low SOM content and vegetation coverage. Here,
we modeled the SOM content in topsoil (0–20 cm) of desertified land in northern China by
employing a high spatial resolution dataset and machine learning methods, with an
emphasis on quarterly green and non-photosynthetic vegetation information, based on
the Google Earth Engine (GEE). The results show: 1) the machine learning model
performed better than the traditional multiple linear regression model (MLR) for SOM
content estimation, and the Random Forest (RF) model was more accurate than the
Support Vector Machine (SVM) model; 2) the quarterly information regarding green
vegetation and non-photosynthetic were identified as key covariates for estimating the
SOM content in desertified land, and an obvious improvement could be observed after
simultaneously combining the Dead Fuel Index (DFI) and Normalized Difference Vegetation
Index (NDVI) of the four quarters (R2 increased by 0.06, the root mean square error
decreased by 0.05, the ratio of prediction deviation increased by 0.2, and the ratio of
performance to interquartile distance increased by 0.5). In particular, the effects of the DFI
in Q1 (the first quarter) and Q2 (the second quarter) on estimating low SOM content (<1%)
were identified; finally, a timely (2019) and high spatial resolution (30 m) SOM content map
for the desertified land in northern China was drawnwhich shows obvious advantages over
existing SOM products, thus providing key data support for monitoring and combating
desertification.
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INTRODUCTION

Desertification is defined as land degradation in drylands
resulting from various factors, including climatic variations
and human activities (UNCCD, 1994), which has a major
effects on carbon emissions through the loss of soil organic
matter (SOM) when soil deplete from their original state
(MEA – Millennium Ecosystem Assessment, 2005). China is
among the countries most severely affected by desertification,
representing 17.93% of its total land area (State Forestry
Administration of China, 2015). Thus, desertification in China
is likely to considerably impact the global CO2 status (Feng et al.,
2004; An et al., 2019). Accurate and timely SOM content mapping
is of great importance for assessing desertification (Sims et al.,
2019). However, few researches have focused on the large scale
SOM content estimation of the desertified land of Northern
China (Li et al., 2018; Sun et al., 2019).

Soil sampling is the traditional method for determining the
regional SOM content. Although the method yields more
accurate results, it requires considerable effort, material
resources, and time, especially for large areas (Wang et al.,
2017; Hamzehpour et al., 2019; Lee et al., 2019; Yang et al.,
2020). Due to its high-cost soil sampling is not practical for
frequent or real-time SOC monitoring. Digital Soil Mapping
(DSM) (McBratney et al., 2003) is efficient and convenient for
acquiring soil information based on mathematical or statistical
relationships between field soil observations and related predictor
variables (e.g., climate, vegetation, relief, parent material, and
time) (Zhao et al., 2014; Liang et al., 2019b; Keskin et al., 2019).

Remote sensing has facilitated the progress of DSM, mainly by
providing up-to-date information on land cover and natural
vegetation status, and is often replaced by vegetation indices
(Lamichhane et al., 2019; Wiesmeier et al., 2019); for example,
Normalized Difference Vegetation Index (NDVI) is the most
commonly used (Plaza et al., 2018; Wang et al., 2018; Zhang and
Huisingh, 2018; Xu et al., 2019; Zeraatpisheh et al., 2019; Yang
et al., 2020). However, NDVI is constrained when representing
vegetation coverage in semi-arid and arid areas due to the
influence of exposed soil, dead vegetation and litter on the
spectral response (Maynard and Levi, 2017). While
incorporating non-green vegetation information in different
seasons could help alleviate this kinds of problem in soil
organic carbon prediction (Wang et al., 2018).

Machine learning methods, such as random forest (RF),
support vector machine (SVM), enhanced regression trees
(ERT), and co-kriging methods, have impacted the success of
soil attribute estimations in recent years (Were et al., 2015; Keskin
et al., 2019; Lamichhane et al., 2019; Wang et al., 2019;
Zeraatpisheh et al., 2019). RF technology has become the most
popular machine learning method and can help avoid model
overfitting (Zhang et al., 2017; Zeraatpisheh et al., 2019; Yang
et al., 2020) and support variable importance evaluation (Ballabio,
2009; Were et al., 2015; Zhi et al., 2018). In addition, the SVM
model (Cortes and Vapnik, 1995), based on the principle of
structural risk minimization, can avoid the dependence on data
scale and data distribution; therefore, it has better learning
capabilities and smaller prediction errors (Ballabio, 2009;

Were et al., 2015). Many studies have compared the accuracy
of different machine learning models; however, the conclusions
are not uniform (Brungard et al., 2015; Liang et al., 2019a;
Hamzehpour et al., 2019). For example, Wu et al. (2016)
compared Mahalanobis Distance (MD), Maximum Likelihood
(ML), Artificial Neural Networks (ANNs), Support Vector
Machines (SVMs), and Random Forests (RFs) for land
degradation mapping, and found ML classification is a suitable
candidate. Were et al. (2015) found SVR to be the best predictor
of SOC, while Wu et al. (2018) showed that the RF model is
superior to other models such as SVM. Nevertheless, there is a
consensus that machine learning is more suitable for soil attribute
estimation than traditional multiple regression (Chagas et al.,
2016; Zeraatpisheh et al., 2019).

The relatively coarse resolution (250–1,000 m) of existing
SOM products [e.g., the Harmonized World Soil database
(WIEDER, 2014) with 1000-m resolution and Soil Grids
(Hengl et al., 2017) with a higher 250-m resolution] is another
limitation for the desertified land in northern China, in which
high spatial heterogeneity exist and directly affect the spatial and
temporal distribution of topsoil organic matter (Tongway and
Ludwig, 2007). With the open access of the multi-spectral
satellites (e.g., Landsat 8 and Sentinel-2), researches on SOC
estimation with high spatial resolution were gradually carried out;
for example, Wang et al. used Landsat 5 TM data to estimate SOC
and nitrogen in Liaoning Province, China (Wang et al., 2017);
Forkuor et al. (2017) found that Landsat eight data provides
acceptable SOC digital map of south-western Burkina Faso, while
in the study of Castaldi et al. (2019), Sentinel-2 data was sufficient
for describing the variability of SOC. However, the majority of
previous studies have only focused on the field or local scales,
mainly due to the limitation associated with the processing of
extensive high spatial resolution data. In recent years, the
emergence of cloud platforms (such as GEE), characterized by
massive amounts of available high spatial resolution datasets and
powerful computing capabilities, has aided in collecting multi-
temporal, high spatial resolution vegetation information for SOM
modeling (Dong et al., 2016; Gorelick et al., 2017; Beaton et al.,
2019).

The main purpose of this study was to estimate the high spatial
resolution topsoil SOM content in the desertified land of northern
China based on the GEE platform by employing Sentinel-2 data,
field-measured SOM samples, and ancillary factors with
advanced machine learning methods (SVM and RF) and
traditional statistical methods (MLR). In particular, the
potential of high spatial and quarterly green and non-
photosynthetic information generated from Sentinel-2 data
was explored.

MATERIAL AND METHODS

Study Area
The extent of the desertified land was from the “Atlas of Desert
and Aeolian Desertification in Northern China” which was
produced through visual interpretation of Landsat images and
has been adopted by many studies (Wang et al., 2011). The
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product includes multi-temporal results from 1975–2010 with 4°

of desertification: slight, moderate, severe, and extremely severe.
In this study, desertification monitoring results from 2010 were
finally utilized (Figure 1). The total area is 375,900 km2 and the
climate difference is significant in the area, which spans arid,
semi-arid, and sub-humid climate regions (Tao, 2014). Natural
vegetation types include woodlands, shrublands, grasslands, and
barren land from east to west (Zhang and Huisingh, 2018). The
major soil types are Gray-brown desert soils (WRB reference soil
group: Cambisols), brown calcic soil (WRB reference soil group:
Cambisols), and aeolian sandy soil (WRB reference soil group:
Arenosols). All desertification processes generally lead to an
obvious reduction of SOM in topsoil; thus, the SOM content
of the study area was lower than that in non-desertified areas
(Allington and Valone, 2010; Tao, 2014).

Soil Sample Collection and Chemical
Analysis
Based on the information on the type and extent of desertified
land, and considering elevation, climate, and soil type, soil
samples were collected from July to August 2017–2019. The
sample collection was mainly concentrated in eight
representative areas: Mu Us Sandy Land, Otindag Sandy Land,
Horqin Sandy Land, Hulunbuir Sandy Land, Gonghe alpine
desertified grassland, Minqin Oasis-Desert transition belt, the

northern edge of the Taklimakan Desert, and the southern
margin of the Gurbantunggut Desert (Figure 1). The total
number of samples was 243 (Table 1). The size of the
sampled square is 30 m*30 m, the soil profile depth was
0–20 cm and then nine 10*10 m grids are laid out in the
square. Take one soil sample at the center of each grid, and
get nine soil samples. The nine soil samples were thoroughly
mixed and analyzed in the laboratory, and the SOM content was
obtained by the analysis. At the same time, a handheld GPS
(Trimble GPS, precision <1 m) recorder was used to record the
geographic coordinates of the center point of the plot.

Soil samples were stored in a sealed package for SOM analysis
in the laboratory. Subsequently, the bulk samples were air-dried
and sieved to retrieve the fine earth fraction (<2 mm) (O’Kelly,
2004). SOM was measured by the dichromate oxidation method
as described by the Agriculture Chemistry Speciality Council, Soil
Science Society of China (Agriculture Chemistry Speciality
Council, 1983).

Predictor Variables
Jenny (1941) defined soil development as a function of climate,
organic matter/organic activity, relief, parent materials and time.
Later, McBratney et al. (2003) proposed digital soil mapping
based on this, using the SCORPAN equation as a framework to
quantitatively estimate soil properties through soil samples and
environmental covariates. The latest SOC digital mapping review

FIGURE 1 | Study area range and sampling locations (1: Gurbantunggut Desert, 2: Taklimakan Desert, 3: Gonghe alpine desertified grassland, 4: Minqin Oasis-
Desert transition belt, 5: Mu Us Sandy Land, 6: Otindag Sandy Land, 7: Horqin Sandy Land, 8: Hulunbuir Sandy Land).
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article shows that covariates representing organism/organic
activities were among the most frequent among top five
covariates, followed by the variables representing climate and
topography (Lamichhane et al., 2019).

Organism/organic activities including land cover and natural
vegetation, but real-time vegetation cover information is
difficult to obtain. Vegetation index (Mahmoudabadi et al.,
2017; Guo et al., 2020) and land cover or land use data are
often used as vegetation indicators (Meersmans et al., 2008; Li
et al., 2013). Especially, NDVI (Tucker, 1979) has been widely
used in the estimation of SOC content, and it has been found to
have a significant positive correlation with soil carbon storage
(Wang et al., 2019), and in several soil carbon content
estimation studies, NDVI is important predictors (Guo et al.,
2020; Mahmoudabadi et al., 2017; Wang et al., 2020, 2017). At
present, studies using NDVI for DSM (digital soil mapping), the
acquisition of NDVI is mostly by an annual mean or
alternatively by a single image acquired during a specific
time of year (the peak of the growing season or the dry
season, etc.). However, more and more studies support the
view that the temporal variability of vegetation spectra driven
by soil and climate feedback is an important predictor of soil
variability (Ballabio et al., 2012; Maynard and Levi, 2017). Guo
et al. (2020) used three NDVI images in different periods to
successfully predict the SOC content at the field scale. Clark
(2017) found that using NDVI in different seasons at the same
time improved the accuracy of land cover classification.

In studies of digital mapping of SOC/SOM, the variable
representing the “C” factor is the second most common
(Lamichhane et al., 2019). Climate is the main controlling
factor for SOC storage from a regional to global scale
(Lamichhane et al., 2019; McBratney et al., 2003; Plaza et al.,
2018; Wiesmeier et al., 2019). Therefore, the average annual
temperature and annual rainfall are used as predictors for
estimating SOC content in many studies (Liang et al., 2019b;
Schillaci et al., 2017). With the development of remote sensing
technology, climate indicators such as surface temperature and
surface evapotranspiration have also been incorporated into the
SOC content prediction index system (Sayão et al., 2018; Zhao
et al., 2014).

Topography plays a vital role in the spatial distribution of
SOC, because topography affects precipitation, water flow paths,

stagnant water and discharge, and has a significant impact on the
erosion process. Based on the terrain index extracted from DEM
data, elevation, slope, aspect, TWI... are all commonly used
predictors in SOC prediction (Wang et al., 2017; Zeraatpisheh
et al., 2019).

We also selected 14 indicators that can represent climate,
organism, and topography to predict the soil organic matter
content in the study area (Table 2), included two climatic
factors: 10-years average annual temperature (MAT) and
annual average precipitation (MAP); eight vegetation
variables (NDVI and DFI of four quarters); three
topographic factors (elevation, slope, aspect) and land-cover
type (LC). The data sources of all variables were directly used
online on the GEE platform, on which all related calculations
were also completed. The unified projection was WGS 84 and
the spatial resolution was 30 m. Through the reproject function
{ee.Image (). reproject [(crs:‘EPSG:4326’, scale: 30)]} of the GEE
platform. The method of resampling is nearest neighbor
resampling, the unified projection was WGS 84 and the
spatial resolution was 30 m.

In the selection of vegetation index, we considered both
photosynthetic vegetation information and non-photosynthetic
vegetation information, so we chose NDVI and DFI two
vegetation indexes. DFI is the band index, which has good
potential for estimating dead fuel (DF) coverage in steppe
areas (Cao et al., 2010). DF is also called non-photosynthetic
vegetation (NPV) or plant litter, and includes dry/cured/dead
grasses, dead foliage and twigs, dead wood, slash wood, litter and
duff, as well as crop residue (Cao et al., 2010). In addition, we
calculated the vegetation index of the four quarters within a year
for comparative experiments to study whether the multi-
temporal vegetation index information can improve the
estimation accuracy of soil carbon content.

The selected remote sensing image source was Sentinel-2 data,
and the spatial resolution of the bands differed. The highest
spatial resolution was 10 m and the revisit period was 5 days. The
image was obtained from the Sentinel-2 surface reflectance
dataset (GEE ID: COPERNICUS/S2_SR) from the GEE. The
period from 1 January to 31 December 2019 was used to
ensure data quality by incorporating more images into the
analysis. After determining the time and range, the MASK
function provided by the GEE platform was first used to filter

TABLE 1 | Distribution of sample points.

Land cover Stages of desertification Total

Barren
land

Shrublands Grassland Woodland Slight Moderate Severe Extremely
severe

Gurbantunggut Desert 15 0 7 1 3 1 3 15 23
Otindag Sandy Land 3 4 61 4 35 20 12 5 72
Taklimakan Desert 14 0 0 0 0 0 0 14 14
Minqin 0 18 0 2 3 5 6 6 20
Gonghe alpine 0 4 17 0 14 2 5 0 21
Mu Us Sandy Land 0 33 0 1 9 15 6 3 33
Horqin Sandy Land 1 33 5 5 1 3 6 24 34
Hulunbuir Sandy Land 0 7 14 5 15 8 3 0 26
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the images with less than 20% cloud cover. We calculated the
vegetation indexes on the cloudless images, established a time
series according to the quarters, and took the max value of the
vegetation index of the image set in each quarter as a covariate.
That means a year’s Sentinel-2 data is divided into four sets. Every
3 months is a set (January to March, April to June...), and four
quarters’ NDVI and DFI were calculated.

NDVI � NIR − Red
NIR + Red

(1)

DFI � 100 p
1 − SWIR2

SWIR1
Red
NIR

(2)

Here, NIR, Red, SWIR2, and SWIR1 are the reflectance values of
the Sentinel-2 image in the near-infrared, red, and two short wave
infrared bands, respectively, and correspond to bands 8, 4, 11, and
12 of Sentinel-2 data, respectively.

In this study, MAT and MAP were selected as climate factors.
The MAT and MAP sources were based on the ERA5 Daily
aggregates dataset (GEE ID: ECMWF/ERA5/DAILY), obtained
by the mean value function [return. mean ()] for the GEE. The
data was collected from 2010 to 2019, the spatial resolution was
0.25° arc degrees, and the temporal resolution was 1 day.

The altitude factor was derived from the 90-m resolution
SRTM90 (GEE ID: CGIAR/SRTM90_V4) topographic data in
the GEE dataset. Slope and aspect were obtained by running a
terrain analysis [ee.Algorithms.Terrain ()] on the GEE platform.

The land-cover data source was the MCD12Q1 V6 product
(GEE ID: MODIS/006/MCD12Q1), which provides global land-
cover types at yearly intervals (2001–2016) derived from six
different classification schemes. The type of classification
scheme we selected was the Land-Cover Type 1: Annual
International Geosphere-Biosphere Programme (IGBP)
classification.

The high-resolution variation of SOM was acquired through
the utilization of Sentinel-2 based VIs, namely NDVI and DFI.
Except these high-resolution predictors, we do utilize some coarse
resolution predictors, mainly due to the dataset availability in the
GEE platform. However, these coarse resolution variables are
meaningful for estimating the SOM level in the coarse-scale, and
when combined with high-spatial resolution predictors, could
generate a more detailed SOM map.

Modelling Methodology
The relationship between SOM and predictor variables was
analyzed using correlation analysis. To explore the potential of

quarterly green and dry vegetation information, we divided all
predictor variables into three groups: 1) NDVI (July‒September,
corresponding to maximum green vegetation coverage),
topography, climate, and land-cover types (covariate set A); 2)
NDVI (four quarters), topography, climate, and land-cover types
(covariate set B); and 3) the DFI (four quarters) was added for
covariate set B (covariate set C).

Three modeling techniques were selected for SOM prediction:
Multiple linear regression (MLR), RF, and SVM. Two machine
learning methods (i.e., RF and SVM) can model the complex
nonlinear relationship between variables and organic matter and
are considered adept at predicting SOM in various regions (Were
et al., 2015; Zhou et al., 2020). Moreover, RF can also sort the
importance of variables by the change in the error outside the bag
(Zeraatpisheh et al., 2019; Zhou et al., 2020). As a simple linear
model, MLR was employed as an evaluation benchmark to
compare the performances of machine learning and traditional
statistical models.

RF is an ensemble learning method based on decision trees
(Breiman, 2001). Re-sampling by the bootstrap method is used to
randomly select observations in the dataset, using the principle of
minimum error to select the optimal segmentation feature and
the optimal segmentation point. The segmentation point (value)
divides the data into two parts, determines the corresponding
output value, and finally generates a regression decision tree after
multiple divisions (Wang et al., 2018). The combination of trees
generated by multiple choices constitutes an RF, and the final
value of the predictor variable is the linear average of the
prediction results of multiple trees (Ballabio, 2009; Were et al.,
2015; Zhi et al., 2018). Based on the stability of the RF model, the
excellent model performance, and the ability to evaluate the
importance of variables, RFs have been widely used in various
classification and regression problems (Wang et al., 2018; Keskin
et al., 2019; Yang et al., 2020). On the GEE platform RF, only two
parameters need to be set to generate a predictive model: 1) the
number of trees (n tree); and 2) the maximum number of leaf
nodes in each tree (maximum nodes). To realize these two model
parameters, we determined the final value of the parameters by
setting the step size to traverse the parameter combination within
a suitable range in the GEE platform. For the RFmodel, we set the
number of trees (n tree) in GEE within the range of 10–10,000,
and the maximum tree depth 5–50 to conduct the experiment and
select the most suitable model parameters. The final model
parameters are shown in Table 3:

SVM is a machine learning method developed by Cortes and
Vapnik (1995) based on the principle of structural risk

TABLE 2 | Factors used in the model.

Theme Name Source Resolution Reference/Data source

Vegetation indices NDVI, DFI Sentinel-2 10 m https://sentinel.esa.int/web/sentinel/missions/sentinel-2
Climate factors Mean annual temperature (°C) ERA5 Daily 0.25° Copernicus Climate Change Service (2017)

Mean annual precipitation (mm) 0.25°

Topographic factors Elevation SRTM90_V4 90 m Jarvis et al. (2008)
Slope
Aspect

Land cover information Land cover MCD12Q1 V6 500 m Friedl and Sulla-Menashe (2019)
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minimization. It is specifically proposed for small-sample
learning problems. The use of kernel functions solves the
problem of dimensionality, which is suitable for dealing with
nonlinear problems. In addition, the structural risk minimization
principle enables the SVM to have a very good generalization
ability (Were et al., 2015; Zhi et al., 2018). The hyperplane is used
to optimally divide all data into different classes, which results in
acceptable learning ability and smaller prediction error (Ballabio,
2009). In this study, the realization of an SVM algorithm was
completed in the GEE platform. For the optimal parameter
setting of the SVM models, the kernel function of SVM used
the widely recognized radial-basis kernel (RBF) (Wang et al.,
2018), the cost factor C, the minimum loss function P, and the
gamma coefficient G were determined using the LIBSVM toolbox
(Chang and Lin, 2011). In the process of parameter setting, the
root mean square error (RMSE) of different parameter
combinations was measured by 5-fold cross-validation. Finally,
the parameters are determined as shown in Table 4:

The MLR model was used to establish a linear equation
between a dependent variable Y and multiple independent
variables (X1, X2... Xn), and the least-squares method was
used to estimate the parameters of each independent variable
under the condition of minimizing the sum of the square of
errors. It is a commonly used early modeling method for
regression problems. Because the method is simple and
provides accurate estimations, it has been used in many
studies (Meersmans et al., 2008; Besalatpour et al., 2013;
Zhang et al., 2017). Although MLR is relatively simple, in
many studies, it is well fitted to the relationship between
variables. Furthermore, when evaluating the superiority of a
machine learning model, a linear model is often used as a
benchmark. Therefore, we selected MLR to estimate the SOM
content due to its robust and widespread applications (Chagas
et al., 2016; Lee et al., 2019).

Model Performance Assessment
Here we split the data into five groups, and use each of them in
turn to evaluate the model fit on the other 4/5 of the data. The
determination coefficient (R2), RMSE, ratio of prediction
deviation (RPD), and the ratio of performance to interquartile
distance (RPIQ) were selected as indicators to measure the model
accuracy.

R2 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ∑(Oi − Ò)(Pi−P�)���������∑n

i�1(Pi−P�)√ ������������∑n
i�1(Oi − Ò) 2

√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

(3)

RMSE �
����
1
n
∑n
i�1

√
(Pi − Oi)

2

(4)

RPD � SD
RMSE

(5)

RPIQ � IQ
RMSE

(6)

In Eqs. 3‒6, Pi and Oi are the predicted and observed SOM
content, respectively; n is the number of samples; P� and Ò are
the means of the predicted and observed SOM content,
respectively; SD is the standard deviation of measured
values; IQ is the interquartile range (IQ � Q3−Q1) of the
measured SOM in the validation dataset; and Q1 and Q3 are
the first and third quarters of the SOM content in the
validation dataset, respectively. In general, a good model
prediction should correspond to high R2, RPD, and RPIQ
values, and low RMSE values. In particular, the model
classification criteria adopted in this study were based on
RPD values, which were divided into five model classes:
Very good (RPD � 2.5–2.0), good (RPD � 2.0–1.8), fair
(RPD � 1.8–1.4), poor (RPD � 1.4–1.0), and very poor
(RPD < 1.0) (Viscarra Rossel et al., 2006; Wan et al., 2019).

RESULTS

SOM Content Distribution
Statistical analysis of the soil sample points showed that the
maximum SOM content in the study area was 3.8%, the

TABLE 4 | Parameters of SVM.

Parameters Covariate set A Covariate set B Covariate set C

C 32 8 1,024
P 0.25 0.0625 0.05
G 0.5 0.03125 0.0625

FIGURE 2 | Sample organic matter content statistics (A: Gurbantunggut
Desert, B: Mu Us Sandy Land, C: Taklimakan Desert, D: Minqin Oasis-Desert
transition belt, E: Gonghe alpine desertified grassland, F: Otindag Sandy Land, G:
Horqin Sandy Land, H: Hulunbuir Sandy Land, error bars: standard deviation).

TABLE 3 | Parameters of RF.

Parameters Covariate set A Covariate set B Covariate set C

n tree 1,000 1,000 1,000
max_depth 10 10 30
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minimum was 0.001%, the mean was 0.559%, the standard
deviation was 0.749%, and the coefficient of variation was
0.334. From the distribution map (Figure 2), it can be seen
that the overall SOM content (0–20 cm) was low (i.e., <1% in
most areas), which is consistent with the overall characteristics of
the SOM in desertified land. Among the 243 samples, 34.36% had
a SOM content <0.2%, whereas only 13.03% of samples had a
SOM content >2%. According to the different sampling regions,
the SOM content in the Gonghe alpine desertified grassland, Mu
Us Sandy Land, and Hulunbuir Sandy Land were significantly
higher than in other areas.

Correlations Between Single Input Factors
and SOM Content
The results of the correlation analysis between the single input
factors and the SOM content are shown in Figure 3. SOM
content was positively correlated with mean annual
precipitation (r � 0.48) and elevation (r � 0.48), and
negatively correlated with mean annual temperature (r �
-0.45). Perhaps more worthy of attention was the very high
correlation between SOM and the quarterly vegetation index.
Not unexpectedly, NDVI was positively correlated with SOM,
and the correlation of NDVI in the third quarter (r � 0.47) was

higher than that in other quarters. The performance of DFI was
yet unexpected. The DFI in the four quarters showed a good
correlation with SOM (r > 0.5), especially in the first quarter
(r � 0.64).

In the study area, water is the major limiting factor of plant
production, thus the increase of precipitation could contribute to
the accumulation of SOM (Plaza et al., 2018). An increase in
temperature will lead to accelerated decomposition of organic
matter in the soil and thus decrease the SOM reserves.
Additionally, the positive relationship between elevation and
SOM is mainly due to due to the influence of precipitation
and temperature. As the elevation increases, precipitation
increases and temperature decreases (McBratney et al., 2003;
Plaza et al., 2018; Lamichhane et al., 2019).

Topography will affect the water temperature conditions and
the distribution of soil-forming materials (Jenny, 1941). Among
all topography variables, the correlation between elevation and
SOM reached 0.48, slope reached 0.15, and aspect correlation
reached 0.12. Because elevation and slope, slope direction often
affects the redistribution of surface water and heat conditions, the
water accumulation, and the decomposition rate of surface litter,
as well as reflects the soil erosion and deposition process, which
indirectly affects the change of soil organic matter content (Plaza
et al., 2018).

FIGURE 3 | Correlations between variables, indicating that the variables are significantly correlated at the 0.01 level. MAT: Mean annual temperature; MAP: Mean
annual precipitation; 1_NDVI: Normalized difference vegetation index (NDVI) in the first quarter; 2_NDVI: NDVI in the second quarter; 3_NDVI: NDVI in the third quarter;
4_NDVI: NDVI in the fourth quarter; 1_DFI: Dead fuel index (DFI) in the first quarter; 2_ DFI: DFI in the second quarter; 3_ DFI: DFI in the third quarter; 4_ DFI: DFI in the
fourth quarter; SOM: Soil organic matter content.
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Model Validation and Comparison
Figure 4 and Table 5 show the performance of the three
modeling techniques (RF, SVM, and MLR) under different
combinations of covariates. According to the RPD value of the
model, the RF-B and RF-C models (RPD � 2.0, RPD � 2.1) can be
evaluated as being very good models. The three models of the
SVM method can be considered fair, and the three linear models
are considered very poor.

Comparing the changes in the evaluation index values of each
model, we found that the accuracy of the model has a close effect
on the selection of the modeling method and the parameter
combination. With the addition of the quarterly NDVI and
introduction of the quarterly DFI index, the model effect
gradually improved. After adding the quarterly information of
NDVI, the R2 in the RF-B model increased by 0.2, the RMSE
decreased by 0.01, the R2 in the SVM-B model increased by 0.5,
and the RMSE decreased by 0.02. After simultaneously

combining the DFI and NDVI in the four seasons quarterly as
variables, the model accuracy was more obviously improved. The
RF model R2 increased by 0.06, the RMSE decreased by 0.05, RPD
increased by 0.2, and RPIQ increased by 0.5. The SVM model R2

increased by 0.09, the RMSE decreased by 0.05, RPD increased by
0.16, RPIQ increased by 0.29. The MLR model R2 increased by
0.07, RMSE decreased by 0.04, RPD increased by 0.12, and RPIQ
increased by 0.21. The results further show the importance
of multi-temporal data and dry vegetation on the surface of
arid areas and demonstrate that the combination of all predictors
(covariate set C) results in the best predictive performance.

Compared with the performance of the three models, the two
machine learning methods showed better estimation ability than
the linear regression model. This is similar to the complex
nonlinear relationship between soil attributes and
environmental factors proved by many soil attribute
estimation studies, which are more suitable for fitting using a

FIGURE 4 | Model accuracy evaluation scatter plot. Models A,B, and C refer to covariate sets A,B, and C, respectively. RMSE – root mean square error, RPD –

ratio of prediction deviation, RPIQ - ratio of performance to interquartile distance.
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machine learning method (Besalatpour et al., 2013). For the two
machine learning methods, the RF model performed better than
the SVM model under different parameter combinations. The
three modeling methods consistently showed the best effect of
model C, which also shows that the addition of the DFI index and
multi-temporal vegetation index can effectively improve the
model effect.

Variable Importance
For the SOM mapping using the model RF, the ranking of the
predictors sorted by relative importance is shown in Figure 5 (note:
Importance was converted to a percentage). The importance of the
variables in models A, B, and C differed slightly. In covariate set A,
the importance of MAT reached 39%, elevation reached 26%, and
NDVI in the third quarter (Q3) reached 13%; in covariate set B,
MAT and elevation were the two most important variables,
followed by the NDVI in the first quarter (Q1); in covariate set
C, DFIs in Q1 and the second quarter (Q2) (importance of 23 and
23%, respectively) were important variables for predicting the
spatial distribution of SOC, followed by elevation, MAP, and
MAT. This may be due to the mutual influence between
variables, and models with different combinations of variables
had shown different importance.

Spatial Prediction
According to different model methods (RF, SVM, and MLR) and
three sets of parameter combinations (covariate sets A, B, and C),
the SOM maps for the study area were produced with a 30 m
resolution based on the GEE platform (Figure 6). The results
showed a distribution trend of high SOM in the east and low SOM

FIGURE 5 | Importance of environmental variables in three models. (A–C) means covariate set A, B, C. 1_NDVI: Normalized difference vegetation index (NDVI) in
the first quarter; 2_NDVI: NDVI in the second quarter; 3_NDVI: NDVI in the third quarter; 4_NDVI: NDVI in the fourth quarter; 1_DFI: Dead fuel index (DFI) in the first quarter;
2_ DFI: DFI in the second quarter; 3_ DFI: DFI in the third quarter; 4_ DFI: DFI in the fourth quarter; SOM: Soil organic matter content; LC: Land cover, MAP –mean annual
precipitation, MAT – mean annual temperature.

TABLE 5 | Performance results of RF, SVM, and MLR in predicting SOM based on
different combinations of covariates. The bold values are the precision of the
optimal model.

Modelling
methodology

Covariate set R2 RMSE RPD RPIQ

RF A 0.74 0.41 1.92 3.34
B 0.76 0.40 2.02 3.35
C 0.80 0.36 2.1 3.85

SVM A 0.57 0.52 1.53 2.65
B 0.62 0.50 1.61 2.79
C 0.66 0.47 1.69 2.94

MLR A 0.53 0.55 1.45 2.53
B 0.55 0.54 1.47 2.56
C 0.60 0.51 1.57 2.74

Frontiers in Environmental Science | www.frontiersin.org August 2021 | Volume 9 | Article 6689129

Junting et al. SOM Mapping in Desertified Land

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


in the west, and high-value areas were mainly distributed in the
farming-pastoral transition zone near the Hunshandake Sandy
Land, Hulunbuir Sandy Land, and Qinghai Gonghe Alpine. The
areas with lower values were located near the Mu Us Sandy Land
and the marginal and central part of the Gurbantunggut Desert in
the northwest. This can be partly explained by the land-cover type
and vegetation coverage.

However, the difference between the three modeling methods
was also obvious (Figure 6). RF produced more high-value
regions (SOM >1.5%) and provided a better simulation of the
low-value regions on the edge of the Gurbantunggut Desert. The
spatial differences in the organic matter maps brought about
by the three different combinations of variables were reflected in
the Mu Us Sandy Land and the desertified area in northwest
Qinghai. For example, in the desertified land northwest of
Qinghai, the SOM contents determined using the RF model
were 0.1–0.3% for group A, 0.3–0.5% for group B, and 0.5–1%
for group C.

Statistics of the SOM content (i.e., results of RF model C) were
analyzed according to different desertification degrees, and the
results are shown in Figure 7. There was a significant negative
correlation between the degree of land desertification and the
SOM content. The maximum and minimum SOM contents
corresponding to different degrees of desertification exhibited
no obvious regularity, mainly because desertified land is generally
a mixture of vegetation and bare soil in different proportions,
while the SOM content prediction is based on the pixel scale.

DISCUSSION

Variable Covariate Importance
The NDVI has been regarded as the most important and
commonly used alternative index and plays an important role
in SOM and SOC emissions (McBratney et al., 2003; Yang et al.,

FIGURE 6 | Spatial distribution of soil organic matter (SOM) content. A,B, and C refer to covariate sets A,B, and C, respectively; 1, 2, and 3 represent different
modeling techniques, i.e., random forest (RF), support vector machine (SVM), and multiple linear regression model (MLR), respectively.

FIGURE 7 | Mean SOM content in different stages of desertification
(error bars: standard deviation).
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2020; Zhao et al., 2014). However, in desertified areas with sparse
and non-photosynthetic vegetation coverage, NDVI does not
provide sufficient vegetation information to predict SOM
(Wang et al., 2018). As shown in Figure 5, the contribution of
NDVI was lower than that of MAT and elevation factors, and the
inclusion of quarterly NDVI information resulted in little
improvement, whereas DFI had important effects on SOM
estimation in the desertified lands. DFIs in Q1 and Q2 were
the most important variables (Figure 5C), and the relative
importance reached 46%, followed by that of elevation and
MAT, while the importance of the best performance of the
seasonal NDVI only reached 4%. This finding is consistent
with other studies (Maynard and Levi, 2017), who found that
when bare land reaches or exceeds 20%, NDVI (as a
representative variable of vegetation characteristics) no longer
has statistical significance. At the same time, Wang et al. (2018)
also proved that the indicator function of non-green vegetation
on soil carbon content cannot be ignored.

The dynamic distribution of quarterly NDVI and DFI was
plotted against four grades of SOM content from low to high,
namely 0–1, 1–2, 2–3, and 3–4%, respectively (Figure 8). The box
plot shows that NDVI and DFI had different quarterly trends. At
the same level of SOM content, NDVI in Q2 was higher than
NDVI in other quarters, while DFI reached its maximum value in
Q1. Additionally, as the level of SOM increased, the values of
quarterly NDVI and DFI also increased. This is also consistent
with the results of previous studies (Wang et al., 2018, Wang et al.

2017) because vegetation controls the input of surface organic
matter, and soil fertility will also determine the growth of ground
vegetation (Plaza et al., 2018). The importance of DFI in Q1 and
Q2 can be explained, since the separability in the distribution of
DFI values for the 0–1% SOM degradation in Q1 and Q2 is most
significant, which is completely different from the upper limit,
lower limit, and quantile of other SOM content level, compared to
the distributions of other vegetation indices.

Comparison of Soil Organic Carbon Map to
Other Existing Datasets
Currently, research on SOM or SOC in China focuses on small
areas in a province or a small ecosystem (Li et al., 2018; Sun et al.,
2019). Very few large-scale studies have been conducted and have a
low resolution (1 km). Furthermore, the sample data for the
estimation of SOM in China is from the 1980 soil census data,
time is old, and errors exist (Feng et al., 2002; Liang et al., 2019b).
Moreover, this study shows that the estimation of SOM content in
northern China is highly uncertain because of the uneven
distribution of historical samples and the low SOM content
(Liang et al., 2019a). Our work addresses these knowledge gaps
to some extent and has the potential to be extended to other areas.

To demonstrate the advantages of our products, comparisonswith
the harmonized world soil database (WIEDER, 2014) and soil grids
(Hengl et al., 2017) [i.e., two of the most widely used global soil
organic matter products and with a higher resolution (250m)] were

FIGURE 8 | Dynamic distribution of vegetation index at different soil organic matter (SOM) content grades (a: SOM content was 0‒1%; b: SOM content was 1‒2%;
c: SOM content was 2‒3%; d: SOM content was 3‒4%; 1_NDVI: Normalized difference vegetation index (NDVI) in the first quarter; 2_NDVI: NDVI in the second quarter;
3_NDVI: NDVI in the third quarter; 4_NDVI: NDVI in the fourth quarter; 1_DFI: DFI in the first quarter; 2_ DFI: Dead fuel index (DFI) in the second quarter; 3_ DFI: DFI in the
third quarter; 4_ DFI: DFI in the fourth quarter).
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conducted. The results of the RF model were converted into soil
organic carbon using a coefficient of 0.58, and we took an area of Mu
Us Sandy Land as an example to make small-scale comparisons of
different data products (Figure 9). Clearly, our 30-m resolution
product shows more spatial details. In the desertification area of
northern China, the ground situation is relatively complex, and the
main vegetation types in the sandy land are sparsely distributed
shrubs with strong spatial heterogeneity. Estimation of SOM content
with a low resolution would involve a large number of mixed pixels.
The shrub-covered area with relatively high SOM content could not
be distinguished from bare soil or sand with extremely low SOM
content, and the spatial variation of the SOM content cannot be
expressed.

Effects of Desertification on SOM Content
According to our research, the SOM content decreased as the degree
of desertification increased. The SOM content changed from 0.81 for
slight desertification to 0.62 (g/100 g), 0.51, and 0.42 as the degree of
desertification deepened, and the SOM content decreased by 48%
from areas with slight to extremely severe desertification. The
majority of the SOM is lost in the early stages of desertification,
and less loss occurs in the subsequent stage. In a study of soil
nutrients in different degrees of desertification on the Qinghai-Tibet
Plateau, Li et al. (2006) also found that the deepening of the degree of
land desertification will lead to a reduction of SOM and that
although there was a significant difference between the mild and
heavy stages of desertification (p < 0.01), there was no significant
difference between the heavy and severe stages of desertification,
which also means that most of the organic matter in the topsoil had
been lost in the heavy stage of desertification.

Although different studies have reached the same conclusion
on the impact of land desertification on SOM (Li et al., 2006; Zhao
et al., 2009; Tang et al., 2015), the differences in SOM between
different degrees of desertification were inconsistent. In our
study, the SOM content of slight to extremely severe
desertification decreased by 48%, while Zhao et al. reported a
29% reduction (Zhao et al., 2009). In short, the amount of SOM

loss caused by land desertification both depends on the initial
level of SOM in the study area and the type of desertification.

Given the large area of sandy land in northern China (37.59M
Ha) and obviously SOM content in different desertification
degrees, the large scale restoration of desertied land under way,
such as the Beijing and Tianjin Sandstorm Source Controlling
Program (Wu et al., 2013), the Grain for Green Project (Stokes
et al., 2010), and the Three-North Shelterbelt Project (Ma, 2004),
would have an important effect on SOM gains in the desertified
land. At the same time, it is easier to obtain an increase in SOM by
first restoring the desertified lands not seriously degraded.

CONCLUSION

In this study, we produced a high spatial resolution (30m) SOM
content map for the desertified land in northern China based on the
online remote sensing dataset and machine learning techniques of
the GEE platform. Our study initially used quarterly NDVI and DFI
as remote sensing indicators to predict SOM contents usingmachine
learning and linear regression models. The results show that the
quarterly information of the green and non-photosynthetic
vegetation was identified as a key covariate for SOM content
estimation in desertified land, and an obvious improvement was
observed after simultaneously combining the DFI and NDVI of the
four quarters (i.e., R2 increased by 0.06, the RMSE decreased by 0.05,
RPD increased by 0.2, and RPIQ increased by 0.5). The importance
of DFI in Q1 andQ2 for low SOM content estimation was illustrated
in this study. The performance of machine learning was better than
that of the linear regression model, of which RF (R2 � 0.80; RMSE �
0.36) showed some advantages compared to SVM (R2 � 0.66; RMSE
� 0.47). This is promising for SOM content mapping for desertified
land with low SOM content and sparse vegetation in arid regions,
especially with the assistance of the GEE platform. This study also
reveals that the high spatial resolution SOM content map (30 m) is
more appropriate for heterogeneous desertified land than other
existing coarse spatial resolution global SOM products. In

FIGURE 9 | Comparison of the best model output results with other soil organic carbon (SOC) maps from different data sources. (A) - harmonized world soil
database, (B) – results of RF model A, (C) – soil grids database.
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addition, our study found that the majority of SOM is lost in the
early stage of desertification and that restoring desertified land
has the potential to increase SOC storage when considering the
vast and wide distribution of desertified land. In the future, SOM
content mapping f or desertified land could be improved by
incorporating more representative predictor variables and
improving machine learning training. However, the products
developed in this study could be utilized for desertification and
soil carbon studies in northern China.
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