
Detection and Sourcing of CDOM in
Urban Coastal Waters With UV-Visible
Imaging Spectroscopy
Joshua P. Harringmeyer1*, Karl Kaiser2,3†, David R. Thompson4, Michelle M. Gierach4,
Curtis L. Cash5 and Cédric G. Fichot1*

1Department of Earth and Environment, Boston University, Boston, MA, United States, 2Department of Marine and Coastal
Environmental Science, Texas A&M University Galveston Campus, Galveston, TX, United States, 3Department of Oceanography,
Texas A&M, College Station, TX, United States, 4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
United States, 5Environmental Monitoring Division, LA Sanitation and Environment, City of Los Angeles, Los Angeles, CA,
United States

Ultraviolet (UV)-visible imaging spectroscopy is an emerging and highly anticipated
technology, expected to improve the remote sensing of coastal waters and expand its
range of applications. Upcoming NASA satellite missions including PACE and GLIMR will
feature imaging spectrometers capable of measuring hyperspectral remote-sensing
reflectance (Rrs) across the visible range and well into the near-infrared and ultraviolet
domains. The availability of UV reflectance is expected to facilitate the remote sensing of
chromophoric dissolved organic matter (CDOM) in optically complex waters, thereby
improving coastal water-quality monitoring. Although this argument is well supported by
the dominance of CDOM absorption in the UV domain, few studies have directly evaluated
the potential advantages conferred by UV reflectance for monitoring CDOM-related
coastal water quality. Here, we took advantage of a 6-week wastewater diversion
event in Santa Monica Bay, California in 2015 and the availability of Portable Remote
Imaging SpectroMeter (PRISM) imagery acquired during the diversion to assess if UV-
visible imaging spectroscopy could facilitate the detection of CDOM and help differentiate
wastewater effluent-derived CDOM from other sources. A comparison of local empirical
algorithms with varying amounts of spectral information implemented on PRISM data
showed that incorporating UV Rrs as a predictor significantly improved retrieval of CDOM
absorption coefficients (ag). Optimal performance was reached when combining Rrs(365),
Rrs(400), and Rrs(700) as predictors of ag in a multiple linear regression. The use of the
entire UV-visible spectrum (365–700 nm) in a partial-least-squares regression (PLSR) did
not improve retrievals, indicating that a few carefully chosen predictors in the UV-visible
domain were sufficient to empirically differentiate CDOM from phytoplankton in coastal
waters minimally influenced by sediments or bottom reflectance. Finally, the development
of a new fluorescence-based indicator of effluent-derived CDOM (effluent fluorescence
ratio, EFR) helped demonstrate the feasibility of remotely detecting CDOM from
wastewater. A PLSR-based algorithm using Rrs(365–700) provided reasonable EFR
retrievals and successfully identified effluent-derived CDOM at the wastewater outfall
when implemented on PRISM imagery. Although further work should investigate the
influence of effluent-CDOM fluorescence on Rrs more mechanistically, these results
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confirmed that UV-visible imaging spectrometers can facilitate coastal CDOM-related
water quality monitoring and expand its range of applications.

Keywords: imaging spectroscopy, hyperspectral, UV reflectance, water quality, CDOM, fluorescence, wastewater,
coastal

INTRODUCTION

Urban coastal waters are productive environments that provide
important ecosystem services to humans, including the dilution
of terrestrial inputs (IOCCG, 2008; Rabalais et al., 2009;
McLaughlin et al., 2017), fisheries and aquaculture, and
various recreational and transportation services (Halpern et al.,
2012; Caron et al., 2017; Gierach et al., 2017). The rapid
expansion of urban centers around the world has dramatically
increased the impact of human activities on land use, runoff,
hydrodynamics, atmospheric deposition, and local climate at the
land-ocean interface, and these can influence the water quality of
the adjacent coastal waters (McKinney, 2002; Halpern et al., 2008;
Halpern et al., 2012). Increased runoff from impervious surfaces
(Ackerman and Weisberg, 2003; Bay et al., 2003; Dojiri et al.,
2003) and pollution point sources (e.g., wastewater effluent) can
lead to elevated concentrations of nutrients, organic matter, and
contaminants in urban coastal waters and negatively impact
water quality in this environment. These water quality impacts
have serious consequences for the services these ecosystems
provide and for human health in these densely populated areas.

Chromophoric dissolved organic matter (CDOM) is a major
optical water-quality indicator that can be diagnostic of runoff
and point sources of pollution in urban coastal waters (IOCCG,
2015; Fichot et al., 2016; Cao et al., 2018). CDOM is ubiquitous
and naturally present in coastal waters, where it is not only
produced in situ by biological processes, but is also strongly
influenced by terrestrial sources (e.g., soils) through runoff
(Hansell and Carlson, 2014). The spectral optical properties of
CDOM (absorption and fluorescence) have therefore been used
in various proxies of terrestrial runoff and/or as indicators of
dissolved organic matter (DOM) source and degradation state in
coastal waters (Vodacek et al., 1997; Hernes and Benner, 2003;
Stedmon and Markager, 2003; Boyd and Osburn, 2004; Chen
et al., 2004; Helms et al., 2008; Tzortziou et al., 2008; Fichot and
Benner, 2012; Murphy et al., 2013; Yamashita et al., 2013). In
urban waters, wastewater effluent represents another potentially
significant source of CDOMwith characteristic optical properties
(Goldman et al., 2012; Devlin et al., 2015), which can be leveraged
and used in optical proxies indicative of CDOM-related
pollution.

CDOM is optically active and therefore has the advantage of
being amenable to ocean-color remote sensing (Siegel et al., 2002;
Mannino et al., 2008; Swan et al., 2013; Cao et al., 2018; Werdell
et al., 2018). Ocean-color remote sensing can facilitate the
monitoring of several optical water quality indicators (e.g.,
phytoplankton, turbidity, CDOM) over large areas and could
enable the detection of CDOM-related pollution in urban coastal
waters (IOCCG, 2015). However, it faces major challenges in
these types of waters, where a combination of difficult

atmospheric corrections and optical complexity of the waters
can lead to large uncertainties and errors in the derived water-
quality products (Aurin and Dierssen, 2012; Werdell et al., 2018).
Coastal waters are generally optically complex, (IOCCG, 2000)
because they are influenced by a combination of riverine and
coastal-wetland inputs, upwelling of deep water, phytoplankton
blooms, and in some cases urban wastewater effluent. This optical
complexity often cannot be accurately resolved using existing
multispectral sensors, which have constrained spectral ranges and
resolutions (Aurin and Dierssen, 2012; Dekker et al., 2018).
Considering that CDOM optical properties are most
prominent in the ultraviolet (UV) and blue regions, these
spectral limitations are particularly restrictive for detecting
CDOM and distinguishing among different CDOM sources.
UV observations are beyond the spectral ranges of many
current ocean color sensors, and phytoplankton can interfere
with or even dominate optical variability at blue wavelengths in
more phytoplankton-dominated waters (Mobley et al., 2005; Zhu
et al., 2011; Fichot et al., 2016; Werdell et al., 2018).

Recent advances in imaging spectroscopy (hyperspectral
imagery) with broader and finer spectral capabilities than
multispectral ocean-color sensors are expected to improve
retrieval accuracy for in-water constituents in complex coastal
waters from remote-sensing reflectance, Rrs(λ) (Mouw et al.,
2015; Werdell et al., 2018). UV reflectance, in particular, is
expected to facilitate the separation of chlorophyll-a and
CDOM in optically complex waters. The upcoming NASA
Plankton, Aerosol, Cloud, ocean Ecosystems (PACE) and
Geosynchronous Littoral Imaging and Monitoring Radiometer
(GLIMR) missions will provide UV-visible observations of the
coastal ocean at high spectral resolution. These new spectral
capabilities offer the potential to improve CDOM retrievals in
optically complex coastal waters and to retrieve more specific
optical properties of CDOM that are indicative of its source.
However, few studies have directly assessed the utility of these
new spectral capabilities for retrieving CDOM and differentiating
its sources in coastal waters.

In this study, we evaluated the utility of UV-visible imaging
spectroscopy for detecting CDOM accurately in urban coastal
waters. We also tested the feasibility of remotely differentiating
effluent-derived CDOM from other sources (e.g. terrestrial
runoff). We specifically assessed the value of UV reflectance
and of enhanced spectral resolution. This study took
advantage of a 6-week wastewater diversion event and a
related water-quality monitoring effort that took place in the
urban waters of Santa Monica Bay (Southern California) in fall
2015 (City of Los Angeles, Environmental Monitoring Division,
2017; Trinh et al., 2017), and leveraged imagery from the NASA/
JPL Portable Remote Imaging SpectroMeter (PRISM) airborne
instrument (Mouroulis et al., 2014; Thompson et al., 2019). We
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used the PRISM data, as well as in-situ hyperspectral
measurements of Rrs(λ) and coincident laboratory
measurements of CDOM spectral absorption and excitation-
emission matrix (EEM) fluorescence, to compare the
performance of several algorithms with varying levels of UV-
visible spectral information. The data were also used to develop a
fluorescence-based indicator of wastewater effluent and evaluate
the amenability of this indicator to UV-visible imaging
spectroscopy to detect point-source effluent. To the extent of
our knowledge, this is the first attempt to use imaging
spectroscopy in the UV range to facilitate water quality
monitoring in coastal waters.

Study Area and Wastewater Effluent
Diversion
Santa Monica Bay is a semi-enclosed coastal bay in the Southern
California Bight that ranges fromMalibu in the north to the Palos
Verdes peninsula in the south (Figure 1). Santa Monica Bay is
directly adjacent to the heavily urbanized greater Los Angeles
area, which includes many densely populated coastal
communities such as Santa Monica and Venice as well as the
heavily trafficked Marina del Rey and Los Angeles International
Airport. The bay provides valuable resources in the form of
recreation, fisheries, transportation, wastewater disposal, water

for industrial processes, and various other ecosystem services
(Ackerman and Weisberg, 2003; Bay et al., 2003; Dojiri et al.,
2003). The northernmargin of SantaMonica Bay is dominated by
the Santa Monica Mountains National Recreation Area, and has
higher topographic relief and a sparser population (Bay et al.,
2003) than the rest of the bay. Across much of the bay, water
depth is less than 50 m but can reach depths greater than 500 m in
submarine canyons that chisel through the bay (Figure 1).

This urban coastal-water system consists of heterogeneous,
dynamic and optically complex waters influenced by marine
currents, precipitation, and point sources of nutrients (Howard
et al., 2014; Howard et al., 2017) or pollution (Trinh et al., 2017).
Relative to the nearby open ocean, productivity in Santa Monica
Bay is high, stimulated by nutrient inputs from spring upwelling
events, as well as point sources of nutrients within the bay (Bray
et al., 1999). Nutrient availability and currents in the bay are also
influenced by the introduction of cold waters from the California
Current System, intensified by seasonal coastal upwelling (Caron
et al., 2017; Trinh et al., 2017). Local currents within Santa
Monica Bay are highly variable, influenced by interactions of
wind and strong temperature gradients with regional currents in
the Southern California Bight (Washburn et al., 2003; Caron et al.,
2017; City of Los Angeles, Environmental Monitoring Division,
2017).

Santa Monica Bay receives less runoff than most river-
influenced coastal margins due to the dry local climate of
Southern California, with salinity in the bay typically varying
over a relatively narrow range (33 ± 2 PSU) outside of terrigenous
freshwater plumes (Tiefenthaler et al., 2000). Santa Monica Bay
receives low riverine inputs relative to other coastal areas. Low
precipitation conditions are punctuated by intermittent, although
often intense, rain events (Bay et al., 2003; Dojiri et al., 2003).
Runoff reaches the bay through several highly engineered,
concrete-hardened urban creeks in greater Los Angeles
(Ballona Creek and Santa Monica Creek) and through the
more natural creek and river systems that drain the Santa
Monica Mountains to the north of the bay (including Malibu
Creek and Topanga Creek (Ackerman and Weisberg, 2003; Bay
et al., 2003; Dojiri et al., 2003). These intermittent runoff events
have been shown to substantially influence coastal water quality
and biogeochemistry in the bay (City of Los Angeles,
Environmental Monitoring Division, 2017).

The Hyperion Wastewater Reclamation Plant is the largest
wastewater treatment facility in Los Angeles. It released
approximately 230 million gallons of secondary-treated
wastewater effluent into Santa Monica Bay daily in 2015 (City
of Los Angeles, Environmental Monitoring Division, 2017). This
effluent is treated with physically, chemically, and bacterially
mediated processes to remove sediments and organo-solids.
During normal operations, effluent is released through a 5-
mile offshore outfall in waters that are more than 60 m deep
(Lyon and Sutula, 2011; City of Los Angeles, Environmental
Monitoring Division, 2017; Gierach et al., 2017; Trinh et al.,
2017). In fall 2015, during scheduled maintenance lasting 6 weeks
(September 21, 2015-November 2, 2015), secondary-treated
effluent from Hyperion was released at an older 1-mile
offshore outfall in waters less than 20 m deep (City of Los

FIGURE 1 | Map of Santa Monica Bay with the sampling stations
including the 1-mile outfall station (D9W, red triangle), the stepout stations
surrounding the outfall (orange diamonds), and the other stations (yellow
circles). The 1-mile and 5-mile outfall pipes extending from the Hyperion
Wastewater Treatment Plant are represented by black lines.
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Angeles, Environmental Monitoring Division, 2017). High
surface concentrations of organic matter, coliform bacteria,
and algal blooms were associated with the effluent plume
and impacted surface water quality. Preemptive closure of
nearby beaches was therefore necessary at times during the
diversion (City of Los Angeles, Environmental Monitoring
Division, 2017). The water quality monitoring efforts
described in this paper, including in-situ sampling, were led
by the City of Los Angeles Environmental Monitoring Division
(CLAEMD). Field measurements during the water quality
monitoring efforts were aided by the collection of PRISM
airborne imagery.

DATA AND METHODS

In-situ Sample Collection and
Measurements
Eighty-three surface water samples were collected before, during,
and after the wastewater diversion (sampling from September
16-November 11, 2015) aboard the R/V La Mer and R/V
Marine Surveyor along a zig-zagging pattern of stations
oriented northwest-southeast in Santa Monica Bay
(Figure 1 and Table 1). One station was located directly
above the 1-mile Hyperion effluent outfall (Station D9W),
and four more stations were positioned at “stepout” locations
approximately 750 m north, south, east, and west of the outfall
(Figure 1). The dispersion of the effluent from the outfall
during the diversion was driven by complex and variable
current patterns in Santa Monica Bay during the diversion
(City of Los Angeles, Environmental Monitoring Division,
2017). As a result, some stepout stations were heavily
influenced by effluent whereas others were minimally
impacted. Salinity was measured at 1-m depth using an SBE
19-plus Conductivity-Temperature-Depth (CTD) rosette
(Seabird Scientific®) equipped with 1.7 L Niskin bottles.
Two WETLabs® WETStar single-channel fluorescence
sensors were also mounted in the CTD rosette and
provided simultaneous measurements of chlorophyll-a
fluorescence (460 nm excitation and 695 nm emission) and
DOM fluorescence (370 nm excitation and 460 nm emission).
Surface water samples were collected at 1 m depth using the

Niskin bottles of the CTD rosette. Samples were gravity filtered
through 0.7 µm filters (GF/F glass-fiber filters) directly from
the Niskin bottles into clean borosilicate EPA clear glass vials
(acid washed with 10%-HCl and furnaced at 450°C for 4 h) and
placed immediately at 4°C in the dark until analysis in the
laboratory. Glass-fiber filters with a 0.7 µm effective pore size were
used in this study as a clean filtration method that allowed samples
to be rapidly filtered between sample collections. Differences
between filtration through 0.7 and 0.2 µm filters are likely to be
small for the relatively low particle concentrations measured in
Santa Monica Bay (Laanen et al., 2011). Scattering effects from any
remaining sub-micron-scale particles after 0.7 µm filtration are
expected to be further mitigated by the spectral fitting routine
applied during laboratory analysis for CDOM absorption (Zhu
et al., 2020; described below).

In-situ Radiometry
In-situ radiometric measurements were collected nearly
simultaneously with sample collection at 45 stations using a
Satlantic Inc. HyperPro free-falling optical profiling system
(Seabird Scientific). The HyperPro system is composed of
three, hyperspectral Satlantic Hyper Ocean Color
Radiometers (HyperOCR): two HyperOCR mounted on the
profiler to measure underwater downwelling irradiance Ed(λ)
and upwelling radiance Lu(λ) and a third radiometer that
measures downwelling surface irradiance above the air-
water interface Es(λ). The HyperPro was used in two
deployment methods during field sampling: tethered surface
reflectance buoy mode and profiling mode. These methods are
described in further detail for these data in a previous
publication (Trinh et al., 2017). Briefly, in both modes, the
water-leaving radiance Lw(λ) is calculated by extrapolating
below-surface upwelling radiance and downwelling irradiance
measurements across the air-water interface. Water-leaving
radiance is then divided by Es(λ), measured by the above-water
reference sensor, to calculate remote sensing reflectance
Rrs(λ) � Lw(λ)/Es(λ). Care was taken during both surface
reflectance buoy-mode and profiler-mode deployments to
keep the profiler at least 30 m away on the sunward side of
the ship to minimize instrument shading. In profiler mode,
observations from multiple freefall casts were combined to collect
repeatable, representative Rrs measurements. Spectral Rrs(λ)

TABLE 1 | Summary of in-situ variables. Ranges of observed environmental parameters are reported for each sampling day. Gray rows denote sampling conducted during
the wastewater effluent diversion.

Sampling date Salinity
[PSU]

ag(365)
[m−1]

ag(443)
[m−1]

EEM mean
effluent

peak FE [RU]

EEM mean runoff
peak

FR [RU]

Chlorophyll-a
Fluorescence [FU]

[DOC]
[µmol L−1]

September 16, 2015 32.64–33.24 0.10–0.57 0.027–0.18 0.0071–0.033 0.012–0.067 0.013–0.15 159–214
September 24, 2015 32.21–33.31 0.17–0.60 0.050–0.20 — — — —

September 30, 2015 31.80–33.44 0.07–0.92 0.017–0.32 0.0036–0.18 0.0089–0.11 0.0–3.6 155–350
October 14, 2015 31.75–33.48 0.06–0.75 0.015–0.26 0.0039–0.14 0.010–0.092 0.0079–1.2 147–284
October 21, 2015 32.11–33.45 0.08–0.66 0.021–0.22 0.0049–0.092 0.0085–0.073 0.018–3.5 146–230
October 26, 2015 33.64–32.40 0.07–0.33 0.019–0.10 0.0076–0.070 0.026–0.068 — 168–226
November 5, 2015 33.30–33.38 0.11–0.20 0.030–0.063 0.0060–0.014 0.011–0.021 0.050–1.3 155–167
November 11, 2015 33.35–33.44 0.10–0.21 0.028–0.064 0.0055–0.013 0.0091–0.020 0.047–0.32 139–155
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measurements from the HyperPro, covered a range from 350
to 700 nm in 3–4 nm increments, but were interpolated to
1 nm spectral resolution. In-situ Rrs(λ) data were smoothed
using a Savitzky-Golay filter (Savitzky and Golay, 1964) with
frame size of 13 nm and polynomial of order 4 (Vandermeulen
et al., 2017) implemented using the sgolayfilt function in
Matlab. This smoothing was selected for its preservation of
spectral shape and with a window chosen to smooth spectra
without eliminating narrow features (Vandermeulen et al.,
2017). In-situ Rrs(λ) data were used to validate PRISM
Rrs(λ) and to calibrate empirical algorithms. For inter-
comparability with PRISM data described below, Rrs(λ)
analyses were limited to the 365–700 nm spectral range.
Rrs(λ) spectra collected at in-situ stations are shown in
Supplementary Figure S1.

Chromophoric Dissolved Organic Matter
Absorption Coefficient Spectra
Absorption-coefficient spectra of CDOM, ag(λ), were
determined for the 83 surface-water samples (Figure 2) and
five effluent-dilution samples (see below) using a
Shimadzu UV-1830 dual-beam spectrophotometer. As
described above, samples were gravity filtered using pre-
combusted glass fiber filters (0.7 µm pore size) and stored at

4°C in borosilicate glass bottles prior to measurement. The
absorbance (optical density) of each filtered sample was
measured in 1-nm increments from 250 to 700 nm. Samples
were placed in 5 cm-pathlength quartz cells, and measurements
were compared to simultaneous blank measurements of pure
water (Millipore Milli-Q Direct 16). Samples were allowed to
equilibrate to room temperature to avoid artifacts in pure-water
absorption at longer wavelengths caused by temperature
differences (Sullivan et al., 2006).

An exponential fit of the absorbance spectrum from 500 to
700-nm was used to compute an offset value that was subtracted
from the entire absorbance spectrum (Fichot and Benner, 2011;
Zhu et al., 2020). Offset-corrected spectral absorbances were
converted to Napierian CDOM absorption coefficients, [m−1].
This offset correction is well suited to coastal waters, because it
does not assume that absorption coefficients in the 680–700 nm
are negligible as is often done in procedures used to correct
CDOM absorbance for open ocean waters (Johannessen et al.,
2003).

Chromophoric Dissolved Organic Matter
Fluorescence Excitation-Emission Matrices
Seventy-six filtered (0.7 µm) surface water samples and the five
effluent-dilution samples were analyzed for excitation and

FIGURE 2 | Map of in-situ ag(365) measured during the field campaign in the fall 2015. Pre-diversion samples were measured on September 16 after a heavy
precipitation event on September 15 (>6 cm of rain) and exhibited higher CDOM content at the north end of the bay. During the wastewater diversion, the highest ag(365)
were observed near the 1-mile outfall. After the end of the wastewater diversion, there was little precipitation, and ag(365) was low at all sampling stations across Santa
Monica Bay.
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emission matrix (EEM) fluorescence using a Photon Technology
International PTI 814 spectrofluorometer with a 1 cm quartz
cuvette (Walker et al., 2009). Excitation was performed in 5 nm
increments from 240 to 450 nm, and emission was measured in
2 nm increments from 300 to 600 nm. During the measurement,
the emission signal was normalized to a reference detector to
remove fluctuations of the light source. The raw EEM spectra
were exported to MATLAB and processed with the drEEM
toolbox (Murphy et al., 2013) to correct for the inner filter
effect and to apply a Raman calibration. Finally, a Raman-
normalized excitation and emission spectrum of Milli-Q water
(18.2 MΩ cm) was subtracted from sample EEM spectra to
remove the Raman signal. EEM fluorescence was not
measured on September 24 and at two stations on October 21
because of low sample volume.

Dissolved Organic Carbon Concentration
Dissolved organic carbon (DOC) was measured by high-
temperature combustion using a Shimadzu TOC-V analyzer
equipped with an autosampler (Fichot and Benner, 2011).
Samples were gravity filtered using pre-combusted glass fiber
filters (0.7 µm pore size), acidified with 2 mol L−1 HCl, and stored
at 4°C in borosilicate glass bottles until analysis within a few days
of sampling. DOC concentration in the blanks were negligible,
and accuracy and consistency of measured DOC concentrations
was checked by measuring a deep seawater reference standard
(University of Miami) every sixth sample.

Effluent Dilution Experiment
A sample of undiluted wastewater effluent was provided by the
Hyperion Wastewater Reclamation Plant for our use in a dilution
experiment. In order to simulate the effects of effluent-derived
DOM on the absorption and fluorescence characteristics of the
water, the effluent sample was diluted in a surface seawater
sample obtained in offshore Santa Monica Bay after the
diversion. Specifically, the pure effluent sample (100%) was
diluted to generate seawater solutions containing 5, 1, 0.2, and
0% (no addition) of effluent by volume. Each sample was then
analyzed for CDOM absorption spectra and EEM fluorescence as
described above.

Algorithm Development
We developed local empirical algorithms for the remote retrieval
of CDOM absorption coefficient from UV-visible Rrs(λ)
measurements. These algorithms were tested against two
standard methods: a local empirical blue-red band ratio
algorithm, and the Quasi-Analytical Algorithm version 6,
updated in 2014 (QAA_V6) (Lee et al., 2007; Lee et al., 2009;
Lee et al., 2014). Absorption at 365 and 443 nm were selected as
representative scalar measures of CDOM to be inferred by the
algorithms. The ag(365) was selected because it directly
influences Rrs(365), the shortest UV wavelength for which we
have Rrs(λ). The Rrs(λ) in this wavelength range is expected to be
less influenced by other in-water constituents. Algorithms were
also developed for ag(443), to facilitate comparison with the
QAA. Absorption coefficients of CDOM at 365 and 443 nm were

highly correlated, and the accuracy of their retrieval by empirical
algorithms was comparable, allowing for fair comparison of local
empirical algorithms that utilize UV reflectance with other
methods.

Empirical Algorithms for ag(λ)
UV-red and blue-red band-ratio algorithms were compared to
assess the utility of including UV reflectance in simple empirical
algorithms to facilitate the retrieval of accurate ag(365) and
ag(443) in a coastal environment where optical variability is
largely driven by phytoplankton (Trinh et al., 2017). We also
assessed the value of additional spectral information for the
development of such empirical algorithms. Algorithms based
on multiple linear regression (MLR) utilizing three bands and
a full-spectrum partial least squares regression (PLSR) algorithm
were compared to explore the improvements in CDOM retrieval
offered by increasing spectral resolution. Specifically, to assess the
utility of UV measurements and high spectral resolution data for
the retrieval of ag(443), five strategies were tested:

1) univariate regression on a blue-red reflectance band
ratio Rrs(443)/Rrs(665);

2) univariate regression on a UV-red reflectance band
ratio Rrs(365)/Rrs(665);

3) visible multiple linear regression on Rrs(412), Rrs(443),
and Rrs(700);

4) UV-visible multiple linear regression on Rrs(365), Rrs(400),
and Rrs(700);

5) UV-visible partial least squares regression on full-spectrum
Rrs(365−700).

Empirical algorithms for deriving bio-optical properties from
Rrs(λ) were calibrated using in-situ data including stations where
Rrs(λ) was measured along with CDOM absorption (n �41).
Empirical fits for ag(λ) were conducted by first taking the log-log
transform of ag(443) and the Rrs predictor variables and then
performing linear regression (equivalent to fitting a power-law).
For all multiple linear regression algorithms, initial wavelength
selection was conducted by performing forward and backward
variable selection, conducted using the MATLAB stepwiselm
function to select variables based on local minimization of the
Bayes Information Criterion (BIC). As stepwise variable
selection is sensitive to initial selection of predictors, it was
performed using reflectance observations at 5 nm intervals
across the entire measured wavelength range (or from 412 to
700 for the visible-only MLR) as the initial predictor variable.
The wavelengths most frequently selected by stepwise variable
selection were then tested together in different combinations of
wavebands, based on understanding of bio-optical signatures
and chosen to reduce correlation between variables by not
choosing Rrs(λ) observations from wavelengths <10 nm
apart. Finally, forward and backward variable selection was
again conducted using the MATLAB stepwiselm function to
identify a best-performing MLR model.

We also tested empirical algorithms for inferring CDOM
using partial least squares regression. PLSR is a statistical
technique for collapsing many highly correlated explanatory
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variables into a smaller number of uncorrelated predictors ranked
in order of explanatory power (Mevik and Wehrens, 2007).
Linear combinations of predictors are used to create
components that have maximized correlation with the
response variable. To predict bio-optical parameters, PLSR was
implemented using the MATLAB plsregress function from the
Statistics and Machine Learning Toolbox™. PLSR models were
tested for both log-transformed and linear Rrs and log-
transformed and linear bio-optical properties.

PLSR was tested for overfitting using a “leave-p-out” cross-
validation routine with p � 4. Four data points, representing
approximately 10% of the available data, was selected as an
appropriate subset for validation in order to balance bias and
variance in cross-validation (Arlot and Celisse, 2010). During
“leave-four-out” cross-validation, PLSR coefficients were
calibrated using the remaining n−4 data points, and the
resulting empirical algorithm was validated using the four
points that had been held out. Error statistics (root mean
squared error (RMSE), mean absolute error (MAE), mean
absolute percent error (MAPE), and R2) were calculated
between the fitted and measured parameter of interest on
the four points that were held out. This process was repeated
for all possible subsets of four stations (40 choose four
combinations for predicting EEM fluorescence peak ratio
and 45 choose four combinations for fits on ag), and
averaged error statistics across all leave-four-out
combinations were calculated. The averaged leave-four-out
error statistics were used to select an appropriate number of
PLSR components.

Full error statistics for empirical algorithm calibration are
presented in Table 2. The performance of these empirical
algorithms was also compared to QAA retrievals to assess
the performance of locally calibrated empirical algorithms
against a well-established semi-analytical approach. The same
procedure was used to calibrate empirical algorithms for
ag(365), but in this case no direct comparison with the QAA
was possible.

Effluent Fluorescence Peak Ratio Empirical Algorithm
Development
We also assessed the feasibility of remotely detecting CDOM
source information, specifically inferring a fluorescence proxy for
the degree of effluent impact. From in-situ stations where both
Rrs(λ) and EEM fluorescence were measured (n � 40), we
developed empirical algorithms for inferring the ratio between
the mean intensity of an EEM fluorescence peak associated with
effluent, FE , (340–360 nm excitation and 426–454 nm emission),
and one that was indicative of runoff-influenced CDOM, FR,
(255–265 nm excitation and 382–398 nm emission) from remote
sensing reflectance (see Results). The effluent fluorescence ratio
(EFR, mean intensity of the effluent-associated peak/mean
intensity of the runoff-associated peak) was used as an optical
proxy for the degree of effluent impact in a sample (see below for
full definition of EFR). Unlike FE, which increased with increasing
CDOM regardless of source (although the increase in FE was
greater for effluent-derived CDOM), EFR compared the relative
intensity of fluorescence in different ranges of the spectrum.
Therefore, EFR was a specific indicator of effluent, because it
increased only when the amount of effluent-derived CDOM
increased and was decreased by the addition of runoff-derived
CDOM. Empirical algorithms utilizing MLR on Rrs(400),
Rrs(425), and Rrs(400)/Rrs(425) and a full-spectrum,
Rrs(365–700), PLSR were fitted to data from 36 calibration
stations with in-situ Rrs and EEM fluorescence data.

Portable Remote Imaging SpectroMeter
Imagery
PRISM imagery was collected during a flyover on October 26,
2015. The instrument, mounted on an ER-2 aircraft flying at an
approximate altitude of 20 km, captured a swath from northwest
to southeast along the coastline of Santa Monica Bay.
Atmospheric correction was conducted using an Optimal
Estimation formulation that simultaneously models surface
and atmospheric reflectance contributions from statistical

FIGURE 3 | Comparison of in-situ environmental parameters measured during the field campaign: (A) ag(365) versus chlorophyll-a fluorescence with color scale
indicative of salinity, (B) salinity versus ag(365) with color scale indicative of chlorophyll-a fluorescence, and (C) salinity versus chlorophyll-a fluorescence with color scale
indicative of ag(365). In situ chlorophyll-a fluorescence was not measured at all stations (black symbols in panel B do not have chlorophyll-a data).
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priors (Thompson et al., 2018). The atmospheric correction
approach, including the calibration and orthorectification of
the PRISM imagery were described at length in a recent
manuscript (Thompson et al., 2019). The spatial resolution of
the image is approximately 20 m, and includes spectral
measurements made approximately every 3 nm from 350 to
1,050 nm. This high spatial resolution provides opportunities
for detecting patterns in water quality at small scales, but also
introduces additional challenges for interpreting data in some
areas. For example, several boats are visible in maps of Rrs(λ) and
derived products. Reflectance measurements at wavelengths
shorter than 365 nm were not available for this analysis
because they were excluded during the Level-1-to-Level-2
processing of the PRISM data in order to include only spectral
regions of reliable instrument calibration and atmospheric
correction. PRISM swaths were trimmed to remove sensor
artifacts at the edges of the swath and to remove waters with
depth <10 m due to suspected influence of wave action and
bottom effects in shallower waters (Supplementary Figure S2).

Statistical Analysis
Statistical analyses were conducted in R (R Core Team, 2018) and
MATLAB version R2018b. Figures were produced in R using the
fields package, and in MATLAB. Multiple linear regression and
partial least squares regression were implemented using
MATLAB version R2018b.

RESULTS

Chromophoric Dissolved Organic Matter
Variability in Santa Monica Bay
The spatial distribution of CDOM absorption in Santa Monica
Bay was very variable over the course of the fall sampling, as local
inputs from riverine and wastewater effluent sources were added
to the bay (Figure 2). On September 16, following a major rain
event before the diversion (>6 cm of rain fell on September 15 in
the wettest September storm in more than 100 years), higher
ag(365) values were observed nearshore and in the northern end
of the bay (Figure 2), where several rivers and creeks from the

Santa Monica Mountains drain to the bay. Later, during the
Hyperion wastewater diversion (sampling from September 16-
November 11, 2015), the highest ag(365) values (up to 0.92 m−1

on September 30) were typically observed at or near the diverted
1-mile outfall (Figure 2 and Supplementary Figure S3). After
the diversion, precipitation was low and ag(365) values
remained low across the entire bay, with a small offshore-
inshore gradient (Figure 2). This change in CDOM
distribution during the sampling window illustrated several
of the dominant CDOM regimes in Santa Monica Bay: 1)
runoff-dominated before the diversion, 2) influenced by
wastewater effluent during the diversion, and 3) low-CDOM
conditions after the diversion.

The relationships between CDOM, chlorophyll-a, and salinity
in this data set were complex and variable, and were consistent
with variable sourcing of in-water constituents (Figure 3).
Overall, these urban coastal waters exhibited general
correlations between chlorophyll-a, ag(365), and salinity that
were consistent with terrigenous inputs driving most of the
optical variability (Bowers and Brett, 2008). However, upon
close inspection, the relationships between ag(365),
chlorophyll-a, and salinity clearly separated into two
distinguishable trends. The first, where lower salinities were
accompanied by elevated levels of chlorophyll-a and CDOM,
was consistent with the influence of terrigenous inputs. The
second, where lower salinities were accompanied by elevated
CDOM but much more moderate levels of chlorophyll-a,
corresponded to the wastewater-influenced waters of the
diversion.

Attempting to Differentiate Chromophoric
Dissolved Organic Matter Sources Using
Absorption
Overall, the variability of the CDOM absorption coefficient
spectra adhered to expected relationships, but did not enable
the identification of different CDOM sources. The absorption
spectra followed the typical exponential spectral shape for CDOM
(Supplementary Figure S3), and ag(λ)was well correlated across
wavelengths. In particular, the two wavelengths explored in this

TABLE 2 | Summary statistics associated with the performance comparison of the six ag(443) algorithms (see also Figure 8). Statistics include root mean squared error
(RMSE), mean average percent error (MAPE), mean absolute error (MAE), and R-squared for each algorithm.

Algorithm RMSE MAPE MAE R2

Blue-red band ratio
log(ag(443)) on log(Rrs(443)/Rrs(665)) 0.051 29.364 0.028 0.378

UV-red band ratio
log(ag(443)) on log(Rrs(365)/Rrs(665)) 0.037 23.108 0.021 0.671

QAA v.6
(Not including major outliera) 0.038 23.969 0.022 0.637

Visible-only multiple linear regression (MLR)
log(ag(443)) on log(Rrs(412)) + log(Rrs(443)) + log(Rrs(700)) 0.030 20.140 0.016 0.765

UV-Visible multiple linear regression (MLR)
log(ag(443)) on log(Rrs(365)) + log(Rrs(400)) + log(Rrs(700)) 0.026 13.782 0.012 0.831

Partial-least-square regression (PLSR)
log(ag(443)) on log(Rrs(365:700)); 5 components 0.026 13.896 0.012 0.830

aMajor outlier of the QAA algorithm was sample D5W collected on September 30, 2015 (See Figure 2).
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study, ag(365) and ag(443), were strongly and linearly correlated
with an R2 � 0.99 (Figure 4A), indicating a limited range of
CDOM spectral slope coefficient values in the 365–443 nm range
and no obvious differences between CDOM from different
sources (e.g., terrestrial runoff versus wastewater effluent). In a
few cases, some ag(λ) spectra exhibited broad features at λ <
360 nm that were suggestive of the presence of dissolved
mycosporine-like amino acids (MAAs) exuded from
phytoplankton (Morrison and Nelson, 2004; Tilstone et al.,
2010). As in most coastal environments, CDOM absorption
was also strongly correlated with DOC concentration
(Figure 4B; (Mannino et al., 2008; Fichot and Benner, 2011)).
Although this relationship remained consistent during the
sampling window and enabled estimation of [DOC] from
CDOM with reasonable accuracy, it did not help discriminate
between different sources of CDOM.

Spectral slopes of CDOM absorption coefficient also did not
offer opportunities to differentiate effluent-derived CDOM from
other sources. Absorption spectral slopes between 275 and
295 nm (S275−295) were correlated with UV-visible spectral
slope (S365−443), with no difference in behavior for effluent-
derived CDOM (Figure 4C) from other sources. The spectral
slope coefficient between 275 and 295 nm (S275−295), a now well-

established tracer of terrigenous inputs in coastal waters (Helms
et al., 2008; Fichot and Benner, 2012), generally adhered to an
expected power-law relationship with ag(365) and did not
facilitate the discrimination of effluent-derived CDOM from
other sources (Figure 4D). The UV-visible spectral slope,
S365−443, followed a similar yet less well-defined pattern,
decreasing with increasing ag(365) (Figure 4E). Effluent
samples did not differ in DOC-specific CDOM absorption
from other CDOM sources either. The DOC-specific CDOM
absorption coefficient, apg(365) � ag(365)/[DOC], followed
previously described relationships with S275−295 for coastal
areas (Fichot and Benner, 2012; Cao et al., 2018), and almost
all samples plotted along the same general relationship
(Figure 4F).

Samples collected near the effluent outfall during the diversion
exhibited high ag(365), but that criterion alone was not sufficient
to identify wastewater effluent, as runoff and phytoplankton
blooms are also associated with elevated CDOM. Furthermore,
the effluent-derived CDOM also exhibited low S275−295 and
S365−443 values similar to those of terrigenous CDOM. The
spectral shape of CDOM absorption did not differ significantly
enough to facilitate the distinction of effluent-derived CDOM.
Therefore, while effluent-impacted samples had relatively high

FIGURE 4 | Plots of CDOM absorption characteristics: (A) relationship between absorption coefficients of CDOM at 365 and 443 nm, (B) relationship between
ag(365) and [DOC], (C) spectral slope in the UV-B (S275–295) versus UV-A to visible (S365–443) domain, (D) relationship between ag(365) and S275–295, (E) relationship
between ag(365) and S365–443, and (F) relationship between S275–295 and [DOC]-specific absorption by CDOM (apg). Organic matter in effluent impacted samples,
collected at the 1-mile outfall during the diversion, occurs in relatively high abundance, but does not differ in absorption characteristics from other CDOM sources.
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FIGURE 5 | CDOM fluorescence excitation emission matrices (EEMs): (A) EEM of a pre-diversion sample with high ag(365) associated with terrigenous runoff that
fluoresces strongly at the runoff-associated peak FR (255–265 nm excitation and 382–398 nm emission), (B) EEMof an effluent-impacted sample, collected at the 1-mile
outfall during the diversion, which exhibits a strong effluent-associated fluorescence peak FE (340–360 nm excitation and 426–454 nm emission) that is much less
prominent in samples not influenced by effluent, (C) EEM of a low ag(365) sample collected at the 1-mile outfall after the diversion.

FIGURE 6 |Relationships between: (A) intensity of the effluent-associated fluorescence peak FE and ag(365), (B) intensity of effluent-associated fluorescence peak
FE and intensity of the runoff-associated fluorescence peak FR, (C) the effluent fluorescence ratio EFR � FE /FR and the % effluent by volume from the dilution experiment
samples, and (D) the EFR and ag(365).
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CDOM, absorption alone did not offer prescriptive
characteristics for separating wastewater effluent-impacted
waters from riverine and autochthonous CDOM in Santa
Monica Bay.

Differentiating Chromophoric Dissolved
Organic Matter Sources Using
Fluorescence
In contrast to CDOM absorption, EEM fluorescence proved
useful for separating effluent-derived CDOM from other
sources. Samples collected around the 1-mile outfall during
the diversion exhibited a distinct fluorescence peak (FE) often
associated with wastewater effluent (sometimes described in
previous literature as Peak C) (Goldman et al., 2012; Carstea
et al., 2016), centered around 340–360 nm excitation and
426–454 nm emission (Figure 5). Other regions of the
fluorescence EEM, such as the FR peak centered at
255–265 nm excitation and 382–398 nm emission (Figure 5),
were less sensitive to effluent and more sensitive to other sources
of CDOM such as runoff. These fluorescence features associated
with different origins of CDOM provided an opportunity to
discriminate between CDOM sources based on fluorescence.

Samples collected at or near the wastewater effluent outfall
during the diversion fluoresced more intensely at the effluent
peak (higher FE values) than other samples with similar ag(365)
values. This was evident in the observed relationship between
ag(365) and FE for all samples (Figure 6A), in which samples
near the outfall clearly had enhanced FE for the same level of
ag(365). Furthermore, the samples from the effluent dilution
experiment (created by diluting a sample of pure effluent
provided by the Hyperion wastewater treatment plant with
deep-ocean seawater) also exhibited a very similar relationship
between FE with ag(365) as the bay samples. The relationship
between FE and FR (Figure 6B) was generally similar to the
relationship between FE and ag(365), with samples collected near
the outfall exhibiting higher FE and FR than samples collected at
other locations in Santa Monica Bay. However, samples that were
solely influenced by runoff (samples collected at other locations in
Santa Monica bay with relatively high ag(365) and low salinity)
exhibited much lower FE values for the same FR. A ratio of the two
peaks captures this effluent-influenced fluorescence pattern,
while limiting the influence of total CDOM content.

The dependence of FE and FR on CDOM source provided an
opportunity to distinguish CDOM from effluent-influenced
samples. Here, we propose EFR,

EFR � FE
FR

(1)

as an optical indicator of effluent-impacted waters, where FE is
the mean fluorescence intensity in Raman Units (RU) of the
effluent peak (340–360 nm excitation and 426–454 nm emission),
and FR is the mean fluorescence intensity in RU for the runoff
peak (255–265 nm excitation and 382–398 nm emission). EFR
was selected as a specific indicator of effluent impact, because it
was increased by increasing effluent-derived CDOM, but not by
increasing runoff-derived CDOM. FE alone was not a specific

indicator of effluent, since some samples with increased FE
(>0.02 RU) were collected from both effluent-impacted and
runoff-impacted waters. However, by including a ratio of
FE/FR, EFR leveraged the fact that effluent-impacted CDOM
had higher FE relative to other fluorescence peaks, thereby
facilitating effluent detection.

The effluent dilution experiment clearly revealed the
dependence of the EFR on the fraction of wastewater effluent
diluted in a local seawater sample (Figure 6C). EFR values
increased asymptotically with the fraction of effluent from a
value of approximately 0.75 for 0% effluent to almost 2 for 5%
effluent. The increased utility of EFR over FE for distinguishing
samples impacted by wastewater effluent was further
demonstrated by the relationship between FE and EFR for the
samples collected in the bay (Figure 6D). In particular, a few
runoff-impacted samples had increased FE values (∼0.2), but
exhibited no such increase in EFR. Samples from the outfall
during the diversion and from the effluent dilution have higher
EFR than those collected at other stations, and this behavior
allowed for the differentiation of effluent-derived CDOM from
runoff-derived CDOM.

The spatial distribution of EFR values in Santa Monica Bay
during the sampling window (Figure 7) was very consistent with
the modeled dispersion of the effluent (Supplementary Figure
S4). No EFR higher than 0.8 were detected before or after the
diversion, and the highest EFR values detected during the
diversion (>1.5) were at the wastewater outfall. Higher EFR
values (>1.0) also occurred in the area surrounding the outfall
(stepout stations). Samples with increased EFR generally occurred
near the path of effluent plume, as inferred in particle trajectory
modeling (Supplementary Figure S4) conducted by the Southern
California Coastal Observatory System based high frequency
radar observations of local currents in Santa Monica Bay (City
of Los Angeles, Environmental Monitoring Division, 2017).

The effluent fluorescent peak FE is a well-positioned
fluorescence feature in CDOM because it has the potential to
influence remote-sensing reflectance. This fluorescence is
particularly intense, meaning it can produce a significant
radiance. Furthermore, unlike most other CDOM fluorescence
peaks which require excitation at wavelengths shorter than
300 nm, the FE peak is excited by UV radiation (∼350 nm)
that is naturally present in underwater solar irradiance (Fichot
and Miller, 2010). It also emits broadly in the blue part of the
spectrum (∼440 nm). Phytoplankton also absorb strongly in this
wavelength range creating potential for fluorescence reabsorption
and possibly introducing further challenges for remote detection.
However, past studies (Hoge et al., 1993; Green and Blough, 1994;
Lee et al., 1994), have included remote detection of CDOM
fluorescence features despite interference from phytoplankton
absorption, indicating that some changes in CDOM fluorescence
are remotely detectable. Therefore, we expect that the sun-
induced fluorescence of effluent-derived CDOM could drive
detectable changes in remote-sensing reflectance, allowing for
the fully remote detection of wastewater effluent based on its
optical characteristics. As an optical proxy based in part on FE ,
EFR offers utility for differentiating effluent-derived CDOM from
other sources. It also offers a potential mechanism for inferring
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effluent influence from ocean color remote sensing. The potential
applications and challenges remote EFR detection are further
explored in the Discussion section in the context of the results of
this work.

Algorithm Performance Comparison
We compared the performance of empirical algorithms
developed for ag(443) to specifically assess the utility of: 1) Rrs

in the UV range, and 2) Rrs at high spectral resolution (Figure 8).
Our results indicated that the MLR algorithm utilizing Rrs(365),
Rrs(400), and Rrs(700) inferred ag(443)with the highest accuracy
(full summary statistics in Table 2) between fitted and measured
values (RMSE � 0.026). Despite including much more spectral
information, the five-component PLSR algorithm performed
similarly (RMSE � 0.026) to the MLR, suggesting that a large
number of spectral bands was not necessary for retrieving CDOM
accurately with empirical approaches. The MLR coefficients for
all algorithms are listed in Supplementary Table S2, the PLSR
component loading plots are presented in Supplementary Figure
S5, and summaries of leave-four-out error for selecting number of
components are presented in Supplementary Table S1. The two
band ratio algorithms performed substantially worse than the
empirical algorithms utilizing more predictors. The UV-red
algorithm (RMSE � 0.037) performed better than the standard
blue-red method (RMSE � 0.051). As expected, the UV-visible
MLR (RMSE � 0.026) also outperformed the visible MLR
(RMSE � 0.030). From the performance of the five

empirical algorithms, we found that adding UV bands, in
addition to red and blue, improved CDOM retrieval in
complex coastal waters (in both the band ratio and MLR
algorithms), but that increasing the number of bands (as in
the PLSR algorithm) beyond three bands used in the UV-
visible MLR algorithm offered minimal improvement to
ag(443) retrieval accuracy.

To compare empirical CDOM absorption retrieval to an
established semi-analytical method, we included ag(443)
retrieved by the QAA in our analysis. While the QAA returns
spectrally-resolved water inherent optical properties (IOPs), it
pools absorption by detritus (ad) and ag into a combined adg(λ)
spectrum, only inferring ag independently from ad at 443 nm (Lee
et al., 2014). Due to the semi-analytical, more mechanistic nature
of the QAA, no calibration was conducted. The best-performing
empirical algorithms for ag(443), MLR and PLSR, outperformed
the QAA (RMSE � 0.038) in the complex, coastal waters of Santa
Monica Bay. However, QAA retrieval of ag(443) outperformed
the red-blue band ratio and had comparable accuracy to the UV-
red band ratio algorithm.

Across all of the algorithms tested, the sample collected at
D9W (wastewater outfall) on October 14 was an outlier, with
inferred ag(443) anomalously low relative to measured ag(443)
(Figure 8). This mismatch may have been caused by boat drift
between radiometry and sample collection, particularly as
conditions changed rapidly over steep spatial gradients around
the outfall, or potential contamination of the sample. However,

FIGURE 7 |Distribution of in-situ EFR in Santa Monica Bay during the sampling window. No EEM analysis was conducted for September 24. EFR values >1.0 were
only detected near the outfall during the diversion. Data from September 16 (after major rain event) show that the EFR is largely insensitive to runoff.
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we did not have a definitive basis on which to exclude that data
point, and therefore included it in our analyses.

Implementation of Chromophoric Dissolved
Organic Matter Algorithms on Portable
Remote Imaging SpectroMeter Imagery
The CDOM algorithms were implemented on the PRISM
remote-sensing reflectance (Figure 9) to produce maps of
CDOM at 20 m resolution in Santa Monica Bay for October
26. Mapped Rrs(λ) from PRISM imagery followed reasonable
distributions in Santa Monica Bay, with variability tracking
different water masses. Rrs(665) and Rrs(555) increased in
nearshore coastal areas and at the wastewater effluent outfall,
highlighting areas with higher backscattering from
suspended particles or phytoplankton. Distributions of
Rrs(443) and Rrs(365) showed some similarities, with
decreased reflectance in these nearshore and outfall areas,

likely driven by increased CDOM and phytoplankton
absorption at short wavelengths. A plume of water with
decreased reflectance at Rrs(443) and, especially, Rrs(365)
delineated a counterclockwise swirling, current-driven
entrainment of material at the northern end of the bay.
Overall, the observed spatial patterns of all Rrs(λ), even for
Rrs(λ) in the UV domain, were very realistic and consistent with
expectations for this coastal environment. To the extent of our
knowledge, this represents one of the first high-resolution images of
UV remote-sensing reflectance at wavelengths shorter than 380 nm
collected over coastal waters.

The spatial distributions and inferred ranges of ag(443) from
the different algorithms showed expected similarities but also
some important differences (Figure 10). All approaches
identified a point source of high CDOM at the diverted
wastewater outfall as well as plumes of CDOM swirling in
Santa Monica Bay north of Marina del Rey, and smaller
plumes of higher ag(443) at the north end of the bay. The

FIGURE 8 | Performance comparison of six different ag(443) algorithms. In-situ data used for calibration (n � 41) are displayed as blue circles, and end-to-end
validation points comparing measured ag(443) to inferred ag(443) from nearest neighbor PRISM pixels (n � 4) are displayed as orange diamonds. Most of the ag(443)
algorithms presented here, with the exception of the QAA, are empirical and were developed using coincident in-situmeasurements of Rrs and ag(443): (A) log-log fit on
blue-red band ratio Rrs(443)/Rrs(665), (B) log-log fit on UV-red band ratio Rrs(365)/Rrs(665), (C) the QAA algorithm v.6, which exhibited one major outlier and is
plotted without it to facilitate comparison (inset plot includes outlier), (D) log-log visible-only multiple linear regression (MLR) on Rrs(412), Rrs(443), Rrs(700); (E) log-log UV-
visibleMLR onRrs(365),Rrs(400),Rrs(700), and (F) a log-log partial-least-square regression (PLSR) on the full spectrumRrs(365–700), using the first five components. The
sample collected at station D9W on October 14 was an outlier, with low inferred ag(443) relative to measured ag(443) for all algorithms. This sample is indicated with a
dashed circle.
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location of this high ag(443) plumes in northern Santa Monica
Bay is consistent with the presence of rivers and creeks draining
the Santa MonicaMountains. The band ratio algorithms (Figures
10A,B) appear to overestimate ag(443) in areas with intermediate
CDOM content (0.05< ag(443)< 0.1), relative to other strategies.
Overestimation of ag(443) relative to measured data was also
visible in band ratio fits of the in-situ data. Perhaps surprisingly,
the maps derived from the UV-red band ratio and the blue-red
band ratio exhibited similar patterns, suggesting that UV
reflectance alone used in a band ratio was not sufficient to
retrieve CDOM in this phytoplankton-dominated system.
Similar algorithms were developed for ag(365) and these
were applied to PRISM Imagery (Supplementary Table
S3). Summaries of ag(365) algorithm performance and
maps of ag(365) are presented in Supplementary Figures
S6, S7.

We also conducted an end-to-end validation (Figure 8 and
Supplementary Figure S8) for which ag(443) retrieved from
PRISM Rrs(λ) were compared to ag(443) measured at collocated
matchup stations on October 26. However, only a very small

number of data points from closely located validation stations
(n � 4) were available for this validation, and these data did not
provide sufficient information for reliable validation and
meaningful comparison of the algorithms.

Effluent-Chromophoric Dissolved Organic
Matter Detection Algorithm and
Implementation on Portable Remote
Imaging SpectroMeter
Algorithms for retrieving EFR were developed using a five-
component PLSR on Rrs(365–700) (Figure 11). The
component loading plots for the PLSR is presented in
Supplementary Figure S9. The performance of this fully
spectral algorithm was compared to that of a simpler
algorithm based on the MLR of EFR on Rrs(400), Rrs(425),
and Rrs(400)/Rrs(425). Based on in-situ data alone, the PLSR
algorithm retrieved EFR with a slightly higher accuracy (RMSE �
0.156, R2 � 0.608) than the MLR algorithm (RMSE � 0.160, R2 �
0.589). However, for error metrics that were comparable across

FIGURE 9 | Remote-sensing reflectance spectra, Rrs(λ), measured by the airborne Portable Remote Imaging SpectroMeter (PRISM) after atmospheric correction
(Thompson et al., 2019) during a flyover of Santa Monica Bay, CA on October 26, 2015: (A) Rrs(365)map, (B) Rrs(443)map, (C) Rrs(555)map, (D) Rrs(665)map, and
(E) comparison of PRISM-derived Rrs(λ) spectra with coincident Rrs(λ) spectra measured in situwith a Satlantic HyperPro at four matchup stations: D8W, D8.5W, D9W
(outfall), and D9.5W.
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parameters, (MAPE and R2), retrieval accuracies for both EFR
algorithms were lower than for their corresponding ag(443)
algorithms (Compare Tables 2, 3).

The EFR algorithm was applied to the PRISM imagery and
generated maps of EFR at 20 m resolution across Santa Monica
Bay. The range of remotely sensed EFR values matched that of the

FIGURE 10 | Maps of ag(443) retrieved from the PRISM Rrs(λ) using the QAA and the empirical algorithms developed in this study. The ag(443) retrievals were
made using the following algorithms: (A) blue-red band ratio Rrs(443)/Rrs(665), (B) UV-red band ratio Rrs(365)/Rrs(665), (C) QAA algorithm v.6, (D) visible-only multiple
linear regression (MLR) on Rrs(412), Rrs(443), Rrs(700); (E) UV-visible MLR on Rrs(365), Rrs(400), Rrs(700), and (F) partial-least-square regression (PLSR) on the full
spectrum Rrs(365–700) using the first five components.

FIGURE 11 | Performance of an empirical PLSR-based algorithm for Effluent Fluorescence Ratio (EFR) and its implementation on the PRISM Rrs(λ) data: (A) EFR
values modeled from the in-situmeasured Rrs(λ) using the PLSR-based algorithm, versus EFR values measured on the samples’ fluorescence EEM spectra. In-situ data
used for calibration (n � 36) are displayed as green circles, and end-to-end validation points comparing measured EFR to inferred EFR from nearest neighbor PRISM
pixels (n � 4) are displayed as orange diamonds. (B) Implementation of the PLSR-based algorithm on the PRISM Rrs(λ) data.
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in-situ data. The map of EFR derived from the PLSR algorithm
correctly detected the highest EFR at the wastewater effluent
outfall (EFR between 0.85 and 1.25) and low EFR (<0.85) across
the rest of Santa Monica Bay. In this respect, the PLSR algorithm
appeared to successfully infer the wastewater effluent-influenced
plume of DOM at the outfall, while minimizing sensitivity to
CDOM from runoff and other sources. The MLR algorithm did
not detect a similar maximum at the outfall (Supplementary
Figure S10), and retrieved high EFR at other locations with high
CDOM. Fitting and mapping of the MLR algorithm suggested
that the small number of spectral Rrs bands may not have
provided sufficient information to resolve EFR independently
from CDOM concentration.

DISCUSSION

Ultraviolet Reflectance Improved
Chromophoric Dissolved Organic Matter
Retrievals in Urban Coastal Waters
Incorporating UV reflectance in empirical band-ratio algorithms
offered only minor improvements to the accuracy of CDOM
retrievals in Santa Monica Bay. A single blue-red band-ratio
algorithm did not perform well in these waters and produced a
spatial distribution of CDOM that closely resembled the
distribution of chlorophyll-a (Trinh et al., 2017). Surprisingly,
replacing the blue band (443 nm) with a UV band (365 nm), a
domain where CDOM has a stronger influence, only slightly
improved the accuracy of CDOM retrievals. The average percent
error of ag(443) estimates decreased from approximately 30% for
the red-blue ratio, to about 23% for the UV-red algorithm. This
limited improvement is likely due to other in-water constituents
also exerting a significant influence on UV reflectance in these
waters. The dry climate of Southern California introduces less
terrigenous CDOM to Santa Monica Bay compared to the more
river-influenced waters typically found along the US coastline. As
a result, the optical variability of the Santa Monica Bay waters
tends to be strongly influenced by phytoplankton dynamics
(Kahru et al., 2012; Caron et al., 2017; Trinh et al., 2017),
making it more challenging to retrieve CDOM in these waters.
The similarities between the mapped distribution of ag(443)
inferred using the UV-red band ratio and the distribution
inferred by the blue-red band ratio indicated that simply
replacing a blue band by a UV one was not sufficient to
remove the interference of other constituents in coastal waters
strongly influenced by phytoplankton dynamics.

However, the inclusion of both UV and blue reflectance in a
simple multi-band regression algorithm (MLR-based)
significantly improved ag(443) retrievals. The UV-visible
MLR-based algorithm combined UV, blue, and red Rrs and
performed substantially better than the simpler UV-red band
ratio algorithm, producing an average percent error of <14% for
ag(443). The combined use of UV and blue Rrs in this algorithm
likely facilitated the empirical differentiation between
phytoplankton and CDOM. The benefit of using UV
reflectance in the UV-visible MLR-based algorithm was also
evident when comparing its performance to that of a similar
MLR-based algorithm that used only visible bands (i.e., 412, 443,
and 700 nm). The visible-only MLR-based algorithm produced
slightly better results than the two band-ratio algorithms, but was
outperformed by the UV-visible MLR-based algorithm, and its
corresponding ag(443) map still included features influenced by
phytoplankton. In contrast, the UV-visible MLR algorithm and
the QAA both produced a similar ag(443) distribution that was
distinct from that of phytoplankton. From the in-situ data alone,
the UV-visible MLR algorithm actually outperformed the QAA.
However, the QAA is not specifically optimized for the waters in
Santa Monica Bay and the inclusion of UV spectral information
likely offered an advantage to the UV-visible MLR-based
algorithm. Overall, this analysis revealed that a simple
combination of three UV, blue and red bands in a local
empirical algorithm was able to retrieve ag(443) accurately
and produced realistic CDOM maps in these phytoplankton-
dominated waters.

The inclusion of additional spectral bands did not improve the
performance of the empirical ag(443) algorithms. The PLSR
algorithm leveraged all the spectral information available, but
had comparable accuracy to the much simpler UV-visible MLR-
based algorithm. This finding is consistent with CDOM
absorption not having narrow characteristic absorption peaks
like phytoplankton pigments (Rowan, 1989; Bricaud et al., 1995;
Kutser et al., 2006). Instead, CDOM has a broad, featureless
exponential shape, where the agvariation at a single wavelength is
highly predictive of that at other wavelengths. It is therefore not
surprising that ag(443) was inferred with optimal accuracy from
a small number of carefully chosen bands. In some cases,
redundant spectral information in empirical approaches can be
detrimental due to the potential of overfitting if precautions are
not taken to avoid it (e.g., cross-validation as used in this study).

Although the three-band approach optimally retrieved
ag(443) in Santa Monica Bay, a larger number of bands would
likely prove useful or essential to retrieve CDOM accurately in
more optically complex waters. The strong influence of

TABLE 3 | Summary statistics associated with the performance comparison of the two EFR algorithms (see also Figure 11 and Supplementary Figure S10). Statistics
include root mean squared error (RMSE), mean average percent error (MAPE), mean absolute error (MAE), and R-squared for each algorithm.

Algorithm RMSE MAPE MAE R2

Multiple linear regression (MLR)
EFR on Rrs(400) + Rrs(425) + Rrs(400)/Rrs(425) 0.160 16.934 0.119 0.589

Partial-least-square regression (PLSR)
EFR on Rrs(365–700); 5 components 0.156 13.490 0.100 0.608
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phytoplankton in Santa Monica Bay presented some challenges
for differentiating CDOM from phytoplankton. However, these
waters have only moderate concentrations of in-water
constituents and relatively low concentrations of non-algal
particles relative to many other coastal environments, thereby
avoiding challenges associated with highly absorbing and/or
turbid waters (Brezonik et al., 2015; Zheng et al., 2015; Fichot
et al., 2016). Accounting for the influence of non-algal particles
is expected to be feasible for these applications, but might
require the use of more bands. Waters in Santa Monica Bay are
also mostly optically deep, so complex optical influences from
bottom reflectance did not impede retrieval of water-column
optical properties. Other studies have leveraged hyperspectral
Rrs(λ) to improve the retrieval of IOPs in waters also
influenced by or bottom reflectance (Lee et al., 1994;
Mobley et al., 2005; Dekker et al., 2011). Increasing the
amount of spectral information, and utilizing more
complex, radiative-transfer-informed approaches may be
necessary to retrieve CDOM accurately in optically shallow
waters.

On the Specific Detection of
Effluent-Derived Chromophoric Dissolved
Organic Matter
The EFR, a new fluorescence-based water quality indicator that
we introduced in this study, facilitated the differentiation of
effluent-derived CDOM from other sources of CDOM in coastal
waters. The fact that all effluent-impacted waters in Santa
Monica Bay had high CDOM, but not all high-CDOM
waters were effluent-impacted presented challenges for
prescriptively identifying effluent. Here, the EFR leveraged
the enhanced fluorescence of effluent-impacted samples at
the FE peak relative to the fluorescence at the FR peak in
order to overcome this challenge. The ratio of two
fluorescence peaks associated with different CDOM sources
(FE being more sensitive to effluent, and FR being more
sensitive to runoff) provided the means to differentiate
between two sources of CDOM independently of the level of
CDOM absorption observed. As a result, the EFR represents a
simple but reliable potential indicator of the degree of effluent
influence in these waters.

Here, we tested the feasibility of retrieving EFR empirically
from remote sensing. In contrast to other CDOM fluorescence
peaks in EEM spectra, the FE peak that is characteristic of the
effluent CDOM (340–360 nm excitation and 426–454 nm
emission) is theoretically amenable to remote sensing. The
fluorescence of peak FE is stimulated in situ by UV radiation
that is naturally abundant in incident solar irradiance and emits
fluorescence in the blue region, thereby producing a sun-
induced fluorescence signal that can influence Rrs(λ). Here,
the empirical algorithms developed from the in-situ data set
retrieved EFR with enough accuracy (EFR error of ∼0.1) to
separate samples heavily influenced by effluent. A PLSR-based
algorithm retrieved EFR more accurately than the best 3-band
MLR algorithm we were able to produce. When applied to
PRISM data, the PLSR algorithm produced an EFR map with

high values (>1.0) found only in the vicinity of the wastewater
outfall. This algorithm specifically identified waters containing
significant wastewater effluent, without being sensitive to
CDOM from runoff or planktonic sources. In contrast, the
MLR-based algorithm proved ineffective at discerning
effluent-impacted EFR from the other CDOM sources,
thereby suggesting the crucial importance of high spectral
resolution for this purpose. While other strategies have
leveraged EEMs to detect wastewater effluent (Goldman
et al., 2012; Carstea et al., 2016), this is, to the extent of our
knowledge, the first successful attempt at sourcing effluent-
derived CDOM with remote sensing.

The presence of effluent in surface waters was only detected at
relatively high concentrations of effluent. CDOM fluorescence is
a relatively weak IOP, and its small influence relative to
backscattering or absorption is likely responsible for the
challenge of detecting effluent at low concentrations. The re-
absorption of emitted fluorescence by effluent-CDOM and other
absorbing constituents further decreased the influence of
fluorescence signatures on ocean color. Due to the resulting
small impact of fluorescence on Rrs(λ), minor errors in
atmospheric correction, temporal or spatial mismatch between
stations and remote sensing, and measurement differences
between in-situ and airborne reflectance measurements can
have a disproportionate effect on retrieval accuracy. At low
effluent concentrations, the optical signature of effluent-
derived CDOM fluorescence is therefore expected to rapidly
decrease below the detection threshold set by these practical
limitations.

This feasibility study identified purely empirical
relationships and did not explore the mechanistic
relationship between effluent-impacted CDOM fluorescence
and Rrs(λ). Radiative transfer modeling of the effects of
wastewater effluent fluorescence on surface Rrs(λ) would help
further refine the detection limits of effluent-derived CDOM.
For example, the HydroLight radiative transfer numerical
model (Mobley, 1989; Mobley et al., 1993; Mobley et al.,
2020) already allows for the inclusion of a standard CDOM
fluorescence when modeling Rrs(λ), but would need to be
modified to facilitate the incorporation of different types of
CDOM fluorescence to help specifically assess the effects
effluent-CDOM fluorescence on Rrs(λ). Future avenues for
this work could also include developing in-situ optical
instruments leveraging the effluent-associated fluorescence
peak. Prior studies have also sought to detect CDOM
remotely using its fluorescence (Green and Blough, 1994; Lee
et al., 1994) through stimulated fluorescence with a UV laser
(Hoge et al., 1993; Vodacek et al., 1995). An active sensor
providing appropriate light for fluorescence excitation could
stimulate the FE peak (e.g. an 350 nm excitation and 440 nm
emission) and would yield a stronger fluorescence signal in
effluent impacted waters. Work also remains for generalizing
this approach beyond a single effluent release scenario. A
broader survey of wastewater optical characteristics across a
wide range of scenarios could allow for the remote detection of
source-specific optical properties different environmental
settings.
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Relevance to Coastal Water-Quality
Monitoring With Future Ocean Color
Missions
This study revealed that some improvements to CDOM-related
coastal water quality monitoring can be made possible through
the use of UV-visible imaging spectroscopy, an area where
visible multispectral approaches have had limited success
(IOCCG, 2000; Aurin and Dierssen, 2012; IOCCG, 2015;
Dekker et al., 2018). The upcoming PACE and GLIMR
missions will include UV-visible imaging spectrometers with
comparable specifications as PRISM and are therefore expected
to provide such improvements in coastal water quality
monitoring. Here, the inclusion of UV reflectance (using
simple-to-implement empirical algorithms) not only
facilitated the accurate detection of CDOM in urban coastal
waters, but also enabled its sourcing. This study also showed
that high spectral resolution was essential to remotely
differentiating effluent-derived CDOM. Stepping beyond the
usual retrieval of ag , the identification of CDOM source presents
exciting opportunities for water quality monitoring in complex
urban coastal waters. Improved CDOM retrievals will also help
improve coastal organic-carbon budgets. The empirical
relationships typically observed between ag(λ) and [DOC] in
coastal waters (Ferrari et al., 1996; del Vecchio and Blough,
2004; Mannino et al., 2008; Fichot and Benner, 2011) will
facilitate the remote quantification of DOC stores and
dynamics in ocean margins (Fichot and Benner, 2014;
Mannino et al., 2016; Cao et al., 2018). In turn, these will
help improve carbon budgets for the coastal ocean which
currently have large uncertainties (Cai, 2011; Bauer et al.,
2013; Najjar et al., 2018).

The extent to which water-quality monitoring capabilities
will be enhanced by UV-visible imaging spectroscopy will be
contingent on our ability to apply accurate atmospheric
corrections and on the availability of high-quality in-situ
validation data (IOCCG, 2012). The extended spectral
range, enhanced spectral resolution, and improved signal-
to-noise ratio of imaging spectrometers in upcoming
missions (e.g., PACE and GLIMR) should facilitate the
detection of CDOM and its subtler IOPs like effluent-
CDOM fluorescence, but can only do so if accurate Rrs(λ)
are retrieved in the UV region. State-of-the-art atmospheric
corrections and comprehensive field-validation strategies in
coastal environments that include the UV region will therefore
be necessary (IOCCG, 2012; Werdell et al., 2018) to achieve
these improvements. Fortunately, upcoming missions like
PACE will include polarimeters to better account for the
contribution of various types of aerosols and are expected
to facilitate atmospheric corrections and considerably improve
Rrs(λ) measurements in the UV and blue regions.
Furthermore, ambitious field-data collection efforts are also
planned in support of the PACE mission and will provide data

for vicarious calibration and validation. The consistent
collection of high-quality CDOM absorption and
fluorescence properties (EEM) in coastal waters should be
an integral part of these efforts.
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