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Large-scale quantification of soil organic carbon (C) and nitrogen (N) stocks and their
distribution between particulate (POM) and mineral-associated (MAOM) organic matter is
deemed necessary to develop landmanagement strategies tomitigate climate change and
sustain food production. To this end, diffuse reflectance mid-infrared spectroscopy (MIR)
coupled with partial least square (PLS) analysis has been proposed as a promising method
because of its low labor and cost, high throughput and the potential to estimate multiple
soil attributes. In this paper, we applied MIR spectroscopy to predict C and N content in
bulk soils, and in POM and MAOM, as well as soil properties influencing soil C storage. A
heterogeneous dataset including 349 topsoil samples were collected under different soil
types, land use and climate conditions across the European Union and the
United Kingdom. The samples were analyzed for various soil properties to determine
the feasibility of developing MIR-based predictive calibrations. We obtained accurate
predictions for total soil C and N content, MAOMC and N content, pH, clay, and sand (R2>
0.7; RPD>1.8). In contrast, POM C and N content were predicted with lower accuracies
due to non-linear dependencies, suggesting the need for additional calibration across
similar soils. Furthermore, the information provided by MIR spectroscopy was able to
differentiate spectral bands and patterns across different C pools. The strength of the
correlation between C pools, minerals, and C functional groups was land use-dependent,
suggesting that the use of this approach for long-term soil C monitoring programs should
use land-use specific calibrations.
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INTRODUCTION

Climate change and land management play a major role in the
accrual or loss of global soil organic carbon (C) stocks. In this
context, C distribution in soil organic matter (SOM) fractions is a
crucial early indicator of soil C changes and provides an
opportunity to monitor and model C sequestration and its
response to agricultural practices (Chenu et al., 2019). In
particular, soil C distribution in particulate (POM) and
mineral-associated (MAOM) organic matter has been
proposed as an effective approach to study soil C responses to
global changes and land use, and inform management decisions
(Wang et al., 2019). POM is constituted of coarse partially
decomposed organic material which if not occluded in
aggregates is unprotected, while MAOM is organic matter
associated with fine mineral soil particles by chemical bonding
or physical occlusion, which may confer it protection from fast
decomposition (Lavallee et al., 2020). These two functionally
distinct SOM physical fractions have contrasting pathways of
formation (Cotrufo et al., 2015), as well as mechanisms of
protection (Lützow et al., 2006), and therefore respond
differently to disturbances, such as N additions, warming or
elevated CO2.

Soil C and N distribution in MAOM and POM can, therefore,
be used to evaluate soil C vulnerability to disturbance as well as
potential to further accrual (Cambardella and Elliott, 1992;
Christensen, 2001). The response of MAOM and POM to
changes in agricultural practices as well as climate depend on
multiple and co-occurring factors, which contribute to the overall
SOM responses. For example, C sequestration inMAOM requires
more N than in POM (Cotrufo et al., 2019) and it is highly
controlled by soil mineralogy, while the changes in POM depend
largely on vegetation cover and residue decomposition and is
particularly vulnerable to management decisions and climate
change (Córdova et al., 2018; Mikutta et al., 2019;
Soucémarianadin et al., 2019).

Across a large geographical area, parent material and climate
can lead to substantial changes in soil properties (Arrouays et al.,
2014; Ballabio et al., 2019). Therefore, relatively fine spatial
sampling is needed in order to capture these complex
relationships between variables as well as inherent soil
variability. Overall, there is a strong interest in accurately
quantifying soil C and N stocks at a global scale to understand
better the processes that promote C accumulation (Yigini and
Panagos, 2016). However, to obtain an appropriate sampling
density for geostatistical analysis, conventional laboratory
analyses of SOM fractions and their elemental C and N
content become inordinately expensive and time-consuming.
This is especially important for models that infer
spatiotemporal dynamics of soil C and N from changes in
environmental predictors (i.e., climate, land use, texture),
which must be calibrated and validated with measured data
for accurate forecasting (Lugato et al., 2021).

Infrared spectroscopy has been proposed as an alternative
method for a rapid determination of soil quality (Seybold et al.,
2019) as well as to predict the distribution of SOM fractions
(Baldock et al., 2018). Mid-infrared (MIR) spectroscopy

combined with chemometrics is a feasible quantitative analysis
method in soils (Sanderman et al., 2020). Additionally, MIR
provides detailed information about fundamental vibrations of
minerals (i.e., quartz -Si-O frequencies) and organic matter
(Soriano-Disla et al., 2014). Unlike near-infrared spectroscopy
(NIR), MIR has allowed the identification of several moieties,
including aliphatic, methyl, amides III, and polysaccharide
components associated with specific SOM fractions in soils
(Parikh et al., 2014; Calderón et al., 2017). However, few
studies have tested the use of MIR spectroscopy for the
prediction of C and N content in SOM fractions with
calibrations obtained from soils distributed across a broad
range of climates and ecosystem types at a continental scale.
Given that MIR spectroscopy provides a high spectral resolution
and that MIR spectral characteristics have been associated with
specific SOM functional groups and minerals, we hypothesize
that MIR can be useful in predicting C and N in MAOM and
POM fractions through chemometric calibrations at continental
scale applications. MIR has thus not only the potential to quantify
soil properties, but also to help to identify regions in which soils
are most vulnerable to C losses.

The selection of an optimal chemometric calibration method
is essential to estimate soil attributes using the MIR spectra. This
could help overcome the difficulties of analyzing large quantities
of soil samples. In recent years, various quantitative methods have
been applied to MIR spectral data to predict different soil
properties such as linear regression (MLR), principal
component regression (PCR), and partial least square (PLS)
regression (Vohland et al., 2011). PLS is a commonly used
method as it typically provides satisfactory results. However,
more work needs to be done in chemometric modeling of
SOM fractions, specifically, when the studies encompass a
broad geographical range. One important question is whether
it would be feasible to develop a single, global predictive
calibration to estimate a given property at a continental scale,
or alternatively, separate local calibrations for soils with different
climates and land uses.

Although several studies have addressed this question through
a local approach, resulting in higher performance accuracy, a
robust continental-scale model would be especially beneficial
since it does not require site-specific data and may include a
greater source of variability. This is especially important
considering that a local model can become invalid if it is
unable to accurately capture a variation in the variable of
interest as a result of an environmental change. Accordingly,
the main objectives of this study were to: 1) Identify MIR spectral
changes associated with variations in SOM, MAOM and POM C
and N content; 2) Determine MIR spectral regions that may
improve the performance of PLS in order to estimate SOM, C and
N content in MAOM and POM; 3) Explore the potential use of
MIR spectroscopy coupled with PLS to develop continental-scale
calibrations for C and N estimations in bulk soil and SOM
fractions, as well as soil attributes controlling soil C content
under a broad range of environmental conditions. To this end, we
scanned 349 topsoil samples from across Europe, with widely
different soil properties, climate and vegetation conditions. We
also tested the ability of MIR PLS to predict the C and N content
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in bulk soils and SOM fractions as well as the main factors
influencing C storage.

MATERIALS AND METHODS

SOM Samples and Site Data
For this study, we used the total soil and SOM fractions from
Lugato et al. (2021). Briefly, 400 representative soil samples from
the Land Use and Coverage Area frame Survey (LUCAS; Orgiazzi
et al., 2018) across the European Union and United Kingdom
were selected for SOM fractionation (Supplementary Figure S1).
These were all mineral (soil organic C < 120gCkg−1) topsoils
(0–20cm). Size fractionation was conducted to separate POM
(>53μm) from MAOM (<53μm) by wet sieving after mechanical
dispersion of aggregates by shaking in sodium
hexametaphosphate with beads, as described in Cotrufo et al.
(2019). Briefly, for each sample 5g of 2mm sieved and oven dried
soil was shaken in dilute (0.5%) sodium hexametaphosphate with
beads for 18h to break the aggregates. The dispersed soil was then
rinsed onto a 53µm sieve, with the fraction remaining on the sieve
being collected as POM, and the fraction passing through
(<53µm) collected as MAOM. This fractionation approach,
while convenient for the high throughput, defines POM by
size (>53μm), thus small amounts of very fine POM could be
recovered in the MAOM fraction, and OM associated to coarse
minerals (e.g., sand) is recovered as POM. A separation of POM
by size and density, when feasible, is advisable. All bulk soils,
MAOM and POM samples were pulverized, oven dried at 60°C
and analyzed for C and N concentration in an elemental analyzer
(LECO TruSpec CN). Inorganic C was removed by acid
fumigation (Harris et al., 2001) before elemental analyses, in

the few samples where it was present. Due to a variety of reasons
(non-readable labels, broken sample containers during
transportation and general quality checked after fractionation),
349 out of 400 were retained for MIR and statistical analysis.

For each soil sample we extracted data on particle size
distribution (% clay, silt, and sand), pH, available phosphorus
(p mgkg−1), extractable potassium (K mgkg−1) cation exchange
capacity (CEC cmol (+) kg−1), and land use types from the
LUCAS database (http://esdac.jrc.ec.europa.eu/content/lucas-
2009-topsoil-data). Bulk density (BD) was indirectly estimated
using a pedotransfer functions (Hollis et al., 2012). Values and
basic statistics of physicochemical soil properties are summarized
in Table 1.

Climate Data
Long-term mean annual temperature (MAT, °C) and annual
precipitation (p, mm) were obtained from the high-resolution
WorldClim datasets (version 2), which has average monthly
climate data for minimum, mean, and maximum temperature
and for precipitation for 1970–2000 (http://worldclim.org) at 30s
resolution. Using these data, the aridity index (AI) (UNEP, 1997)
was calculated as the ratio of mean annual precipitation (MAP) to
potential evapotranspiration (ET). We used the aridity index to
separate our soils into different climatic zones: arid (0.03–0.2),
semiarid (0.2–0.5), dry sub-humid (0.5–0.65), wet sub-humid (0.
65–1) and humid (>1.0).

Mid-infrared Measurement
The 349 bulk soil samples were air-dried, ground to fine powder,
and scanned undiluted (neat) in the mid-infrared spectral region
(4,000–400cm−1). The spectra were obtained using a Digilab FTS
7000 spectrometer (Agilent Technologies, Walnut Creek, CA)

TABLE 1 | Summary values and statistic for physicochemical properties of the soils (0–20cm) used in this study. Values are presented for the total number of samples (n �
349), mean, standard deviation (SD), minimum (Min) values, maximum (Max) values, data range, median, lower quartile (Q25) and upper quartile (Q75).

Property n Unit Mean SD Max Min Range Median Q25 Q75

SOM C 349 gkg−1 25.3 18.1 110.8 2.6 108.2 19.9 12.4 32.7
MAOM C 349 gkg−1 16.1 9.4 47.7 0.9 46.7 13.9 8.8 21.5
POM C 349 gkg−1 7.9 10.3 72.7 0.5 72.2 4.0 2.2 9.0
TN 349 gkg−1 2.0 1.3 8.1 0.3 7.8 1.6 1.2 2.6
MAOM N 349 gkg−1 1.7 1.0 6.2 0.1 6.0 1.4 1.0 2.2
POM N 349 gkg−1 0.5 0.7 5.7 0.0 5.7 0.3 0.2 0.6
f MAOM 349 % 71.1 25.2 232.7 9.1 223.6 71.6 57.8 81.6
Clay 349 % 20.6 14.0 66.0 2.0 64.0 18.0 9.0 28.3
Silt 349 % 41.0 18.8 88.0 4.0 84.0 40.0 27.0 56.0
Sand 349 % 38.5 26.9 93.0 1.0 92.0 36.0 12.0 60.0
Soil C/N 349 — 12.5 5.4 42.3 2.4 39.9 10.8 9.4 12.8
C/N MAOM 349 — 10.5 4.4 35.6 0.6 35.0 9.1 8.1 11.1
C/N POM 349 — 17.2 12.6 172.7 2.6 170.1 14.8 12.2 19.4
pH 349 — 6.4 1.2 8.6 3.8 4.8 6.4 5.3 7.5
CaCO3 349 gkg−1 45.2 107.8 607.0 0.5 606.5 1.0 0.5 14.3
BD 349 g/cm3 1.3 0.2 1.6 0.9 0.8 1.3 1.2 1.4
p 349 mgkg−1 29.3 33.8 311.7 5.0 306.7 18.1 5.0 37.8
K 349 mgkg−1 218.6 317.4 3,960.0 0.0 3,960.0 143.3 71.2 252.5
CEC 349 cmol+kg−1 14.6 9.8 54.9 1.0 53.9 12.2 7.4 19.7

SOM C, organic C content in soil organic matter (SOM); MAOM C, organic C content in mineral-associated organic matter (MAOM) fraction; POM C, organic C content in particulate
organic matter (POM) fraction; TN, total nitrogen; MAOM N, total N content in MAOM; POM N, total N content in POM fraction; f MAOM, proportion of C in mineral-associated organic
matter (MAOM) relative to soil organic C; C/N, soil carbon to nitrogen ratio; C/NMAOM, carbon to nitrogen ratio in MAOM fraction; C/N POM, carbon to nitrogen ratio in POM fraction; BD,
bulk density; CEC, cation exchange capacity; VGR, volume of gravel.
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with a KBr beam splitter, and a Peltier-cooled DTGS detector.
The samples were analyzed in diffuse reflectance, and each
spectrum consisted of 64 co-added scans at 4cm−1 resolution.
Scans were conducted in duplicate for each sample, and
subsequently, the average spectrum was calculated using
GRAMS/AI software (Thermo Scientific).

Chemometric Analyses and Mathematical
Pre-treatment of the Spectral Data
Partial least Square (PLS) regressions were performed to estimate
C and N pools, clay, pH, C/N ratio and soil texture (clay and sand
content). Several mathematical pre-treatments were tested,
including the Savitzky–Golay function, the second derivative,
standard normal variate (SNV), and multiplicative scatter
correction (MSC) to reduce baseline variations and/or enhance
spectral features. The best improvement was reached using
Savitzky–Golay functions with a first derivative using three
point smoothing (Savitzky and Golay, 1964). A non-linear
Kernel partial least squares (PLS) regression model was used
for building the predictive models. During model calibration, a
priori outlier detection techniques were adopted to remove
influential outliers by plotting the residual X- and Y-variances
against leverages and critical thresholds as calculated from
Hotelling’s T 2 and Q-residuals statistics. The fraction of
outliers removed from the models varied from 2 to 2.5%. The
PLS calibrations were validated using a random cross-validation
approach. The cross-validation was performed by randomly
dividing the calibration set into multiple segments using the
default setting of the software (Westad and Marini, 2015). The
spectral analysis and the development of PLS models were carried
out in the Unscrambler chemometric software V.10.3 (CAMO,
Norway).

Statistical Analyses
The accuracies and the robustness of the PLS models were
evaluated for calibration and prediction using the root mean
square error (RMSE) and root mean square error of cross-
validation (RMSEcv), determination coefficient (R2) and the
ratio of prediction to deviation (RPD), which was calculated as
the standard deviation divided by RMSE. The RMSE is a measure
of the difference between the predicted value and measured value,
while the R2 indicates how well the model calibration and
validation fits the measured data. RPD is a dimensionless
parameter that represents the ratio of the standard deviation
to the RMSE.

The model performance was classified according to the
following RPD intervals (Viscarra Rossel et al., 2006; Bellon-
Maurel et al., 2010): RPD ≥2 to indicate the model performance
was very good to excellent and reliable for quantitative
predictions; 1.8 < RPD <2 to indicate satisfactory performance
for quantitative predictions, but may be further improved by
other approaches; RPD <1.8 to indicates fair predictions and RPD
<1.4 poor or insufficient for most applications.

The database was analyzed by Principal component analysis
(PCA) and subsequent redundancy analysis (RDA) to elucidate
the importance of explanatory variables such as land use types,

climate and soil properties on soil spectral properties. Before
executing the PCA, the averaged spectra for each soil were
baseline corrected and mean-centered. In the RDA, the most
significant discriminating variables on spectral bands were
selected based on PCA loadings, which was carried out with
CANOCO version 5.01 (Microcomputer Power, United States). A
correlation matrix provided in the supplementary material was
calculated to determine the strength of the relationships between
soil properties using the corrplot package in R. A p-value of less
than 0.05 was considered statistically significant. The Pearson’s
correlation (r) analysis between MIR absorbance values and C
andN content in SOM,MAOM and POMwere represented using
contour/heatmaps. Correction for baseline offsets was applied to
the spectra, and the results (r) were linearly interpolated into a
grid to smooth the contour/heatmaps (Sigmaplot v.11).

RESULTS

Effects of Spatial Heterogeneity on Spectral
Features
We performed PCA using the full MIR spectral range of the
sample set to determine the influence of climate and land use on
the spectral response of bulk soils. The first component
explained 69% of the variance, whereas the second and third
components accounted for 17 and 5%, respectively. In general,
the sample score distribution shows that the variation in the
spectral signatures of soils was associated with differences in the
aridity index (AI) and land use types (Figure 1). In the PCA
analysis, samples from arid climates were separated from soils
under more humid conditions (Figure 1A). For land use types,
only woodland soils had a noticeably different pattern from
other land uses, which tended to overlap with each other
(Figure 1B). Furthermore, the sample score distribution
shows that the variation in the spectral features was also
associated with differences in C content. Samples were
separated from soils that exhibited low and high SOM C
content, however, some samples with contrasting C content
also exhibited similar spectral composition (Supplementary
Figure S2).

To further explore these differences, we used the PCA loadings
and score distribution to reduce the dimensionality of the spectral
data, as well as to identify the spectral features contributing to the
maximum variance within the sampling set. The loading plot
(Figure 1C) showed that various spectral bands from organic
compounds had positive loadings in PC1. The spectral differences
were associated with higher absorbances in the 3,000–1,500cm−1

region, attributed to the presence of C–H stretching vibrations
and aromatic groups near 1,600–1,570cm−1 and in the
2,900–2,940 cm−1 region. A pronounced band characterized
the second loading in the 1,200–1,042cm−1 corresponding to
C-O stretching of polysaccharides. It should be noted that the
band of polysaccharides may overlap with mineral compound
bands at 2000–1800cm−1 and 1,030cm−1, which can also be
attributed to Si-O groups of quartz and clay minerals,
respectively. Furthermore, we found positive loading bands at
2520–1cm and 3,620cm−1 corresponding to carbonates and
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stretching vibrations of OH groups in lattice clay minerals,
respectively.

Relating Soil Spectral Signatures to
Environmental Variables
The relationship among soil properties, land use type and climate,
along with a selected subset of spectral bands, were identified
using redundancy analysis (RDA) (Figure 2). The bands in the
RDA were selected in order of the highest loading per component
(Figure 1A). Bare land and shrubland were excluded from this
analysis due to the small number of samples within these
categories. The results show that C accumulation in the
MAOM fraction (f MAOM) was particularly high under
agricultural conditions with inherently low SOM C (Figure 2,
Supplementary Table S1). Furthermore, clay was found to
significantly increase the C storage in the MAOM fraction
(Figure 2, Supplementary Figure S3). These soil features were

associated with the absorption bands at 2,510cm−1 and 3,624cm−1

(Figure 2), corresponding to carbonate and clay minerals,
respectively. In more humid conditions, woodland and
grassland were positively correlated with SOM C, sand, and C
and N content in the POM fraction. In addition, these conditions
show a substantial increase in various functional groups
attributed to aliphatic C (3,000–2,800cm−1), carboxyl C�O
(1700–1800cm−1), aromatic C (1,600–1,500cm−1) and amide
N-H (1,550–1,500cm−1).

Spectral Variations of C in SOM, MAOM,
and POM
In large and complex datasets, the exploration of spectral
variations associated with local conditions might be used to
identify uninformative MIR regions. In this way, redundancy
and collinearity are reduced so as to increase the model accuracy.
Smoothed heatmaps show that the Pearson’s correlation

FIGURE 1 | Principal component analysis (PCA) to differentiate spectral changes among all the 349 bulk soil samples according to (A) aridity index, (B) land use
type and (C) loading of PCA components.
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coefficient (r) between absorbances at MIR wavelengths and
concentrations of C in SOM, MAOM and POM is land use-
dependent (Figure 3, Supplementary Figure S4). Heatmaps
illustrate that overall, the position and the magnitude of
correlation between spectral bands and the C content in SOM,
MAOM and POM differed among woodland, grassland and
cropland (Figure 3). For example, POM fraction heatmaps
showed a stronger correlation in the 2000–1,000cm−1 region
for grassland and woodland (Figure 3C). In contrast, this
region was almost indiscernible for cropland. In addition, for
woodland, evident differences were observed in the organic
matter and mineral absorbances in MAOM fraction, especially
in MIR region (2000–1,000cm−1). Furthermore, correlation
analysis also shows other spectral patterns that are related to
soil organic or inorganic C pools (Supplementary Figure S4). We
found high correlations between C in SOM, MAOM and POM,
and aliphatic bands around 2,850–2,920cm−1 for grassland and
woodland, but less so for cropland. In addition, woodland
exhibited a low correlation with the Si−O groups in quartz
near 1800cm−1 for SOM C and MAOM C (Supplementary
Figure S4). For inorganic C, the band at 2,525–2,510cm−1 had
a strong correlation with CaCO3 content in the grassland and
cropland, but less so in the woodlands. The lattice clay absorbance
bands between 3,650 and 3,595cm−1 were positively correlated to

clay content as expected, but slightly negatively correlated to
organic C and POM C in soils from every land use type.

Prediction of C and N Content in MAOM and
POM Fractions
The performance ability of calibration models is shown in
Table 2. Overall, low values of RMSE and high R2 indicate
better predictive performance, however, RPD is used to
standardize RMSE values against the SD, as RMSE is a
dependent concentration parameter. For C pools, the best
PLS-MIR model was developed within the 2000–400cm−1

spectral range, which included the major absorption bands
related to C pools previously identified in Figure 3. For C in
total SOM andMAOM (Figure 4A; Figure 4B), good and reliable
estimates were obtained using a global calibration (R2 �
0.80–0.79; RPD � 2.23–2.17, respectively). However, the cross-
validation for C in SOM tended to underestimate the observed
concentrations, thus a large number of data points were
distributed below the 1:1 line showing a high dispersion at C
content over 50gCkg−1 soil (Figure 4A). In contrast, poor
prediction accuracy was obtained for POM C showing a
curvilinear trend (R2 � 0.61; RPD � 1.60). The model had a
clear tendency to underestimate the prediction when the
measured C content was higher than 20gCkg−1 soil (Figure 4C).

For N pools, the use of the full MIR range demonstrated a better
performance thanmodels constructed using a wavelength selection
(Table 2). Although the prediction of N in total SOM andMAOM
was less satisfactory than for C, good results were also achieved for
these variables (R2 � 0.64–0.51; RPD � 1.88–2.08, respectively)
(Figures 5A,B). Regarding POMN (Figure 5C), a poor prediction
was obtained and insufficient for most applications, showing
similar behavior to POM-C (R2 � 0.47, RPD � 1.37).

Prediction of Clay, pH, Soil C/N Ratio and
Sand
The distribution of C and N in MAOM and POM fractions is
highly controlled by predictors such as C/N ratio, pH, clay and
sand (Figure 2). We compared the PLS model performance for
the aforementioned soil properties (Table 2; Figure 6).
Predictions for soil C/N (Figure 6A) were not improved (R2 �
0.67; RPD � 1.75) when compared with the individual predictions
for C and N in SOM. For pH (Figure 6B), the best PLS-MIR
model was developed using the 400–4,000cm−1 spectral range,
which showed a good prediction performance (R2 � 0.76; RPD �
2.06). Regarding the soil texture variables (Figures 6C,D), similar
accuracies and excellent estimates were achieved for both clay (R2

� 0.81; RPD � 2.28) and sand (R2 � 0.83; RPD � 2.41).

DISCUSSION

Large spectral libraries demand rapid and inexpensive methods
such as infrared spectroscopy to screen and determine soil C stocks
and soil properties. However, the wide range of soil-forming factors
that influence soil spectroscopic characteristics may decrease the

FIGURE 2 | Redundancy analysis (RDA) of organic matter fractions and
the response of these attributes to significant soil physicochemical, climate
and land use properties. SOM C: organic C content in soil organic matter; f
MAOM: proportion of C in mineral-associated organic matter (MAOM)
relative to soil organic C; MAOM C: organic C content in MAOM fraction
(gCkg−1 soil); MAOM N: total N content in MAOM; POM C: organic C content
in particulate organic matter (POM) fraction, POM N: total N content in POM
fraction, C/N: soil carbon to nitrogen ratio, C/N MAOM: carbon to nitrogen
ratio in MAOM fraction; C/N POM: carbon to nitrogen ratio in POM fraction.
Arrows in the same direction indicate positive correlation and arrows length
represents the magnitude of the correlation.
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predictive ability of models when they are used to estimate soil
properties at a continental areas. We explored the relationship
between MIR spectral features and C pools and evaluated the
ability of MIR spectroscopy to predict soil C content and variables
associated with its dynamic, at continental scale.

Linking MIR Spectral Information to Soil C
Pool
Understanding and capturing the spatial variability of soil
spectral signatures at regional to continental scales is relevant

to developing a robust global calibration strategy and to
subsequently improving the predictive ability of soil C models.
Our results showed inherent soil spectral heterogeneity associated
with climate and land use (Figure 1). Likewise, climate and land
use are widely accepted as the most significant drivers of C
content when we evaluate their distribution at large
geographical scale (Rial et al., 2017; Ogle et al., 2019). Our
data show that soils under drier conditions tend to have a
relatively high soil pH (Figure 2), which is not surprising
given the existence of calcareous materials characterized by the
presence of carbonates at the 2,513cm−1 band, concurrent with

FIGURE 3 |Heatmaps displaying the magnitude of the Pearson’s correlation coefficients (r) betweenMIR wavelength range and carbon (g Ckg−1 soil) in soil organic
matter (SOM), mineral-associated organic matter (MAOM) and particulate organic matter (POM) for cropland, grassland and woodland separately. The color scale next
to the maps represents the correlation coefficient r.
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low organic matter content (Asgari et al., 2020). In semiarid
environments, the decline in primary productivity and increase in
litter decomposition due to higher temperatures and intermittent
precipitation has resulted in less C storage when compared to
colder and more humid conditions (Guo and Gifford, 2002). In
fact, we observed low POM C content in agricultural systems
under semiarid conditions (Figure 2). In addition, we observed a

higher proportion of C in the MAOM fraction (f MAOM) and
clay content. The latter responses are consistent with the
correlation observed for the clay band at 3,620cm−1, as well as
the presence of organic matter absorbance around the 1,100cm−1

band of polysaccharides (Rasmussen et al., 2018).
MIR spectroscopy has been used for qualitative analysis of

various soil properties because it contains extensive information

TABLE 2 | Results obtained for the mid infrared spectroscopy coupled with the partial least square model regression selecting the best pre-treatment (Savitzky-Golay first
derivative, 3-point smoothing, 2-polynomial). The performance of PLS models is reported in terms of root mean square error (RMSE), coefficient of determination for
calibration (R2), slope of regression model and the ratio of prediction to deviation (RPD).

Soil property Concentration rangea Wavelength range RMSE R2 Slope RPD

Calibration SOM C 2.6–110.8 2000–400cm−1 7.05 0.85 0.85 2.56
MAOM C 0.9–47.7 2000–400cm−1 3.71 0.84 0.84 2.53
POM C 0.9–54.9 2000–400cm−1 5.21 0.71 0.71 1.87
TN 0.3–7.6 4,000–400cm−1 0.59 0.76 0.76 2.03
MAOM N 0.1–6.2 4,000–400cm−1 0.43 0.82 0.82 2.34
POM N 0.0–5.0 4,000–400cm−1 0.40 0.58 0.58 1.55
C/N 6.3–42.3 4,000–400cm−1 2.66 0.75 0.75 2.00
pH 3.7–8.7 4,000–400cm−1 0.52 0.82 0.82 2.36
Clay 2.0–66.0 4,000–400cm−1 5.23 0.86 0.86 2.65
Sand 1.0–93.0 2000–400cm−1 10.59 0.84 0.84 2.53

Cross-validation
SOM C 2000–400cm−1 8.14 0.80 0.85 2.23
MAOM C 2000–400cm−1 4.32 0.79 0.8 2.17
POM C 2000–400cm−1 6.07 0.61 0.64 1.60
TN 4,000–400cm−1 0.64 0.72 0.72 1.88
MAOM N 4,000–400cm−1 0.51 0.75 0.76 2.01
POM N 4,000–400cm−1 0.45 0.47 0.51 1.37
C/N 4,000–400cm−1 3.04 0.67 0.71 1.75
pH 4,000–400cm−1 0.59 0.76 0.76 2.06
Clay 4,000–400cm−1 6.08 0.81 0.83 2.28
Sand 2000–400cm−1 11.16 0.83 0.83 2.41

aConcentration range of measured values.
SOMC, organic C content (g Ckg−1 soil) in soil organic matter (SOM); MAOMC, organic C content (g Ckg−1 soil) in mineral-associated organic matter (MAOM) fraction; POMC, organic C
content (gCkg−1 soil) in particulate organic matter (POM) fraction; TN, total nitrogen (gNkg−1 soil); MAOM N, N content(gNkg−1 soil) in MAOM fraction; POM N, N content (g Nkg−1 soil) in
POM content; C/N, soil carbon to nitrogen ratio; clay: content in percentage (%); sand: content in percentage (%).

FIGURE 4 | Scatter plots for predictions of (A) carbon in total soil organic matter (SOM), (B) carbon in mineral-associated organic matter (MAOM); and (C) carbon in
particulate organic matter (POM) resulting from continental-scale calibrations using mid infrared spectroscopy and partial least square regression. The model calibration
is denoted in blue circles and predictions on the calibration set during cross-validation is denoted in oranges circles. The 1:1 line is shown for reference in each plot.
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on the functional moieties of organic matter (Ramírez et al., 2020;
Dudek et al., 2021). Additionally, it is a useful tool to explore
spectral patterns associated with soil C stocks (Stumpe et al.,
2011). For example, as in many previous studies, we also found
aliphatic CH spectral bands at 2,926cm−1 (Figure 2), which could
be used to rapidly estimate soil C, and N concentrations of
northern cold region soils (Matamala et al., 2017). Likewise,
we also found distinct bands in the region between 1,510 and
1,230cm−1, which have already been reported in association with
the decomposition of forest litter in soils (Haberhauer et al.,
1998). It should be noted, however, that band assignments are not
absolute but rather are an approximation in the sense that a band
for a particular compound is assigned at a specific wavenumber.

The MIR spectral bands can be used as valuable data to
monitor major chemical changes from different land use
systems. It is interesting to note that although MIR is not a
high-resolution tool, the information provided by MIR
spectroscopy was able to elucidate spectral patterns across
different C pools. For example, the spectral patterns between
POM and MAOM involved variation in absorbances between the
2,800 and 1,000cm−1 region (Figure 3). This spectral region is
characterized by silicates (Si-O vibrations) and different C
functional groups, including aliphatic C–H, carbonyls,
aromatic C and C-H stretching typically found in
carbohydrates (Parikh et al., 2014). This analysis revealed that
POM displays high spectral similarities to SOM C in woodland
systems, while cropland and grassland did not. Furthermore, in
the cropland systems, we found similar spectral patterns between
SOM and MAOM, as well as a substantial decrease of organic C
absorbances in the POM fraction. This is consistent with the
relative distribution of C (f MAOM) between these fractions
(Supplementary Table S1) with a higher amount of C in POM in
woodland soils with overall higher C content and lower

disturbance as compared to grassland and cropland soils
(Lugato et al., 2021).

Prediction of Soil C and N Pools and Other
Soil Properties
We achieved accurate global predictions using MIR coupled with
PLS spectroscopy for C and N pools at a continental scale. In the
absence of some of the wavelengths containing unrelated
information, the wavelengths 2000–400cm−1 had a substantial
influence on the PLS model for the quantification of C in SOM
and MAOM. As often reported for soil C, the multiple and small
bands around 830–400cm−1, as well as the fingerprint region
(1,500cm−1–650cm−1) contribute to improve the predictive
ability of PLS models (Cécillon et al., 2012; Knox et al., 2015).
Our results showed that MIR produced accurate predictions to
determine C and N in SOM and MAOM (Figure 4). Typically,
the prediction accuracies reported for total soil N are similar to
the accuracies of the SOM Cmodels. This is mainly because most
of the N is bound in the SOM, and thus, soil N is often tightly
correlated to total soil C (Schirrmann et al., 2013). C and N in
POM were less accurately predicted than other C or N pools
(Figures 4C, 5C). For example, our prediction yielded a low
accuracy for POM C (R2 � 0.61), indicating that the PLS
calibration could not capture the variability over a wide range
of 0.46–54.9gCkg−1. Although previous studies have reported
satisfactory accuracies for C prediction in the POM fraction using
MIR spectroscopy (R2 � 0.71–0.83), they were carried out in the
0.2–16.8gCkg−1 range of concentration (Janik et al., 2007;
Baldock et al., 2018). However, recent studies using
heterogeneous soil samples at a country level similarly
reported that SOM C and MAOM C were better predicted
than POM C (Sanderman et al., 2020). These results can be

FIGURE 5 | Scatter plots for predictions of (A) total soil nitrogen (TN), (B) nitrogen content in mineral-associate organic matter (MAOM N) and (C) nitrogen content
in particulate organic matter (POM N) resulting from global calibrations from a large-scale dataset using mid infrared spectroscopy and partial least square regression.
Themodel calibration is denoted in red circles and predictions on the calibration set during cross-validation is denoted in yellow circles. The 1:1 line is shown for reference
in each plot.
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attributed to the fact that POM is more heterogeneous than
MAOM when isolated by size, since it includes both a light
fraction not associated with minerals, as well as heavy coarse
organic matter associated with sand-size minerals (Lavallee et al.,
2020). Therefore, the spectra are subject to a high degree of
variability due to the various decomposition stages of plant
residues, and to the range of contribution of compounds of
microbial origin which adversely impact the calibration
accuracy. Furthermore, the light component of POM mostly
consists of partially decomposed plant material, so differences
in the vegetation cover (woody plant cover vs grasses, for
example) affect the chemical character of POM
(Soucémarianadin et al., 2019).

We found that C estimations in SOM were more reliable than
those provided by studies that used NIR spectroscopy in the same
large-scale European dataset (Nocita et al., 2014; Rial et al., 2017;
Ward et al., 2019). For example, the selection of sample subsets by
k-Means clustering achieved less accurate predictions (R2 � 0.67;
RPD � 1.74) (Ward et al., 2019). In particular, MIR spectra
contain fundamental bands for several organic and mineral
moieties, while soil vis-NIR ranges are largely non-specific,
consisting of weak, broad and overlapping absorption bands
(Reeves, 2010). Furthermore, we found that MIR was highly
sensitive to soil mineral composition, and appeared well equipped
to determine pH and soil texture, such as clay and sand using PLS
models (Figure 6). It is important to considerer we used a size

FIGURE 6 | Scatter plots for predictions of (A) soil C/N ratio, (B) pH, (C) clay and (D) sand resulting from global calibrations from a large-scale dataset using MIR
spectroscopy and PLS regression. The model calibration is denoted in green circles and predictions on the calibration set during cross-validation is denoted in blue
circles. The 1:1 line is shown for reference in each plot.
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separation of POM and MAOM. Therefore, as mentioned above,
the organic matter associated to sand-size particles was considered
POM, and could have contributed proportionally more to this
fraction in coarse-textured soils. However, despite this limitation,
we suggest that the influence of sand content was probably low for
the prediction of C and N in POM. MIR spectra present greater
signatures in quartz and clay minerals, which provide more robust
calibrations to predict clay and sand content (Viscarra Rossel et al.,
2006; Reeves, 2010). Therefore, in the presence of quartz-rich sand
content, we clearly would expect more accurate predictions for
POM than those achieved in this study. Another limitation of our
study was the negative predictions obtained for low concentration
values in some variables of interest. For example, negative
predicted values were obtained for measured C content below
6.5gCkg−1 soil, due to the wide range of concentrations used in the
analysis (2.6–110.8gCkg−1 soil). Several authors have been able to
overcome this limitation, improving their predictions by using
machine learning based non-linear regression methods, covariate
adjustment (i.e., sand content) and by dividing the global library
into small homogeneous datasets (Nocita et al., 2014; Rial et al.,
2017; Ward et al., 2019).

CONCLUSION

MIR spectra coupled with PLS regression is a promising and
reliable tool for predicting soil organic C, total N, C and N in
MAOM, as well as the critical factors controlling their
accumulation. The present study is a first attempt to estimate
C and N content in MAOM and POM fractions using MIR
spectroscopy in a heterogeneous set of soil samples at a
continental scale. A wavelength selection in the 2000 to
1,000cm−1 range substantially influences the C estimate
accuracy in bulk soils and the MAOM fraction, while the
estimates of C and N in POM need to be further studied.
Besides the ability of MIR to predict different soil properties,
MIR spectroscopy was able to differentiate spectral features
associated with SOM pools in response to changes in land use
and climate. This approach can enable large scale monitoring of
soil C changes as a cheaper and higher throughput alternative to

stock quantification methods that are more accurate but also
more expensive and involve laborious sample preparation.
Considering the effectiveness of MIR spectroscopy in resolving
variations in organic and mineralogical composition, future work
still is needed on an extensive MIR spectral database to capture
the spatial variability of soil properties at different geographical
scales. This is critical for the comprehension of environmental
interrelationships affecting C distribution and increasing the
robustness of predictions.
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