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Based on the high-quality homogenized precipitation data from all 2,419 national weather
stations in China, the climatology and anomaly percentage fields are derived, and then the
digital elevation model (DEM) is employed to reduce the influence of elevation on the spatial
interpolation accuracy of precipitation due to the unique topography in China. Then, the
gradient plus inverse distance squared (GIDS) method and the inverse distance squared
(IDS) method are used to grid the climatology field and the anomaly percentage field,
respectively, and the 0.5 × 0.5° gridded datasets during 1961–2018 in China are obtained
by combining them together. The evaluation shows that the mean absolute error (MAE)
between the analysis value and the observation is 15.8 mm/month. The MAE in South
China is generally higher than that in North China, and the MAE is obviously larger in
summer than in other seasons. Specifically, 94.6, 54.4, 4.6, and 53.8% of the MAE are
below 10mm/month in winter (DJF), spring (MAM), summer (JJA), and autumn (SON),
respectively, and 99.5, 79.9, 22.8, and 82.1% of them are less than 20mm/month. The
MAE over China in four seasons is 3.8, 13.2, 33.5, and 12.7 mm/month, respectively. This
dataset has the potential of broad application prospects in the evaluations of weather and
climate models and satellite products.
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INTRODUCTION

In the study of global or regional large-scale climate change, it is necessary to grid the climate series to
effectively reduce or avoid spatial sampling errors (Shen et al., 2010; Wu and Gao, 2013; Zhao et al.,
2014; Zhao and Zhu, 2015; Cheng et al., 2020). Precipitation is one of the most important
meteorological elements. High-resolution gridded precipitation data are important input
parameters for atmospheric, climatic, hydrological, and ecological models, and they are
necessary for the evaluations of numerical forecast products. However, due to the geographical
conditions and the shortage of meteorological observations, it may be difficult to obtain the accurate
regional area precipitation amount in certain areas. Despite the difficulties, several daily or monthly
precipitation series have been developed on regional scales in China in the past 30–100 years (Xie
et al., 2007; Shen et al., 2010; Li et al., 2012;Wu and Gao, 2013; Zhao et al., 2014). However, a series of
problems, such as the low density of stations, the uneven distribution of stations, the quality of raw
data, and the inadequacy of interpolation methods, lead to the systematic evaluation on the gridded
precipitation datasets still being open to discussion, especially using higher quality observation and
more state-of-the-art interpolation methods.
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Generally speaking, the accuracy of spatial gridded
precipitation data depends not only on the interpolation
methods but also on the observation station density, the
geographical location, the climatic characteristics, and the
impact systems of precipitation, and varies with seasons (Dai
et al., 1997; Xie et al., 2007; Yatagai et al., 2009; Peng et al., 2019).
Most of the gridded precipitation datasets over China used only
hundreds of stations in total due to the data access limits, which
will make it difficult to further reduce the accuracy of
precipitation gridding (Chen et al., 2002; Hong et al., 2005).
The other high-resolution datasets emphasized the improvement
of the spatial distribution of stations but did not consider the
inhomogeneity due to inconsistent observational schedules in
different years, relocations of stations, etc., which will cause
problems in long-term climate change trend detection (Shen
et al., 2010; Wu and Gao, 2013; Zhao et al., 2014). In
addition, topography, geomorphology, and underlying surface
characteristics are also important factors that affect the accuracy
of gridded data (Daly et al., 1994; Xiong et al., 2011). Due to the
large spatial variability of precipitation, the error of direct
interpolation is relatively large. Therefore, a climatology field
with spatial continuity and with the influences of topography and
geomorphology taken into consideration is usually constructed.
Furthermore, a new element, such as precipitation difference
Chen et al. (2002) or ratio Daly et al. (1994), is defined based on
the climatology field for the spatial interpolation. Thereby, the
interpolation error caused by the spatial discontinuity of
precipitation can be reduced. It has been revealed that higher
interpolation accuracy can be obtained by defining a ratio (Xie
et al., 2007).

Therefore, based on the precipitation observation network in
the currently highest density in Mainland China, the
interpolation method through defining the anomaly percentage
of monthly precipitation based on the climatology field is adopted
in this study to generate a new monthly gridded precipitation
dataset, and the systematic and random data errors of the gridded
data are assessed with the cross-validation method. The
remainder of this article is arranged as follows: Data and
Methods introduces the main data sources, interpolation
methods, and validation methods used to develop high-
resolution gridded precipitation datasets in this study. The
interpolation errors and validation results of climatology and
anomaly data are presented in Gridding Error Analysis.
Conclusion and Discussion provides final discussion and
conclusions.

DATA AND METHODS

Data
The monthly precipitation data from the period of January 1961
to December 2018 from the 2,419 national meteorological
stations in China (excluding Hong Kong, Macao, and Taiwan)
are used in this study. This dataset has been systematically
homogenized and updated by Chinese scientists Li et al.
(2012), Yang and Li (2014), and the 30-year (1981–2010)
climatology dataset is derived. The digital elevation model

(DEM) of GTOPO30 is used for the interpolation of
precipitation.

Gridding Method for Precipitation Data
There are various gridding methods for the meteorological data,
with advantages and disadvantages in each one (Gyalistras 2003;
Qiang et al., 2016). In the gridding of the climatology
precipitation dataset, the accuracy of the spatial distribution of
precipitation on various timescales (monthly and annual) should
be ensured. More importantly, the interannual trend and inter-
decadal changes of precipitation in each region should be
maintained. That is, the gridded series should have “climate
quality” and be uniform. Therefore, the climatic mean
(i.e., multiyear average value and climatic background field)
and the anomalies (i.e., deviations from the climatic mean)
should be gridded separately. The gridding of climatic mean is
relatively more complicated, since multiple factors such as
topography must be taken into account. However, the
gridding of anomalies is usually simpler, in which only the
relative changes of precipitation at different moments (years
and months) should be accurately described. Thus, the
technical methods adopted are relatively simple.

In this study, the gridding of monthly precipitation data
includes the following three steps. First, the gridded climatic
background field of monthly precipitation is created. Then, the
monthly precipitation ratio at each station is calculated and
interpolated into the gridded field. The ratio is a new
element defined based on the climatic background field,
namely, the monthly precipitation anomaly percentage.
Finally, the gridded monthly precipitation is generated by
multiplying the gridded monthly precipitation anomaly
percentage with the corresponding climatic background field.

Establishment of the Climatic Background Field
Precipitation is discontinuously distributed, but its climatic mean
demonstrates spatial continuity. The analysis errors caused by
spatial discontinuity can be reduced or eliminated by
constructing a gridded precipitation field based on the climatic
background field; thus, the spatial interpolation accuracy can be
significantly improved. In addition, the influence of topography
on precipitation cannot be ignored. However, there is no effective
method to amend the topographic effect on precipitation in the
world. In this study, the gradient plus inverse distance squared
(GIDS) method is adopted to grid the climatic mean field (Nalder
and Wein, 1998; Price et al., 2000; Li et al., 2019). The advantage
of this method over the IDS method is the consideration of
gradients of meteorological elements with elevation, longitude,
and latitude. Eq. 1 is as follows:

v(x) �
[ ∑n

i�1
vi+(X−Xi)×Cx+(Y−Yi)×Cy+(Z−Zi)×Cz

d2i
]

( ∑n
i�1

1
d2i
)

, (1)

where N is the number of samples used in the calculation, with
the maximum value of 9 in this study. The distances between all
the stations and the prediction point S are calculated, and the
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stations with distance from S beyond 4° are excluded. Then, the
stations nearest to S (9 stations at most) are selected for
calculation. X, Y, and Z are the coordinate values (longitude,
latitude, and elevation) of the prediction point, and Xi, Yi, and Zi
are the coordinate values of the meteorological station i. Cx, Cy,
and Cz are the regression coefficients between the meteorological
element values and X, Y, and elevation Z, respectively. The
regression coefficients are calculated by using X, Y, or
elevation Z at all the stations and the corresponding
meteorological element values through the multiple regression
equation. di is the distance from the interpolation point to the
station i, and 2 is the power of the distance. The calculations of
gradients with elevation, longitude, and latitude are added in this
formula based on the IDS method.

Precipitation varies significantly with elevation, and the
gridded data with higher resolution are more favorable for
amending the topographic effect. Therefore, the 0.05 × 0.05°

DEM data in China are generated by resampling GTOPO30 data
(30″ × 30″ resolution). At the same time, for better terrain
correction, the climatic background field is first interpolated to
the grid point of 0.05 × 0.05° to obtain more accurate and high-
resolution gridded values by fully using the elevation information,
and then the area average method is used to obtain the final
required 0.5 × 0.5° data, similar to Cheng et al. (2020).

Generation of Precipitation Anomaly Percentage
Gridded Field
To reduce the interpolation error caused by the spatial
discontinuity of precipitation, the monthly precipitation
anomaly percentage defined based on the climatology value is
gridded using the IDS method, instead of direct interpolation of
the precipitation data. The IDS method is a deterministic
interpolation method based on the principle of close similarity;
that is, the closer two objects are, the more similar their values are,
and vice versa (Dai et al., 1997). Eq. 2 of IDS is as follows:

v(s) �
( ∑n

i�1
vi
d2i
)

( ∑n
i�1

1
d2i
)

(2)

,

where V (s) is the predicted value at the location s, N is the
number of samples used in the interpolation (i.e., the number of
stations), Vi is the value at the station i (i.e., the value of
meteorological elements such as temperature and precipitation),
di is the distance from the interpolation point to the station i, and 2
is the power of the distance.

The resolution of 0.5 × 0.5° is adopted for the precipitation
anomaly gridding and for the final precipitation dataset.

Generation of Gridded Precipitation Data
The gridded precipitation data for a certain month are the
product of the gridded precipitation anomaly percentage and
the corresponding climatic background field, with a spatial
resolution of 0.5 × 0.5°. Finally, a gridded dataset of monthly
precipitation from 1961 to 2018 is constructed.

Validation Method for the Dataset
Since the value of gridded data is averaged over the grid, it is
difficult to directly observe the true value. Therefore, there is no
widely recognized estimation method for the gridded data error.
The cross-validation method is being widely used at present, in
which the error is estimated by analyzing various cross-validation
statistics. It should be noted that the commonly used cross-
validation method does not apply all the observed data to
estimate the error, and as a result, the error is overestimated
in some degree. On the other hand, a high correlation between the
observation data and the gridded data may lead to
underestimation of error. Even so, cross-validation is still the
primary method used to analyze the gridded data error at present
(Xiong et al., 2011).

Two cross-validation methods for the dataset are adopted in
this study. In the first method, about 10% of the stations are
removed randomly, similar to Jones et al. (2009). Then, the GIDS
method is used to grid the climatology precipitation value, and
the gridded value is interpolated to the removed 10% of the
stations with the same method. The interpolated values are
compared with the actual climatology values at these stations
to obtain the errors. The same routine is repeated ten times with
different stations removed each time, and the cross-validation
errors at all the stations are obtained. Since only 90% of the data
are used for grid interpolation, the accuracy of grid data is
underestimated to a certain extent. However, the computation
of interpolation with high spatial–temporal resolution, especially
the cross-validation considering elevation, is very large. The
method of keeping 10% of the station data for cross-validation
is to limit the number of grid data calculations to 10 times in the
process of the test, so as to keep the amount of calculation within
a reasonable range. In the second method, a certain station is first
removed, and then, the precipitation anomaly percentage is
interpolated from the surrounding stations to this station with
the IDS method. The interpolated value is compared with the
actual value to obtain the errors and the correlation coefficients.
The precipitation value at each station is derived by compositing
the climatology value and the anomaly percentage obtained
through the first method and the second method, and the
cross-validation errors of precipitation are obtained by
comparing the composited value with the actual value. The
methods for assessment of cross-validation errors include
mean absolute error (MAE) and root mean square error (RMSE).

The topography in China is complex, with obvious climatic
contrast among different regions. To investigate the cross-
validation errors of the gridding method described above in
different climatic regions in China, the entire continent of
China is divided into eight climatic regions. The distribution
of meteorological stations and elevation in different regions is
shown in Figure 1, and the climatological monthly precipitation
of each region is shown in Figure 2. The precipitation in South
China, East China, Southwest China, and Central China is the
most, followed by Northeast and North China, and the
precipitation in the Qinghai-Tibet Plateau and Northwest
China is the least. The precipitation in JJA is the largest in a
year for each region.
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GRIDDING ERROR ANALYSIS

Gridding Error Analysis of Climatology
Precipitation Value
Tables 1,2 show the MAE and RMSE of cross-validation for the
climatology precipitation value, respectively. It is indicated
that the large errors are mainly distributed in South China
and Southwest China, while the errors in Northeast China,
North China, and Northwest China are relatively small (black
marks in Tables 1,2). This is closely related to the abundance
degree of precipitation in different regions, especially in
South China and Southwest China, and the large
undulation of topography in Southwest China. However,
the precipitation amount in the Qinghai–Tibet region is
low, but the error is relatively large, which can be
attributed to the sparse meteorological stations in this

region. According to the temporal distribution, the errors
in each region from June to August are significantly higher
than those in other months (black marks in Tables 1,2),
which is closely related to the concentrated rainfall in this
period.

Figure 3 shows the spatial distributions of the MAE in each
season. It can be seen that the MAE in southern regions is
generally higher than that in northern regions in each season;
79.8, 55.7, 23.6, and 54.9% of the MAE are below 3 mm/
month in DJF, MAM, JJA, and SON, respectively, and 96.6,
85.4, 59.8, and 86.3% of them are less than 10 mm/month.
The MAE is 2.0, 5.6, 13.2, and 5.4 mm/month in DJF, MAM,
JJA, and SON, respectively, with the error being largest in
JJA. Throughout the whole year, the MAE for 53.5 and 82.0%
of the samples is lower than 3 and 10 mm/month,
respectively (Figure 4).

FIGURE 1 | Distribution of meteorological stations and elevation in different regions of China.

FIGURE 2 | Climatological monthly precipitation of each region in China.
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TABLE 1 | MAE of cross-validation for the climatology value (unit: mm).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 0.8 1.2 1.9 2.7 3.4 5.5 11.4 8.9 4.8 2.8 1.7 1.2
North China 0.5 0.6 1.0 1.3 2.4 4.4 8.8 8.1 3.5 1.6 1.0 0.5
East China 3.5 3.8 5.0 5.0 7.5 12.7 14.2 15.4 10.5 4.5 3.6 2.5
South China 4.1 5.8 8.8 13.5 25.6 31.2 27.6 21.4 14.8 10.8 6.6 3.4
Central China 2.9 3.5 4.6 5.6 8.7 11.4 14.1 12.2 6.5 5.2 3.0 2.0
Qinghai–Tibet Plateau 1.8 2.9 5.9 6.6 9.4 13.8 12.4 11.7 10.8 5.9 1.6 1.2
Northwest China 1.2 1.3 2.5 3.8 5.4 5.9 7.4 7.3 4.7 3.5 2.2 1.4
Southwest China 2.9 3.3 4.8 6.2 11.9 20.3 24.1 22.0 14.5 9.7 4.4 2.6

Bold value shows : According to the temporal distribution, the errors in each region from June to August are significantly higher than those in other months, which is closely related to the
concentrated rainfall in this period.

TABLE 2 | RMSE of cross-validation for the climatology value (unit: mm).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 1.2 2.6 3.5 4.2 5.5 7.5 16.6 13.0 7.2 4.8 2.6 1.9
North China 0.7 0.9 1.4 1.9 3.3 6.0 14.4 12.2 4.8 2.3 1.9 0.8
East China 5.8 7.1 7.8 7.4 11.2 19.0 19.7 26.1 18.4 7.3 6.3 4.1
South China 6.8 8.8 14.8 19.3 36.3 42.9 38.2 31.3 20.8 21.1 12.1 6.0
Central China 4.4 5.5 7.3 9.4 14.5 20.9 22.3 17.1 9.9 8.8 4.5 3.3
Qinghai–Tibet Plateau 5.2 7.7 12.4 11.9 13.3 20.3 18.3 18.7 17.3 10.7 2.7 3.7
Northwest China 2.2 2.2 4.2 7.1 9.8 10.3 13.4 12.5 7.4 5.5 4.3 2.8
Southwest China 4.3 5.6 9.1 10.9 17.4 29.6 35.3 31.9 20.8 14.1 6.2 3.8

Bold value shows : According to the temporal distribution, the errors in each region from June to August are significantly higher than those in other months, which is closely related to the
concentrated rainfall in this period.

FIGURE 3 | Spatial distributions of the MAE for the climatology values (unit: mm/month) in (A) DJF, (B) MAM, (C) JJA, and (D) SON.

Frontiers in Environmental Science | www.frontiersin.org April 2021 | Volume 9 | Article 6567945

Peng et al. Development and Assessment of Precipitation Datasets

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Gridding Error Analysis of Precipitation
Anomaly Percentage
Tables 3,4 show the MAE and the RMSE for the cross-
validation of precipitation anomaly percentage, respectively.
They show that the large errors are mainly distributed in
Qinghai–Tibet and Northwest China, while the errors in
other areas are relatively small. This distribution is
associated with the sparse stations in the above two regions,
which leads to the increased interpolation errors. In addition,
the small climatology value of precipitation and the large
spatial difference of precipitation anomaly percentage can
also result in large errors in these regions. The temporal
distribution indicates that the monthly errors in the rainy
season are higher than those in the non-rainy season in North
China, Central China, and East China, which is due to the

relatively intense rainfall in this period. However, in the other
regions, the errors in the non-rainy months are significantly
higher than those in the rainy months, which is attributed to
the small climatology value of precipitation in these regions,
resulting in the large spatial difference of precipitation
anomaly percentage. In general, the cross-interpolated
precipitation anomaly percentage sequence is well
correlated with the actual one, with the correlation
coefficients generally being above 0.7 (Table 5) and the
minimum value being in July and August, basically (black
marks in Table 5).

Figure 5 shows the spatial distributions of correlation
coefficients for the cross-validation of precipitation anomaly
percentage in January, April, July, and October. It is shown
that the correlation coefficient in the eastern regions is
generally higher than that in the western regions. This is due
to the small climatology value of precipitation and the large
spatial difference of precipitation anomaly percentage, and also
the sparse stations in the western regions. The correlation
coefficients at 76.8, 64.1, 19.3, and 69.5% of the stations are
above 0.9 in January, April, July, and October, respectively, and
those at 94.9, 96.3, 90.2, and 96.8% of the stations are above 0.7 in
these four months. The mean correlation coefficients are 0.915,
0.894, 0.823, and 0.913, with the smallest value being in July. This
is closely related to the abundance degree of precipitation and
high frequency of convectional precipitation in this particular
month. Throughout the whole year, the correlation coefficients
for 55.4 and 94.8% of the samples are above 0.9 and 0.7,
respectively (Figure 6).

FIGURE 4 | Frequency distribution of the MAE for the climatology values.

TABLE 3 | MAE for cross-validation of the precipitation anomaly percentage (unit: %).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 28.9 35.5 24.1 20.7 20.9 23.7 22.0 22.7 27.5 22.7 26.6 26.6
North China 25.6 25.3 18.5 21.6 18.9 24.5 23.9 23.8 21.5 18.5 23.2 25.2
East China 9.7 9.8 9.6 13.7 15.6 16.7 21.3 24.4 25.1 19.1 13.9 12.3
South China 20.0 16.9 20.7 23.2 22.3 21.6 21.9 22.9 26.1 34.2 28.6 22.9
Central China 14.6 14.1 13.2 16.4 16.1 18.6 21.5 24.5 22.0 14.7 15.6 15.6
Qinghai–Tibet Plateau 62.1 62.9 49.0 38.8 26.5 23.8 20.9 23.1 22.3 35.7 63.5 60.9
Northwest China 38.1 40.0 34.5 35.7 29.5 31.5 32.8 33.4 29.2 31.0 45.5 39.6
Southwest China 27.8 24.6 22.5 22.0 19.4 19.4 19.9 21.7 22.3 20.2 22.6 30.5

TABLE 4 | RMSE for cross-validation of precipitation anomaly percentage (unit: %).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 43.5 55.4 34.4 28.5 28.6 31.3 28.7 30.2 38.1 31.7 39.6 41.2
North China 42.9 40.0 27.8 32.0 26.8 33.4 31.7 31.9 30.7 27.5 38.0 41.8
East China 13.9 13.7 13.3 18.9 21.3 22.4 28.2 32.1 34.8 28.9 20.8 18.5
South China 31.0 25.7 30.7 31.8 29.3 28.5 29.0 29.7 34.6 51.4 45.5 35.7
Central China 21.3 19.8 18.0 22.8 21.7 25.0 28.6 32.7 30.6 20.7 22.6 23.1
Qinghai–Tibet Plateau 100.9 96.5 72.5 53.8 35.4 31.0 27.1 30.7 29.1 51.5 104.5 107.1
Northwest China 60.3 65.7 56.6 55.3 43.0 45.3 45.8 48.2 43.5 49.8 78.5 66.3
Southwest China 41.7 35.7 32 30.1 25.9 25.5 25.7 27.8 29.7 27.2 32.3 46.5
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Gridding Error Analysis of Precipitation
Tables 6,7 show the MAE and the RMSE for the precipitation
cross-validation, respectively. It is indicated that the temporal
and spatial distribution of errors for the precipitation are
similar to those of climatology value, which in areas or
months with high precipitation are greater than those in
areas or months with low precipitation, especially South
China and Southwest China in space and JJA in time (black
marks in Tables 6,7).

Figure 7 demonstrates the spatial distributions of the MAE for
the precipitation in each season. The MAE in southern regions is
generally higher than that in northern regions in each season,
which is closely related to the abundance degree of precipitation

TABLE 5 | Correlation coefficients for the cross-validation of precipitation anomaly percentage.

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 0.899 0.901 0.904 0.916 0.897 0.803 0.803 0.839 0.853 0.905 0.915 0.901
North China 0.939 0.942 0.943 0.937 0.906 0.846 0.834 0.855 0.901 0.949 0.960 0.938
East China 0.981 0.975 0.967 0.938 0.913 0.913 0.877 0.848 0.881 0.951 0.972 0.982
South China 0.956 0.940 0.903 0.864 0.790 0.815 0.833 0.831 0.831 0.898 0.917 0.947
Central China 0.952 0.951 0.939 0.914 0.876 0.875 0.863 0.849 0.906 0.956 0.961 0.961
Qinghai–Tibet Plateau 0.635 0.627 0.635 0.723 0.773 0.727 0.729 0.749 0.770 0.802 0.724 0.699
Northwest China 0.845 0.815 0.835 0.828 0.834 0.778 0.771 0.792 0.837 0.837 0.847 0.841
Southwest China 0.863 0.885 0.889 0.846 0.836 0.799 0.768 0.786 0.795 0.864 0.899 0.877

Bold value shows : In general, the cross-interpolated precipitation anomaly percentage sequence is well correlated with the actual one, with the correlation coefficients generally being
above 0.7 and the minimum value being in July and August, basically.

FIGURE 5 |Spatial distributions of correlation coefficients for the cross-validation of precipitation anomaly percentage in (A) January, (B)April, (C) July, and (D)October.

FIGURE 6 | Frequency distribution of correlation coefficients for the
cross-validation of precipitation anomaly percentage.
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in southern regions compared to that in northern regions. The
MAE for 94.6, 54.4, 4.6, and 53.8% of the samples in China is
below 10 mm/month in DJF, MAM, JJA, and SON, respectively,
and 99.5, 79.9, 22.8, and 82.1% of the samples show the MAE
below 20 mm/month. The MAE is 3.8, 13.2, 33.5, and 12.7 mm/
month, with the largest value being in JJA, which is also closely
related to the concentrated rainfall in this period. Over the whole
year, the MAE for 51.8 and 71.1% of the samples is less than 10
and 20 mm/month, respectively (Figure 8).

CONCLUSION AND DISCUSSION

Based on the high-quality precipitation data from 2,419
meteorological stations in China, the climatic mean field and
the anomaly percentage field are derived and gridded with the
GIDS and IDS methods, respectively. The DEM data are
employed to reduce the influence of elevation on the spatial
interpolation accuracy of precipitation due to the unique
topography in China. The 0.5 × 0.5° surface gridded dataset
during 1961–2018 in China is obtained, and the accuracy
evaluation is carried out. The main conclusions are as follows.

The cross-validation for the climatic precipitation shows that
79.8, 55.7, 23.6, and 54.9% of the MAE are below 3 mm/month in
DJF, MAM, JJA, and SON, respectively, and 96.6, 85.4, 59.8, and
86.3% of them are below 10 mm/month. The MAE in the four
seasons is 2.0, 5.6, 13.2, and 5.4 mm/month, respectively. The

spatial distribution shows that the MAE in southern regions is
generally higher than that in northern regions in each season,
which is closely related to the abundance degree of precipitation
in southern regions compared to that in northern regions. Among
the four seasons, the MAE in JJA is the largest, which is closely
related to the concentrated rainfall in this period.

The cross-validation for the precipitation anomaly percentage
indicates that the correlation coefficients at 76.8, 64.1, 19.3, and
69.5% of the stations are above 0.9 in January, April, July, and
October, respectively, and the correlation coefficients at 94.9,
96.3, 90.2, and 96.8% of the stations are above 0.7. The national
mean correlation coefficients in the four months are 0.915, 0.894,
0.823, and 0.913, respectively. In the spatial distribution, the
correlation coefficient in the eastern regions is generally higher
than that in the western regions, which is associated with the
small climatology value of precipitation and the large spatial
difference of precipitation anomaly percentage, and also the
sparse stations in the western regions. In terms of temporal
distribution, the correlation coefficient in July is the smallest,
which is closely related to the abundance degree of precipitation
and high frequency of convectional precipitation in this
particular month.

Regarding the cross-validation for the precipitation, the MAE
for 94.6, 54.4, 4.6, and 53.8% of the samples is less than 10 mm/
month in DJF, MAM, JJA, and SON, respectively, and 99.5, 79.9,
22.8, and 82.1% of the samples show the MAE below 20 mm/
month. The MAE in the four seasons is 3.8, 13.2, 33.5, and

TABLE 6 | MAE for the cross-validation of precipitation (unit: mm).

Region 1 2 3 4 5 6 7 8 9 10 11 12

Month

Northeast China 1.3 1.8 3.0 5.8 9.5 19.8 33.6 28.2 13.2 6.5 3.1 1.9
North China 0.9 1.4 2.3 4.6 8.1 16.1 31.8 28.8 11.7 4.9 2.4 1.0
East China 5.4 7.2 11.0 16.1 23.0 34.4 39.5 39.9 26.4 11.4 7.4 4.6
South China 7.7 10.0 16.6 33.9 56.5 66.9 57.5 58.3 43.5 28.2 14.1 7.4
Central China 4.8 6.5 9.7 16.7 23.8 30.6 37.9 34.2 18.5 11.4 7.3 4.2
Qinghai–Tibet Plateau 1.8 2.9 6.7 9.3 13.9 19.5 22.7 21.2 16.4 8.8 2.5 1.4
Northwest China 1.7 2.0 3.8 6.4 9.3 11.4 16.4 15.5 9.6 5.8 3.3 1.8
Southwest China 4.2 5.1 7.8 14.1 25.1 38.3 48.3 44.6 30.8 18.2 8.4 4.2

Bold value shows : It is indicated that the temporal and spatial distribution of errors for the precipitation are similar to those of climatology value, which in areas or months with high
precipitation are greater than those in areas or months with low precipitation, especially South China and Southwest China in space and JJA in time.

TABLE 7 | RMSE for the cross-validation of precipitation (unit: mm).

Month 1 2 3 4 5 6 7 8 9 10 11 12

Region

Northeast China 2.0 2.6 4.1 7.8 12.7 26.2 43.5 37.4 18.0 8.9 4.4 2.7
North China 1.5 2.1 3.5 6.8 11.6 22.1 42.0 38.6 16.7 7.2 3.8 1.6
East China 7.4 9.6 14.7 21.5 30.5 45.2 52.3 52.0 36.4 17.1 10.8 6.8
South China 11.3 14.8 23.2 46.2 74.0 87.2 75.2 74.7 57.9 41.7 22.3 11.4
Central China 6.5 8.8 12.7 22.2 31.5 40.4 50.1 45.5 25.6 16.0 10.5 5.9
Qinghai–Tibet Plateau 3.0 4.4 9.2 11.9 17.7 24.6 28.6 26.9 20.8 12.0 3.9 2.4
Northwest China 2.4 2.9 5.4 9.0 12.6 15.5 21.7 21.0 13.0 8.0 4.7 2.5
Southwest China 5.7 6.9 10.4 18.7 32.7 49.0 60.8 56.2 40.2 23.9 11.5 5.9

Bold value shows : It is indicated that the temporal and spatial distribution of errors for the precipitation are similar to those of climatology value, which in areas or months with high
precipitation are greater than those in areas or months with low precipitation, especially South China and Southwest China in space and JJA in time.
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12.7 mm/month, respectively. Spatially, the MAE in southern
regions is generally higher than that in northern regions in each
season, which is closely related to the abundance degree of
precipitation in southern regions compared to that in northern
regions. The temporal distribution presents the largest MAE in
JJA, which is also closely related to the concentrated rainfall in
this period.

Compared with the other research in China, our precipitation
grid product has a similar accuracy. For example, Zhao et al.
(2014) established the monthly grid precipitation datasets in
China by using the TPS (thin plate spline) method, and the

MAE for 51.5 and 75.2% of the samples was less than 5 mm/
month and 15 mm/month for the whole year, respectively.
However, their calculation of the MAE did not involve a
cross-validation method, and that may lead to underestimation
of error. Xiong et al. (2011) constructed the daily grid
precipitation datasets in China by using the Barnes method,
and the MAE was 1.3 mm/day for the whole year, and 0.25,
1.03, 3.06, and 0.85 mm/day in DJF, MAM, JJA, and SON,
respectively.

The primary purpose of this study is to meet the urgent need in
agriculture, hydrological modeling, and other fields. However, it
should be pointed out that the gridding of station observation
data is a very complex work. Taking this study as an example,
there is still a lot to be improved. These include the following:

(1) More observation data should be collected. In addition
to the stations used in this study, there are a large
number of rainfall stations with a relatively poor
observation quality in China. In the future, we can
consider using these observations in interpolation after
quality control by appropriate methods and fusion of
satellite and radar data, which will greatly improve the
accuracy of the final grid data, especially in the regions
with scarcity in observations, such as the
Qinghai–Tibet Plateau.

(2) More methods or parameterization schemes should
be applied to the development and assessment of grid

FIGURE 7 | Spatial distributions of the MAE for the precipitation (unit: mm/month) in (A) DJF, (B) MAM, (C) JJA, and (D) SON.

FIGURE 8 | Frequency distribution of the MAE for the cross-validation of
precipitation.
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products, similar to Cheng et al. (2020), Newlands
et al. (2011). In this way, we can choose the best
method or scheme to improve the accuracy of
the grid.

Due to the scarcity of stations in western China, especially on
the Tibetan Plateau, with few observations in present, it is difficult
to evaluate the gridded precipitation dataset qualitatively and
quantitatively. The users are suggested to be cautious when using
the data from these regions in scientific research.
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