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By utilizing eight CMIP5 model outputs in historical experiment that simulated daily mean
sea surface temperature (SST) and NCEP reanalysis data over 12 ocean basins around the
world from 1960 to 2005, this paper evaluates the performance of CMIP5 models based
on the detrended fluctuation analysis (DFA) method. The results of National Centers for
Environmental Prediction (NCEP) data showed that the SST in most ocean basins of the
world had long-range correlation (LRC) characteristics. The DFA values of the SST over
ocean basins are large in the tropics and small in high latitudes. In spring and autumn, the
zonal average DFA of SST are basically distributed symmetrically in the Northern and
Southern Hemispheres. In summer, the zonal average values of DFA in the Northern
Hemisphere are larger than those in the southern hemisphere, and vice versa in winter. The
performance of HadGEM2-AO, CNRM-CM5, and IPSL-CM5A-MR are all relative well
among the eight models in simulating SST over most regions of the global ocean.
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INTRODUCTION

Climate models and Earth system models that consider complex geo-bio-chemical processes are
important tools for projecting future climate change (Zeng et al., 2008; IPCC, 2013; Prinn, 2012).
Currently, the climatemodels commonly usedworldwide are the Earth systemmodels from the phase 5
of the Coupled Model Intercomparison Project (CMIP5), and the results of which have also been
adopted by the IPCC fifth assessment report (Taylor et al., 2012). Based on these, large number of global
and regional climate change simulations and projections under different historical and future
greenhouse gas emission scenarios have been carried out using the results of the CMIP5 models
(Tebaldi et al., 2005; Jiang and Tian, 2013;Wei andQiao, 2016;Wang et al., 2017). However, before the
Earth systemmodels are applied to project future climate change, its performance needs to be evaluated
(Grose et al., 2020).

To quantitatively evaluate model performance, a lot of research has been carried out, and some
new progresses have been made in model evaluation methods. At present, the evaluation objects of
model performance have changed from the evaluation of climate state to the climate extremes,
climate trends, climate phenomena, etc. Model evaluation methods have developed from qualitative
evaluation to quantitative evaluation, such as quantitative calculation of the reliability and
uncertainty of the model simulation (Zhao et al., 2013). Many studies on the evaluation of
CMIP5 model simulation capabilities (Alexander et al., 2006; Alexander and Arblaster,2009;
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Rusticucci, 2012; Kharin et al., 2013; Kruger and Sekele, 2013; Zhou
et al., 2016; Zhu et al., 2017; Gusain et al., 2019) and the application
of these models to project future climate change (Tebaldi et al.,
2006; Kharin et al., 2007; Sillmann et al., 2013; Zhou et al., 2014; Ji
and Kang, 2015) have been carried out internationally. A great
number of studies have confirmed that the current CMIP5 models
have good ability to simulate global climate, and the results of these
models can be used to project the characteristics of future global
climate change. However, these evaluation methods mainly
consider the statistical differences between the model
simulations and the observation, but lack the comparison of the
observation data and the simulation data in the sense of dynamic
characteristics. Therefore, themethod to quantitatively evaluate the
dynamic characteristics of climate systems has been developed
(Zhao, 2014).

Long-range correlation (LRC) is an important dynamic
characteristic of climate system (Bunde and Havlin., 2002).
Detrended fluctuation analysis (DFA) can effectively
distinguish LRCs of time series from trend under the influence
of non-stationarities. DFA and wavelet techniques have been used
to analyze temporal correlations in the atmospheric variability
(Koscielny-Bunde et al., 1996, Koscielny-Bunde et al., 1998).
Some studies have analyzed the simulation results of the
HadCM3 and ECHAM4/OPYC global models using the DFA
method, and showed that the models can reproduce the scale
features of the global surface temperature comparing with the
reanalysis data of the National Centers for Environment
Prediction (Blender and Fraedric, 2003). Some researchers also
evaluated the result of Beijing Climate Center Climate System
Model (BCC_CSM) in simulating daily temperature over China
based the DFA method, and found that the model can simulate
the LRCs of temperature in most part of China well (Zhao, 2014).

At present, the studies on evaluation of global climate models
using DFAmethod mainly focus on the climate elements over land,
while researches on the climate elements over ocean have seldom

been carried out. Based on theDFAmethod, this paper evaluates the
performance of eight CMIP5 coupled models on the daily mean sea
surface temperature (SST) over ocean, indicating the shortcomings
of themodels on SST, and the similarities and differences among the
models. The results can provide basis for model improvements and
application for future predictions. Chapter 2 introduces the data and
methods; Chapter 3 introduces the evaluation results of CMIP5
models on SST over ocean based on DFA method; Chapter 4 is the
main conclusions and discussions.

DATA AND METHOD

Data
The observed DAT during 1960–2005 is from The National
Centers for Environmental Prediction (NCEP) reanalysis data
(Kalnay et al., 1996; Kanamitsu et al., 2002). The simulated SST of
eight CMIP5 climate models is available from the IPCC Data
Distribution Center (https://esgf-node.llnl.gov/search/cmip5/).
Table 1 provides basic information about the eight global
climate models (GCM). The selected models include physical
climate models as well as ESMs. The present-day historical
simulations performed by the eight models in the CMIP5 are
used in this study. The term “historical” (HIST) refers to coupled
climate model simulations forced by observed concentrations of
greenhouse gases, solar forcing, erosols, ozone, and land-use
change over the 1850–2005 period (Taylor et al. 2012). CMIP5
provided the results of Earth System models (ESMs), which
include carbon cycle models, and in some cases interactive
prognostic erosol, chemistry, and dynamical vegetation
components. The last 46 years (1960–2005) was analyzed to
compare CMIP5 models with the observations. The GCM
output used here are the daily sea surface temperature. To
facilitate GCM intercomparison and validation against the gauge
observations, both the daily fields of GCM temperature and the

TABLE 1 | Information about the CMIP5 climate models.

Modeling
center

Nation Institution Model
name

Atmosphere
resolution

Model information

Atmosphere
component

Ocean
component

CMCC Italy Centro euro-mediterraneo per I CambiamentiClimatici CMCC-
CMS

T63(∼1.875° ×
1.865°)L95

ECHAM5 OPA

CNRM-
CERFACS

France Centre national de RecherchesMeteorologiques
/Centre europeen de recherche et formation avancees
en CalculScientifique

CNRM-CM5 TL127 (∼1.4° ×
1.4°)L31

ARPEGE-climat NEMO

LASG China Institue of atmospheric physics Chinese academy of
sciences

FGOALS-g2 (∼2.81° ×
1.66°) L26

GAMIL2 LICOM2

GFDL United States NOAA geophysical fluid dynamics laboratory GFDL-
ESM2G

M45 (∼2° ×
2.5°)L24

AM2 GOLD

INM Russia Institute for numerical mathematics INM-CM4 (∼1.5° × 2.0°)L21 INM-CM4
atmospheric
component

INM-CM4 ocean
component

IPSL France Institute pierre-simon laplace IPSL-
CM5A-MR

LMDZ4 (∼1.2587°

× 2.5°)
LMDZ4 NEMO

MOHC United Kingdom Met office hadley centre HadGEM2-
AO

T63 (∼1.875° ×
1.865°)L38

Global atmosphere Global land

MPI-M Germany Max planck institute for meteorology MPI-
ESM-MR

T63 (∼1.875° ×
1.865°)L47

ECHAM6 MPIOM
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gauged data were interpolated to 1.0° × 1.0°grids using the inverse
distance weighting approach. For all models and experiments, the
results of the first ensemblemember (r1i1p1) were used in this study.

To uncover the geographical heterogeneity of DFA for SST in
the oceans, we divided the oceans into 12 ocean basins (Table 2
and Figure 1). The 12 ocean basins are modified based on Chan
et al (2015).We calculated the area-averaged DFA indexes in each
ocean basin for NCEP and model output daily temperatures, then
the area-averaged DFA indexes were compared to show the
differences between the NCEP and model outputs.

METHOD

The DFA method can quantify LRC as index of power law
exponent, namely, scaling exponent (Peng et al, 1994; Bunde
et al., 2002, Bunde et al., 2005). DFA has been widely applied to
study LRC in climate variabilities (Talkner and Weber, 2000;
Kantelhardt et al., 2006; Gan et al., 2007; Jiang et al., 2013). For a

giving time series, {Xi, i � 1, 2, . . ., N}, the departures xi of Xi is
calculated and cumulated to get the profile y(k).

y(k) � ∑k
i�1

xi, k � 1, 2, . . . , Ν (1)

Then profile y(k) is divided into n � Int (N/τ) non-overlapping
segments of equal length τ. In each segment, a polynomial
function is used to fit the local trend. If l-order polynomial
function is used for the fitting, the order of DFA is l (DFA1 if
l � 1, DFA2 if l � 2, etc.). Next, the local trend yτ(k) is subtracted
from profile y(k) in each segment, and the fluctuation function (F
(τ)) of each segment is calculated by

F(τ) �
������������������
1
nτ

Σnτ
k�1[y(k) − yτ(k)]2

√
(2)

A linear relationship on a log-log plot indicates the presence of
the power law. In this case, fluctuations functions can be
characterized by a scaling exponent α.

F(τ) ∼ τα (3)

If α > 0.5, the time series {Xi, i � 1, 2, . . ., N} is positive long range
correlation. If α � 0.5, the time series is uncorrelated. If α < 0.5, the
time series has anti-persistent correlation. In this study, the DFA2
method is used to estimate the scaling exponent in a time series.

LONG-RANGE CORRELATIONS OF DAILY
MEAN SST OVER OCEAN SIMULATED BY
CMIP5 MODELS

Characteristics of Daily mean SST Over
Ocean
The equatorial Pacific Ocean (185°E, 0°) was selected as an
example to study the long-range correlation characteristics of

TABLE 2 | Names and coordinates for 12 ocean basins.

Region name Abbreviation Coordinates

Longitude Latitude

Tropical west pacific TWP 110°–170°E 20°S–20°N
Tropical central pacific TCP 170°E–125°W 20°S–20°N
Tropical eastern pacific TEP 125°W–75°W 20°S–20°N
North pacific ocean NPO 120°E–120°W 20°–70°N
South pacific ocean SPO 140°E–70°W 60°–20°S
Tropical indian ocean TIO 40°–120°E 20°S–20°N
South indian ocean SIO 15°–140°E 60°–20°S
South atlantic ocean SAO 65°W–15°E 60°–20°S
Tropical atlantic ocean TAO 70°W–10°E 20°S–20°N
North atlantic ocean NAO 90°W–0° 20°–60°N
Southern ocean SO 0°E–180°W 80°–60°S
Arctic ocean AO 0°E–180°W 60°–90°N

FIGURE 1 | Divisions of the oceans.
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temperature over ocean. In the equatorial Pacific Ocean, the DFA
value of NCEP daily temperature is 1.36, and the DFA values of
the daily temperature simulated by the eight models vary between
0.91 and 1.41 (Figure 2A). In spring, the DFA value of NCEP’s
daily temperature is 1.25. Except for FGOALS-G2, DFA values of
the daily temperature simulated by the other seven models are all
greater than 1.0, and that of GFDL-ESM2G is the largest, reaching
1.44 (Figure 2B). In summer, the DFA value of NCEP’s daily
temperature is 1.23, slightly lower than that in spring. Except for
FGOALS-G2 and INM-CM4, the DFA values of the other six
models are all between one and 1.36 (Figure 2C). In autumn, the
DFA value of NCEP’s daily temperature is larger than these in
spring and summer, reaching 1.31. Among the results of each
model, the DFA value of daily temperature of GFDL-ESM2 is the
smallest, reaching 0.72, and the largest is IPSL-CM5A-MR,
reaching 1.41 (Figure 2D). In winter, the DFA value of

NCEP’s daily temperature is 1.35. Except for INM-CM4, the
DFA values of the remaining seven models are all greater than 1,
in which the maximum is1.47 of GFDL-ESM2G (Figure 2E).

Figure 3 shows that the DFA value of the daily temperature in
this area over the years is larger than that of the four seasons, and
the seasonal variation of the DFA value is not large, but the DFA
value is smaller in spring and summer than that in autumn and
winter. Except for GFDL-ESM2G, INM-CM4, and HadGEM2-
AO, the seasonal changes of DFA values of the other models are
close to NCEP data.

On the annual time scale, the median performance errors
between the DFA values of the global daily mean SST simulated
by CMCC-CMS, CNRM-CM5, HadGEM2-AO, and MPI-ESM-
MR and those of the NCEP do not exceed ±0.01, while the median
performance errors of INM-CM4 and FGOALS-g2 exceed −0.05
(Figure 4A). From the 5–95% error range of each model, the

FIGURE 2 | The DFA2 results of daily mean SST from NCEP and CMIP5 models at the point of (185°E, 0°) for (A) year, (B) spring, (C) summer, (D) autumn, and (E)
winter.
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error margins of CMCC-CMS, GFDL-ESM2G, HadGEM2-AO
and IPSL-CM5A-MR are less than 0.3, while those of the
remaining four models are above 0.3, in which the maximum
is 0.47 of INM-CM4. In spring, the median performance errors of
CMCC-CMS, GFDL-ESM2G, IPSL-CM5A-MR and MPI-ESM-
MR do not exceed ±0.01, and that of INM-CM4 exceeds −0.08
(Figure 4B). From the 5–95% error range of eachmodel, the error
margins of GFDL-ESM2G and HadGEM2-AO are the minimum,
reaching 0.28, while the maximum is 0.37 of MPI-ESM-MR, and
those of the other models are between 0.31 and 0.36. In summer,
the median performance errors of CMCC-CMS, GFDL-ESM2G
and MPI-ESM-MR are no more than ±0.01, that of INM-CM4 is
-0.07, and those of the rest models are between ±0.01 and 0.06
(Figure 4C). From the 5–95% error range, the error margins of
CNRM-CM5, GFDL-ESM2G, HadGEM2-AO and IPSL-CM5A-
MR are the minimum, reaching 0.31, while the maximum is 0.45
of FGOALS-g2, and those of the rest are between 0.32 and 0.38. In
autumn, the median performance errors of IPSL-CM5A-MR and
MPI-ESM-MR are less than ±0.01, while that of INM-CM4
exceeds −0.07, and those of other models are between ±0.01
and 0.03 (Figure 4D). From the 5–95% error range, the minimum
error margin is 0.25 of IPSL-CM5A-MR, while the maximum is
0.46 of INM-CM4, and those of the rest are between 0.26 and 0.4.
In winter, the median performance errors of CMCC-CMS and
GFDL-ESM2G are less than ±0.01, while that of FGOALS-g2 is
−0.05, and those of the rest models are between ±0.01 and 0.04
(Figure 4E). From the 5–95% error range, the minimum error
margin is 0.3 of IPSL-CM5A-MR, while the maximum is 0.46 of
MPI-ESM-MR, and those of the rest are between 0.33 and 0.45.

Long-Range Correlation Characteristics of
Daily Mean SST in Various Regions of the
Ocean
The zonal average value of the NCEP daily mean SST DFA index
over the years shows that the DFA value is small in mid-high

latitudes and large in tropical areas (Figure 5A), which decreases
rapidly from the equator to the north and south direction. The
zonal average DFA index exceeds 1.1 near the equator and
decreases to 0.6 near the high latitudes of the southern and
northern hemispheres. The DFA index of daily mean SST
simulated by the eight models also shows similar
characteristics of variation with the latitude, but the DFA
values of the models in tropical regions are all smaller than
the NCEP values, with large differences between the models. The
zonal changes of DFA index in INM-CM4, MPI-ESM-MR and
FGOALS-g2 models are smaller than NCEP. The minimum
correlation coefficient between the INM-CM4 zonal average
DFA value and the NCEP value is 0.78, and those of the other
models are all above 0.9, in which the maximum correlation
coefficient is 0.98 of IPSL-CM5A-MR.

In spring of the northern hemisphere, the zonal average value
of the DFA index for NCEP daily mean SST is symmetrically
distributed in the northern and southern hemispheres. DFA
index of the tropical area is above 0.9, of which the equatorial
area exceeds 1.1, and the mid-high latitude of the northern
hemisphere is generally between 0.8 and 0.9, while that of the
mid-high latitudes of the southern hemisphere is between 0.7 and
0.8 (Figure 5B). In the extratropical areas of the northern
hemisphere, the zonal average DFA index changes slightly
with latitudes, while that of the extratropical areas of the
southern hemisphere increases slightly around 60°S, and then
continues to decrease. The meridional changes of DFA index of
INM-CM4, MPI-ESM-MR and FGOALS-g2 models are small.
The zonal average DFA value of HadGEM2-AO has two peaks in
the area outside the equator. The DFA values of GFDL-ESM2G
and IPSL-CM5A-MR near the equator are larger than the NCEP
values. The minimum correlation coefficient between the zonal
average DFA index of INM-CM4 and MPI-ESM-MR and NCEP
is 0.76, while those of the rest models are above 0.8, in which the
maximum correlation coefficient is 0.97 of GFDL-ESM2G.

In summer of the northern hemisphere, the zonal average
value of the NCEP daily temperature DFA index is still the largest
near the equator, but the DFA value in the northern hemisphere is
obviously larger than that in the southern hemisphere
(Figure 5C). The zonal average DFA value displays a peak
around 60°N in the northern hemisphere, reaching about 1.1,
and then decreases toward higher latitudes rapidly. In the
southern hemisphere, the zonal average DFA index rapidly
decreases from the equator to around 40°S to a minimum of
0.7, and then goes up with the increase of latitudes. The zonal
average DFA values of the eight models can all reflect the
characteristic that the DFA value of the northern hemisphere
is larger than that of the southern hemisphere. The zonal average
DFA values of INM-CM4 and FGOALS-g2 do not reach a peak
near the equator. The minimum correlation coefficient is 0.78
between the zonal average DFA index of FGOALS-g2 and NCEP,
while those of the rest models are above 0.88, in which the
maximum correlation coefficient is 0.96 of HadGEM2-AO.

In autumn of the northern hemisphere, the zonal average
value of the DFA index for NCEP daily mean SST is
symmetrically distributed in the northern and southern
hemispheres, reaching a peak close to 1.2 near the equator,

FIGURE 3 | The DFA2 indexes of daily mean SST from NCEP and
CMIP5 models at the point of (185°E, 0°) for year and all four seasons.
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two small peaks near 50°N and 70°N in the northern hemisphere,
and a smaller peak in 60°S in the southern hemisphere and then
decreases towards higher latitudes (Figure 5D). The eight models
can all reflect the characteristics that the zonal average DFA value
is the largest near the equator, and the distribution in the
northern and southern hemispheres is relatively symmetric.
The zonal average DFA indices of INM-CM4, FGOALS-g2,
and CMCC-CMS models vary little with latitudes and are
significantly smaller than the NCEP value in tropical regions.
The DFA value of HadGEM2-AO has a large peak near 20°N in
the northern hemisphere. The minimum correlation coefficient
between the zonal average DFA value of INM-CM4 and the
NCEP value is 0.64, while those of the other models are all above
0.81, among which the correlation coefficients of GFDL-ESM2G
and IPSL-CM5A-MR are up to 0.97.

In winter of the northern hemisphere, the zonal average value
of the DFA index for NCEP daily mean SST is greater in the

southern hemisphere than that in the northern hemisphere, and
the peak still appears near the equator, reaching about 1.2. The
DFA index of the northern hemisphere drops sharply to 0.8 from
the equator to 30°N, then slowly decreases towards mid-high
latitudes, and to about 0.7 near the north pole. The DFA index of
the southern hemisphere decreases rapidly to about 0.7 from the
equator to high latitudes (Figure 5E). The zonal average DFA
index of the INM-CM4 and FGOALS-g2 models varies slightly
with latitudes and is smaller than the NCEP value in tropical
regions. Except that the correlation coefficient of zonal average
DFA value and the NCEP value of HadGEM2-aO and IPSL-
CM5A-MR exceeds 0.9, the correlation coefficients of the rest
models are all less than 0.9, in which the minimum value is 0.72 of
INM-CM4.

In general, the zonal average value of the DFA index for NCEP
daily mean SST is the largest near the equator and smaller at mid-
high latitudes, with obvious seasonal changing pattern. The

FIGURE 4 | Box charts of the errors of DFA values from CMIP5 models for (A) year, (B) spring, (C) summer, (D) autumn, and (E) winter.
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variation range of the zonal average DFA value of INM-CM4 and
FGOALS-g2 is smaller than the NCEP value, and the correlation
coefficient with NCEP is relatively lower, while that of IPSL-
CM5A-MR and HadGEM2-AO is closer to the NCEP value, with
similar variation characteristics with latitudes.

Judging from the DFA value for daily mean SST of each
region, the difference between the models and the DFA value of
the NCEP is large in tropical regions. Among them, the tropical
Central and Eastern Pacific has the largest difference, while that
in middle and high latitudes is relatively small, generally less
than ±0.1 (Figure 6A). In the North Atlantic (NAO), the
simulated DFA values of the eight models have an error of
less than ±0.05; in the Southern Ocean and the South Atlantic
(SO and SAO), one model has an error of more than ±0.05. The
errors of INM-CM4 and FGOALS-g2 are larger than those of
other models.

In spring, the difference between the simulated daily mean SST
DFA value and NCEP is still large in tropical regions, but the
error in the mid-high latitudes of the northern hemisphere is
significantly smaller than that in other parts of the world
(Figure 6B). In the North Pacific (NPO) and North Atlantic
(NAO), there is one model whose error is greater than ±0.05. In
the Arctic Ocean (AO) and Southern Ocean (SO), there are two
models whose errors exceed ±0.05. For Tropical Eastern Pacific
(TEP), only HadGEM2-AO and IPSL-CM5A-MR have errors of
less than ±0.05. The errors of INM-CM4, FGOALS-g2, and MPI-
ESM-MR are larger than those of other models.

In summer, the difference between the DFA and NCEP values
of most models is still larger in the tropics and smaller in the
southern hemisphere (Figure 6C). The errors of all models in the
South Indian Ocean (SIO) are all within ±0.05, and only one
model has an error exceeding ±0.05 in the South Pacific (SPO).
For the Arctic Ocean (AO), South Atlantic (SAO) and Southern
Ocean (SO), only two models have an error exceeding ±0.05. In
the tropical western Pacific (TWP), only HadGEM2-AO and
IPSL-CM5A-MR have an error less than ±0.05.

In autumn, the error between the models’ DFA values and the
NCEP values is larger in tropical regions, but smaller in mid-high
latitudes in the northern and southern hemispheres (Figure 6D). In
theNorthAtlantic (NAO), SouthAtlantic (SAO) and SouthernOcean
(SO), the simulation error of only onemodel does not exceed±0.05. In
the North Pacific (NPO), Tropical Indian Ocean (TIO), South Indian
Ocean (SIO) and South Pacific (SPO), there are two models with an
error ofmore than ±0.05. In the tropical Atlantic, only GFDL-ESM2G
and IPSL-CM5A-MRhave an error less than ±0.05.

In winter, the difference between the models’ DFA values and
NCEP values is larger in the tropics, but smaller in the mid-high
latitudes of the northern hemisphere (Figure 6E). In the North
Atlantic Ocean (NAO), the simulation errors of all models are less
than ±0.05. In the North Pacific (NPO), only INM-CM4 has a
simulation error greater than ±0.05. In the South Indian Ocean
(SIO), only HadGEM2-AO and INM-CM4 have an error greater
than ±0.05. In the Tropical Atlantic (TAO) and South Pacific
(SPO), only two models have simulation errors less than ±0.05.

FIGURE 5 | The zonal average distribution of the DFA index of NCEP and eight models of daily mean SST (A) year, (B) spring, (C) summer, (D) autumn, (E)winter.
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Long-Range Correlation Assessment of
Daily Mean SST Over Ocean in Multiple
Models
The NCEP global daily mean SST has long-range correlation
characteristics in most parts of the world. The DFA value over the
tropical ocean is generally between 0.9 and 1.3. TheDTA value of daily
mean SST over the tropical Central and Eastern Pacific is above 1.3,
and that of themid-high latitudes is relatively small, inwhich that in the
high latitudes of the northern hemisphere is below 0.7 (Figure 7A).
Compared with the NCEP values, the DFA values of CMCC-CMS,
CNRM-CM5, HadGEM2-AO and MPI-ESM-MR are smaller in the
tropics, while the NCEP values are close to or larger than those in the
tropics (Figure 7B,C,F,I). The DFA values of FGOALS-g2 and INM-
CM4 are relatively small in most regions of the world except in the
Arctic Ocean (Figure 7D,G). The DFA values of GFDL-ESM2G and
IPSL-CM5A-MRare larger in someparts of the tropicalwestern Pacific
and mid-high latitudes in the southern hemisphere, while those in the
rest of theworld are close to or smaller thanNCEP values (Figure 7H).

In spring, the DFA index for NCEP daily mean SST over the
global ocean is generally above 0.7, and the DFA value in tropical

area is generally between 0.9 and 1.2, while that over the equatorial
Central and Eastern Pacific is above 1.2 (Figure 8A). Compared
with the NCEP data, the DFA values for daily mean SST of CMCC-
CMS and MPI-ESM-MR are mainly smaller near the equator,
larger outside the tropics, and close to the NCEP value in the high
latitudes of the northern hemisphere (Figure 8B,I). The DFA value
of CNRM-CM5 is only small near the equator, large in the Arctic
Ocean, and close to the NCEP value in the rest of the world
(Figure 8C). The DFA value of FGOALS-g2 is close to or smaller
than the NCEP value in most parts of the world, especially near the
equator (Figure 8D). The DFA value of GFDL-ESM2G is larger in
most parts of the tropical Pacific, tropical Indian Ocean and South
Atlantic, and is close to or smaller than the NCEP value in the rest
of the world (Figure 8E). For HadGEM2-AO, except that the DFA
value is relatively small in the equatorial Central and Eastern
Pacific, the value is close to or relatively larger than the NCEP
value inmost of the rest of the world (Figure 8F). TheDFA value of
INM-CM4 is smaller in most of the areas except the Arctic Ocean
(Figure 8G). The DFA value of IPSL-CM5A-MR is smaller in the
Arctic Ocean and the North Pacific, and is close to or larger than
the NCEP value in the rest of the world (Figure 8H).

FIGURE 6 | Differences between the DFA index of daily mean SST and the NCEP value in each region simulated by eight models, (A) throughout the year, (B)
spring, (C) summer, (D) autumn, (E) winter.
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FIGURE 7 | The DFA index for NCEP daily mean SST over the years (A) and the difference between the DFA index for daily mean SST simulated in the eight models
and NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.

FIGURE 8 | The DFA index for NCEP spring daily mean SST (A) and the difference between the DFA index for daily mean SST simulated in the eight models and
NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.
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In summer, the DFA value of NCEP daily mean SST is generally
below 0.9 at mid-high latitudes in the southern hemisphere and the
Arctic Ocean, generally between 0.9 and 1.3 in tropical oceans and
mid-high latitudes in the northern hemisphere, and above 1.3 in
the equatorial Central and Eastern Pacific (Figure 9A). Compared
with NCEP data, the DFA values for daily mean SST of the CMCC-
CMS andMPI-ESM-MRmodels are smaller in the tropical Pacific,
North Pacific, tropical Atlantic and North Atlantic, but close to or
larger than the NCEP value in the rest of the world (Figure 9B,I).
The DFA value of CNRM-CM5 is larger in parts of the Arctic
Ocean and Southern Ocean, smaller in the equatorial ocean and
close to the NCEP value in the rest of the world (Figure 9C). For
FGOALS-g2 and INM-CM4, except that the DFA values are larger
in the Arctic Ocean, the values are close to or smaller than the
NCEP value in the rest areas, especially notably smaller in tropical
regions (Figure 9D,G). For GFDL-ESM2G and HadGEM2-AO,
the DFA values are larger over the tropical ocean, and close to or
smaller than the NCEP value in the rest of the world (Figure 9E,F).
The DFA value of IPSL-CM5A-MR is larger in the tropical Pacific
andArctic Ocean, and is close to or smaller than theNCEP value in
the rest of the world (Figure 9H).

In autumn, the DFA index for NCEP daily mean SST greater than
0.9 is mainly concentrated in tropical areas, while that in the Arctic
Ocean and the southern hemisphere mid-high latitudes areas is
generally below 0.7 (Figure 10A). Compared with the NCEP data,
the DFA values of CMCC-CMS, FGOALS-g2 and MPI-ESM-MR
models are larger over tropical oceans, but close to or smaller than the

NCEP value inmost other regions of the world (Figure 10B,D,I). The
DFA values of CNRM-CM5 and GFDL-ESM2G are smaller in the
equatorial Pacific, equatorial Atlantic, and parts of the South Indian
Ocean, larger in parts of the Arctic Ocean and Southern Ocean, and
close to the NCEP value in most parts of the world (Figure 10C,E).
The DFA value of HadGEM2-AO is larger in the equatorial Pacific,
thewestern andnorthern parts of the tropical IndianOcean, and some
parts of the Southern Ocean, and close to or larger than the NCEP
value in the rest of the world, and is especially notably larger in the
tropical North Pacific, the tropical North Atlantic and the Arctic
Ocean (Figure 10F). TheDFA value of INM-CM4 is only larger in the
Arctic Ocean, but smaller in most parts of the world (Figure 10G).
The DFA value of IPSL-CM5A-MR is smaller in parts of the South
Indian Ocean, the tropical eastern Pacific, the South Atlantic, and the
SouthernOcean, and is close to or larger than theNCEP value inmost
of the rest of the world (Figure 10I).

In winter, the DFA index for NCEP daily mean SST is
generally between 0.9 and 1.3 in tropical regions and the
Southern Ocean, and that in the tropical Central and Eastern
Pacific is generally above 1.3 (Figure 11A). Compared with the
NCEP data, the DFA values of CMCC-CMS, FGOALS-g2, IPSL-
CM5A-MR and MPI-ESM-MR models are smaller in tropical
regions and parts of the Southern Ocean, but close to or larger
than the NCEP value in the rest of the world (Figure 11B,D,H,I).
The DFA value of CNRM-CM5 is smaller in the equatorial
region, but larger in parts of the Arctic Ocean and Southern
Ocean, and close to the NCEP value in most other parts of the

FIGURE 9 | The DFA index for NCEP summer daily mean SST (A) and the difference between the DFA index for daily mean SST simulated in the eight models and
NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HADGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.
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FIGURE 10 | The DFA index for NCEP daily mean SST in autumn (A) and the difference between the DFA index for daily mean SST simulated in the eight models
and NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.

FIGURE 11 | The DFA index for NCEP winter daily mean SST (A) and the difference between the DFA index for daily mean SST simulated in the eight models and
NCEP value (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR.
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world (Figure 11C). The DFA value of GFDL-ESM2G is close to
or smaller than the NCEP value in the northern hemisphere,
while close to or larger than the NCEP value in most parts of the
southern hemisphere except the south Indian Ocean
(Figure 11E). The DFA value of HadGEM2-AO is only
smaller in parts of the tropical Pacific and North Pacific, and
close to or larger than the NCEP value in most other parts of the
world, of which the value in South Pacific and Southern Ocean is
significantly larger (Figure 11F). The DFA value of INM-CM4
value is larger in the Arctic Ocean and smaller in most other parts
of the world (Figure 11G).

DISCUSSION AND CONCLUSION

Based on NCEP data, the simulations of daily mean SST by eight
CMIP5 models during 1960–2005 are evaluated using DFA
method. The results of NCEP data showed that the daily mean
SST in most regions of the ocean has long-range correlation
characteristics. The DFA values of daily mean SST over ocean
basins are large in the tropics while small in mid-high latitudes.
The zonal average DFA values of IPSL-CM5A-MR and
HadGEM2-AO had a meridional variation characteristic,
which was close to NCEP. The regional average of the DFA
values of eight models are all close to those of the NCEP data in
North Atlantic, Southern Ocean, and North Pacific.

The DFA value of daily mean SST over the years showed that
the DFA values of DAT is relatively large in tropical regions,
especially in the equatorial Central and Eastern Pacific. In the
view of the DFA bias of different models, there were fewer areas
where the DFA bias exceeds ±0.05 for CNRM-CM5, HadGEM2-
AO and ISPL-CM5A-MR. In spring, the DFA value of the NCEP
DAT was generally above 0.7 over the global ocean, between 0.9
and 1.2 in tropical areas, and above 1.2 over the equatorial Central
and Eastern Pacific. In the view of DFA bias, the performance of
CNRM-CM5, GFDL-ESM2G, HadGEM2-AO and IPSL-CM5A-
MR was better than other models. In summer, the DFA values of
NCEP DAT was larger in the northern hemisphere than those in
the southern hemisphere. The DFA values of CNRM-CM5,
GFDL-ESM2G, HadGEM2-AO and ISPL-CM5A-MR are close
to those of NCEP in most parts of the global ocean, indicating
good performance. In autumn, the DFA values of NCEP DAT
were generally above 0.9 in tropical regions and above 1.3 in the
equatorial Central and Eastern Pacific. The DFA bias of CNRM-
CM5, GFDL-ESM2G, and IPSL-CM5A-MR were relatively small
in most regions of the global ocean. In winter, the DFA values of
NCEP DAT were generally above 1.0 in tropical regions, while
below 0.8 only in the Arctic Ocean and the North Atlantic. The
performance of CNRM-CM5, FGAOLS-g2, and IPSL-CM5A-MR
were good in most parts of the global ocean.

The LRC method has been widely used to verify the
performance of climate models for the climate simulation
(Zhao et al., 2017; He and Zhao, 2018). However, most of
previous studies focus on the land surface air temperature,
little research on sea surface temperature has been conducted.
Therefore, some significant conclusions in this paper have been
shown for the revelation of sea surface temperature simulation by
climate models using LRC method. Although, it is important to
make sure that the different sources of uncertainty are identified
when using CMIP models to conduct climate projection. Future
emissions, internal variability of the climate system and model
response uncertainty are the three main sources of uncertainty in
CMIP MME. Different responses to the same forcing can emerge
due to different processes and feedbacks as well as due to the
parametrization used in the different models (Zelinka et al.,
2020). There are uncertainties exiting in the interpolation for
outputs from CMIP models and the gauged data to 1.0° ×
1.0°grids using the inverse distance weighting approach.
Hence, the model weighting scheme for MME and dynamic
downscaling method with more complete physical and
dynamic processes will be adopted to conduct the region
climate simulation and projection based on CMIP5/6 model
output in the future, and it will significantly improve the
reliability of simulations and projections. These will be the
topic of our research in future.
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