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The daily average land surface air temperature (SAT) simulated by 8 CMIP5 models
historical experiments and that from NCEP data during 1960–2005, are used to evaluate
the performance of the CMIP5 model based on detrended fluctuation analysis (DFA)
method. The DFA results of NCEP data show that SAT in most regions of the world exhibit
long-range correlation. The scaling exponents of NCEP SAT show the zonal distribution
characteristics of larg in tropics while small in medium and high latitudes. The distribution
characteristics of the zonal average scaling exponents of CMCC-CMS, GFDL-ESM2G,
IPSL-CM5A-MR are similar to that of NCEP data. From the DFA errors of model-simulated
SAT, the performance of IPSL-CM5A-MR is the best among the 8 models throughout the
year, the performance of FGOALS-g2 is good in spring and summer, GFDL-ESM2G is the
best in autumn, CNRM-CM5 and CMCC-CMS is good in winter. The scaling exponents of
model-simulated SAT are closer to that of NCEP data in most areas of the mid-high latitude
on the northern hemisphere. However, simulations of SAT in East Asia and Central North
American are generally less effective. In spring, most models have better performance in
Siberian (SIB), Central Asia (CAS) and Tibetan (TIB). SAT in Northern Europe area are well
simulated by most models in summer. In autumn, areas with better performance of most
models are Mediterranean, SIB and TIB regions. In winter, SAT in Greenland, SIB and TIB
areas are well simulated by most models. Generally speaking, the performance of CMIP5
models for SAT on global continents varies in different seasons and different regions.

Keywords: detrended fluctuation analysis, long-range correlation, CMIP5, model intercomparision, surface air
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INTRODUCTION

Climate system models are important tools for simulating climate systems and projecting future
climate change (Phillips and Gleckler, 2006; Zhou and Yu, 2006; Flato et al., 2013). Assessment of
model simulation performance can help us understand the advantages and disadvantages of the
models, so as to provide a basis for users to choose models suitable for different purposes, and
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provide a scientific reference for model community to improve
the performance of the models (Watterson et al., 2014). Coupled
Model Intercomparison Project-Phase 5 (CMIP5) provides the
dataset produced by multiple climate system models or earth
system models (Taylor et al., 2012), which promotes the
development of models themselves and the evaluation
methods for model performance. The evaluation methods for
model performance concentrate more on quantitative assessment
than before, and emphasize the model evaluation criteria (Kharin
et al., 2013; Elguindi et al., 2014; Sillmann et al., 2014). Most of
these methods evaluate the outputs of multi-models on variant
timescales, focusing on the climate states, climate change, or
variations of indexes computed by meteorological elements
(Sillmann et al., 2013; Yin et al., 2013; Jiang et al., 2016; Li
et al., 2017), and provide the quantitative results of the differences
between the model simulations and observations. However, the
performance of models on simulating the intrinsic dynamical
characteristics of climate system is rarely evaluated.

Climate systems are characterized by long-range correlation
(LRC), which represents the self-similarity of climate evolution on
different time scales (Bunde and Havlin., 2002; Bunde et al., 2005;
Yuan et al., 2015; Fu et al., 2016a, 2016b; He et al., 2016). LRC has
been found in meteorological observations, such precipitation
(Kantelhardt et al., 2006) and as daily air temperature
(Koscielny-Bunde, et al., 1996; Talkner and Weber, 2000; Gan
et al., 2007; Jiang et al., 2015). LRC can be characterized by the
power law of an autocorrelation coefficient (Beran, 1994). Some
research pointed out that scaling exponents for daily air
temperature were about universal over the continent (Koscielny-
Bunde et al., 1998; Eichner et al., 2003). Weber and Talkner (2001)
found LRC of daily air temperature depends on the altitude of the
meteorological station. Király and Jánosi (2005) found that the
scaling exponents of daily temperature over Australia were related
with the geographic latitude, which exhibit a decrease tendency
with increasing distance from the equator.

Detrended fluctuation analysis (DFA) is a well-knownmethod
to detect LRC in time series (Peng et al., 1994; Bunde and Havlin,
2002), and has been used to assess the capability of climate system
models (Blender and Fraedrich, 2003; Kumar et al., 2013; Zhao
and He, 2015; He and Zhao, 2018). Govindan et al. (2004) found
that seven atmosphere-ocean general circulation models failed to
reproduce the LRC of daily maximum temperature. Rybski et al.
(2008) analyzed the LRC of daily temperature from historical
simulation of global coupled general circulation model, and
found that scaling exponents over most continent sites ranges
from 0.6 to 0.8. By comparing the LRC with daily observational
data over China, the performance of Beijing Climate Center
Climate System Model 1.1(m) is systematically evaluated by
using DFA methods (Zhao and He, 2014; Zhao and He, 2015).
Therefore, it is a very well way to quantitatively evaluate the
performance of climate model based on LRC of climate systems.

Because the spatial coverage of meteorological observation
data is limited and varies with time, it is crucial to carry out
homogenization and quality control of observational data.
Reanalysis data can provide a set of meteorological data that
is homogeneous in time and space (Marques et al., 2010). The
National Centers for Environmental Prediction (NCEP)

reanalysis data (Kalnay, 1996; Kanamitsu et al., 2002) is
commonly used in climate research (Ma et al., 2008; Mooney
et al., 2011). The quality of NCEP reanalysis datasets has been
assessed on global and regional scales (Poccard et al., 2000;
Josey, 2001; Mooney et al., 2011). He et al. (2018) showed that
the daily average temperature from NCEP-2 and CFSR data
exhibit LRC characteristics in China, which are similar to the
results of observations, especially in central and eastern
Northwest China, most of central and eastern China.
Furthermore, the credibility of NCEP-2 and CFSR seasonal
temperature were evaluated by DFA in China (Zhao et al.,
2017). Based on this, we quantitatively evaluate the
performance of CMIP5 models in simulating LRC of global
daily land surface air temperature (SAT) by means of comparing
the difference with LRC of NCEP-2 data in this study.

In this paper, DFA was used to evaluate the performance of
CMIP5 models in simulating the global daily land SAT on a
seasonal scale. The remainder of the present paper is organized as
follows. Methods and Data briefly introduces the NCEP-2 data
and the CMIP5models used in this study, and then, the algorithm
of the DFA is provided. In LRC of Daily Average SAT Simulated
by Multi-Models, the LRC of the output datasets for all four
seasons from CMIP5 models is analyzed by using DFA.
Comparisons of the spatial differences of LRC between
simulations and reanalysis data are also presented in this
section. Conclusion summarizes the main results and
conclusions of the present study with a brief discussion.

METHODS AND DATA

Data
The global daily average land SAT from 1960 to 2005 is available
fromNCEP reanalysis dataset. The simulated global daily average
land SAT is from the present-day historical simulations
performed by the 8 CMIP5 climate models. The basic
information about the 8 global climate models (GCM) is
provided in Table 1. The term “historical” (HIST) refers to
coupled climate model simulations forced by observed
concentrations of greenhouse gases, solar forcing, aerosols,
ozone, and land-use change over the 1850–2005 period
(Taylor et al., 2012). The qualities of the past 46 years
(1960–2005) data from the selected CMIP5 models were
evaluated. To facilitate the intercomparison of the selected
models and evaluation of the performance of 8 models against
the NCEP data, the daily fields of GCM temperature were
remapped onto T62 Gaussian grid from their original spatial
resolution based on Ordinary Kriging (Mueller et al., 2004),
which is the same as the spatial resolution of the reanalysis
data, 2.5° × 2.5 ° resolution horizontal grid.

To disclose the geographical heterogeneity of DFA for the
daily air temperature in the continents, we divided the
continents into 22 sub-continental land regions (Table 2
and Figure 1), which are defined based on the literatures
(Giorgi, 2002; Sillmann et al., 2013; Chan and Wu, 2015).
The regions vary from a few thousand to several thousand km
in each direction and cover global land areas with simple
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shape. The selection of specific regions was intended to
represent climatic regimes and physiograhic settings
(Giorgi, 2002). We calculated the area-averaged scaling
exponents in each region for the daily SAT of NCEP and
CMIP5 models, respectively. And then the differences of the
area-averaged scaling exponents between the NCEP and model
outputs were compared.

Method
The DFA method can quantify LRC as an index, namely, scaling
exponent (Peng et al., 1994). Consider a record of daily average
temperature {Ti, i � 1, 2, . . ., N}, the multi-year mean daily
average temperature Ti is calculated by averaging Ti over all years
on the same calendar date i. The variations ΔTi is departure of Ti
from Ti. The profile y(k) of cumulative of the time series ΔTi is
calculated.

y(k) � ∑k
i�1

ΔTi, k � 1, 2, . . . ,N. (1)

Then y(k) is divided into n � Int (N/s) non-overlapping
segments of equal length s. Usually, s is assumed not to be
larger than N/4. In each segment, a pth-order polynomial
function, ys(k), is used to fit the profile. The fluctuation
function Fp(s) is obtained by calculating the root mean square
of the fluctuations in all segments.

Fp(s) �
�����������������
1
ns

∑ns
k�1

[y(k) − ys(k)]2
√√

. (2)

Typically, Fp(s)will increase with the segment length s and can
be characterized by a scaling exponent α.

Fp(s) ∼ sα. (3)

If 1 > α > 0.5, the time series {Ti, i � 1, 2, . . ., N} is LRC. If α �
0.5, the time series is uncorrelated. If 0 < α < 0.5, the series {Ti} has
anti-persistent correlation. When p � 2, a 2nd-order polynomial
function is used to fit the profile y(k). DFA2 has been widely used

in many researches. In this study, the DFA2 method is used to
estimate the scaling exponent in a time series.

To estimate the uncertainties of the DFA2 method, we
conducted six sets of independent tests for five given scaling
exponents according to the reference (Zhao and He, 2015). In
each test, 20,000 artificial time series were produced by
Fourier-filtering method (Peng et al., 1991) with given
scaling exponents varying from 0.6 to 1.0. Table 3
demonstrates the 2.5th and 97.5th percentiles for the
DFA2’s estimated errors for each scaling exponent.
Therefore, if the difference of LRC between the reanalysis
data and the models is bigger than the estimated error of
DFA2, the difference is statistically significant at a significance
level of alpha � 0.05.

TABLE 1 | Information about the eight CMIP5 climate models.

Modeling
Center

Nation Institution Model information

Model name Atmosphere
resolution

CMCC Italy Centro euro-mediterraneo per I cambiamenti climatici CMCC-CMS T63 (∼1.875° ×
1.865°) L95

CNRM-
CERFACS

Center national de recherches meteorologiques/Center europeen de recherche et
formation avancees en calcul scientifique

CNRM-CM5 TL127 (∼1.4° ×
1.4°) L31

LASG China Institue of atmospheric physics Chinese academy of sciences FGOALS-g2 (∼2.81° × 1.66°) L26
GFDL USA NOAA geophysical fluid dynamics laboratory GFDL-ESM2G M45 (∼2° × 2.5°) L24
INM Russia Institute for numerical mathematics INM-CM4 (∼1.5° × 2.0°) L21
IPSL France Institute pierre-simon laplace IPSL-

CM5A-MR
LMDZ4 (∼1.2587°

× 2.5°)
MOHC United Kingdom Met office hadley center HadGEM2-AO T63 (∼1.875° ×

1.865°) L38
MPI-M Germany Max planck institute for meteorology MPI-ESM-MR T63 (∼1.875° ×

1.865°) L47

TABLE 2 | Names and coordinates for the 22 regions in the continents.

Region name Abbreviation Coordinates

Longitude Latitude

Northern South America NSA 80°–35°W 20°S–10°N
Southern South America SSA 75°–40°W 60°–20°S
Southern Africa SAF 10°–40°E 35°–10°S
Eastern Africa EAF 20°–50°E 10°S–20°N
North Africa NAF 20°W–65°E 20°–30°N
Western Africa WAF 20°W–20°E 10°S–20°N
Australia AUS 110°–155°E 40°–10°S
Mexio MEX 115°–80°W 10°–30°N
Central North America CNA 105°–85°W 30°–50°N
Eastern North America ENA 85°–60°W 20°–50°N
Western North America WNA 130°–105°W 30°–60°N
Alaska ALA 170°–105°W 60°–70°N
Greenland GRL 105°–10°W 50°–80°N
Mediterranean MED 10°W–40°E 30°–50°N
Central asia CAS 40°–75°E 30°–50°N
Tibetan TIB 75°–100°E 30°–50°N
East asia EAS 100°–145°E 20°–50°N
South asia SAS 65°–100°E 5°–30°N
Southeast asia SEA 90°–155°E 10°S–20°N
Siberian SIB 40°E–180°E 50°–70°N
Northern europe NEU 10°W–40°E 50°–75°N
Antarctic ANT 0°E–180°W 90°–60°S
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LRC OF DAILY AVERAGE SAT SIMULATED
BY MULTI-MODELS

Characteristics of Daily Average SAT
As an example, one grid point (110°E, 23°N) located in the
eastern part of Eurasia was randomly selected to show the LRC
of SAT. The scaling exponent of NCEP SAT at this point is 0.6,
which indicates a LRC. The scaling exponents of SAT at this
point simulated by 8 CMIP5 models range from 0.52 to 0.74,
which are quite different from the long-term correlation of the
NCEP SAT (Figure 2A). Except for INM-CM4, the scaling
exponents of SAT simulated by the models are bigger than those
of NCEP SAT (Figure 3). As far as scaling exponents of SAT at
the selected point are concerned, the differences between the
most of CMIP5 simulations and NCEP data are greater than the
uncertainties of the DFA2 calculation at a significance level of
alpha � 0.05, except for IPSL-CM5A-MR. This means that only
IPSL-CM5A-MR can relatively reliably reproduce the LRC of
SAT of the selected point. In spring, scaling exponent of NCEP
SAT at the grid point is 0.61, which is smaller than the scaling
exponents of the model-simulated SAT, varying from 0.64 to
0.74 (Figure 2B). Except FGOALS-g2 and INM-CM4, the biases
of scaling exponent of model-simulated SAT in spring are
statistically significant at a significance level of alpha � 0.05

(Figure 3). In summer, LRC of NCEP SAT at this point becomes
stronger with the scaling exponent of 0.65. There is a systematic
overestimation of LRCs by CMIP5 models which are all
significantly greater than that of NCEP SAT at a significance
level of alpha � 0.05 (Figure 3). The logarithms of the
fluctuation functions of the model-simulated SAT in summer
are all bigger than that of NCEP SAT, which indicates that the
variances of the model-simulated SAT are also bigger than those
of NCEP SAT (Figure 2C). Scaling exponent of NCEP SAT at
the point in autumn is the same as that in summer. The biases of
scaling exponents of the model-simulated SAT are significant
except IPSL-CM5A-MR (Figures 2D, 3). In winter, scaling
exponent of NCEP SAT at the point is 0.64, which is also
systematic overestimated by the CMIP5 models. The biases of
FGOALS-g2, INM-CM4 and IPSL-CM5A-MR are insignificant
at a significance level of alpha � 0.05, which means these three
models perform well at this point in winter (Figures 2E, 3).

Scaling exponent of NCEP SAT throughout the year is less
than those of all four seasons at the point, which is also true for
most of the model-simulated SAT, except for GFDL-ESM2G
(Figure 3). Scaling exponent of NCEP SAT at the point in spring
is the smallest among four seasons, while those in summer and
autumn are much bigger. The seasonal variations of scaling
exponents of most model-simulated SAT are similar to that of
NCEP SAT, except for HadGEM2-AO and CMCC-CMS. In
general, the difference between the scaling exponent of
model-simulated SAT and NCEP data is bigger in summer
than that in other seasons.

Figure 4 shows box charts of scaling exponents of NCEP SAT
and the biases of scaling exponents of model-simulated SAT on
global continents for year and four seasons. The boxes indicate
the interquartile distribution (range between the 25th and 75th
quantiles). The hollowmarked within the boxes show themedian,
and the short horizontal lines outside the boxes indicate the total

FIGURE 1 | Divisions of the continents on earth.

TABLE 3 | The values in the 2.5th and 97.5th percentiles for DFA2’s estimated
errors.

Scaling exponents 0.6 0.7 0.8 0.9 1

Estimated errors (year) –0.06 –0.06 –0.07 –0.07 –0.07
0.05 0.05 0.06 0.06 0.06

Estimated errors (season) –0.06 –0.07 –0.08 –0.08 –0.09
0.06 0.06 0.06 0.07 0.07
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inter-model range. The whiskers show the 5% and 95% ranking
values. The scaling exponents of SAT throughout the year range
from 0.56 to 1.1, and the median value is 0.69 (Figure 4A).
Scaling exponents in four seasons vary from 0.52 to 1.14. The

median value of the scaling exponents in winter is 0.77, which is
bigger than those in other seasons. The median values of the
scaling exponent’s biases of SAT throughout the year for CNRM-
CM5, GFDL-ESM2G, HadGEM2-AO are close to zero

FIGURE 2 | The DFA2 results of SAT from NCEP and CMIP5 models at the point of (110°E, 23°N) for (A) year, (B) spring, (C) summer, (D) autumn, and (E) winter.
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(Figure 4B). The scaling exponents of SAT simulated by
FGOALS-g2 and INM-CM4 in most part of world are less
than those of NCEP SAT, which means SAT simulated by
these two models have weaker LRCs. The scaling exponents of
SAT fromCMCC-CMS, IPSL-CM5A-MR andMPI-ESM-MR are

much bigger than those of NCEP SAT, which shows stronger
LRCs in the most part of global continents.

In boreal spring, the median value of simulation’s errors of
GFDL-ESM2G is close to zero, while that ofMPI-ESM-MR is 0.06
(Figure 4C). Scaling exponents of SAT simulated by CMCC-
CMS, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-MR and MPI-
ESM-MR are bigger than those of NCEP SAT in most part of
global continents, while those of FGOALS-g2 and INM-CM4 are
smaller in most areas of global continents. The median values of
the simulation’s error of FGOALS-g2 and HadGEM2-AO are
close to zero, while those of CMCC-CMS and IPSL-CM5A-MR
are up to 0.06 in boreal summer (Figure 4D). The scaling
exponents of SAT simulated by INM-CM4 are smaller than
those of NCEP SAT in most part of global continents. In boreal
autumn, the median value of the simulation’s errors of LRC in
FGOALS-g2 is close to zero, however, themean value of simulation’s
error in IPSL-CM5A-MR is up to 0.07 which is the biggest in all the
models (Figure 4E). The scaling exponents of SAT simulated by
INM-CM4 are less than those of NCEP SAT in most part of global
continent, while the scaling exponents of other models are bigger.
The median value of the simulation’s error of LRC of FGOALS-g2 is
the smallest, while those ofHadGEM2-AOand IPSL-CM5A-MR are
bigger than 0.04 in boreal winter (Figure 4F). The scaling exponents
of SAT simulated by INM-CM4 are smaller than those of NCEP
SAT in most part of global continents, while those of other six
models except FGOALS-g2 are much bigger, especially for CMCC-
CMS, IPSL-CM5A-MR and MPI-ESM-MR.

FIGURE 3 | The scaling exponents of SAT from NCEP and CMIP5
models at the point of (110°E, 23°N) for year and all four seasons.

FIGURE 4 | Box charts of scaling exponents of NCEP SAT on global continents (A) and the simulation’s errors of LRC of model-simulated SAT for (B) year, (C)
spring, (D) summer, (E) autumn, (F) winter.
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The Zonal Distribution Characteristics of
Global LRC of SAT
Scaling exponents of NCEP SAT are larger in the tropics than
those in middle and high latitude, which shows pronounced
latitude dependence (Figure 5A). The zonal mean scaling
exponents decrease from equator to middle latitude rapidly.
The zonal mean scaling exponents range from 0.7 to 1.0 in
tropical areas. From middle latitude to high latitude, the
decrement of zonal mean LRC is relatively small. Although
the zonal mean of scaling exponents of SAT simulated by 8
CMIP5 models show similar distribution characteristics, there
is a great difference among the models. The zonal mean
scaling exponents of the model-simulated SAT are close to
those of NCEP SAT in the tropics except INM-CM4 and
FGOALS-g2. In middle and high latitudes, most of the zonal
mean model-simulated scaling exponents are close to those of
NCEP SAT except that of HadGEM2-AO. The correlations of
zonal mean scaling exponents of model-simulated SAT and
those of NCEP SAT all exceed 0.65, which are significant at a
significance level of 0.05. The maximum correlation
coefficient is 0.89 for CMCC-CMS, while the minimum is
0.66 for MPI-ESM-MR (Table 4).

In boreal spring, the zonalmean scaling exponent of NCEP SAT
is close to 1 at the equator (Figure 5B). It means that NCEP SAT
has strong LRC at the equator, and SAT in this area is unstable and
very sensitive to small external disturbances. In other words, small

disturbances in this area can propagate to other regions through
the inner interaction of atmospheric system. From extratropical
areas to high latitudes in the northern hemisphere, the zonal mean
scaling exponents increase first and then decrease, and the
maximum value is about 0.8 near 60°N. In the southern
hemisphere, the zonal mean scaling exponents decrease to 0.6 at
40°S, and then increase to about 0.7 in the high latitude. The zonal
mean scaling exponents of INM-CM4 and FGOAL-g2 in the
tropics are much smaller than those of NCEP SAT, while those
of GFDL-ESM2G in the southern tropics are much bigger than
those of NCEP SAT. Most of the zonal mean scaling exponents of
the model-simulated SAT are bigger than those of NCEP SAT in
the high latitudes. The maximum correlation coefficient between

A B C

D

FIGURE 5 | Zonal distribution of scaling exponents of NCEP and the 8 model-simulated SAT throughout (A) whole year; (B) spring; (C) summer; (D)autumn; (E)
winter.

TABLE 4 | Correlation coefficients between zonal mean scaling exponents of
NCEP and the model-simulated SAT.

Year Spring Summer Autumn Winter

CMCC-CMS 0.89 0.88 0.77 0.7 0.7
CNRM-CM5 0.81 0.78 0.58 0.72 0.79
FGOALS-g2 0.78 0.52 0.3 0.52 0.58
GFDL-EMS2G 0.82 0.8 0.62 0.64 0.83
HadGEM2-AO 0.83 0.68 0.24 0.69 0.34
INM-CM4 0.71 0.66 0.59 0.61 0.73
IPSL-CM5A-MR 0.8 0.87 0.74 0.77 0.44
MPI-ESM-MR 0.66 0.55 0.56 0.59 0.5
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zonal mean scaling exponents of the model-simulated SAT and
those of NCEP SAT is 0.88 for CMCC-CMS, while theminimum is
0.52 for FGOALS-g2.

In boreal summer, the zonal mean scaling exponents of NCEP
SAT are bigger in the northern hemisphere than those inmost of the
southern hemisphere, and the maximum value is located at about
10°N (Figure 5C). In the northern hemisphere, there are two sub-
peak values at 30°N and 60°N, respectively, while theminimumvalue
is about 0.7 at 40°N. In the southern hemisphere, the zonal mean
scaling exponents decrease from tropics to the middle-latitude and
reach the minimum near 30°S, and then increase in the high
latitudes. The differences between zonal mean scaling exponents
ofNCEP and themodel-simulated SAT are bigger in the tropics than
those in other areas. The correlation between the zonal mean scaling
exponents of NCEP and the model-simulated SAT in summer is
significantly reduced compared with that in spring. The maximum
correlation coefficient is 0.77 for CMCC-CMS, while the minimum
is only 0.24 for HadGEM2-AO.

In boreal autumn, the peak value of zonal mean scaling exponent
is close to 0.9 near the equator, and then the zonal mean scaling
exponent decreases to about 0.7 near the 40°N and 0.6 near 35°S
(Figure 5D). Compared with the zonal mean scaling exponents of
NCEP SAT, both INM-CM4 and FGOALS-g2 underestimated LRCs
in the tropics, while GFDL-ESM2G significantly overestimates LRCs

in northern tropics. The correlations between the zonal mean scaling
exponents of themodel-simulated SAT and theNCEP data all exceed
0.5. The maximum correlation coefficient is 0.77 for IPSL-CM5A-
MR, while the minimum is 0.52 for FGOALS-g2.

In boreal winter, the maximum zonal mean scaling exponent
of NCEP SAT is greater than 0.9 near the equator. The zonal
mean scaling exponents in the middle and high latitudes of the
northern hemisphere are between 0.7 and 0.8, which have
smaller variations than those in the southern hemisphere.
The zonal mean scaling exponents reach the minimum near
40°S, and then increase to 0.8 in the Antarctic region
(Figure 5E). In the tropics, the zonal mean scaling exponents
of SAT simulated by FGOALS-g2 are obviously smaller than
those of NCEP SAT, while those of GFDL-ESM2G are larger.
The zonal mean scaling exponents of HadGEM2-AO are larger
than those of NCEP SAT in the middle and high latitudes in the
northern hemisphere. The differences between the zonal mean
scaling exponents of NCEP and most of the model-simulated
SAT are relatively larger in the middle and high latitudes of the
southern hemisphere than those in other areas. The correlation
between zonal mean scaling exponents of the model-simulated
SAT and those of NCEP SAT has large variations with the
maximum coefficient of 0.84 for GFDL-ESM2G and the
minimum of 0.34 for HadGEM2-AO.

FIGURE 6 | Scaling exponents of NCEPSAT (A) and difference betweenNCEPand those of SAT simulated by (B)CMCC-CMS, (C)CNRM-CM5, (D) FGOALS-g2, (E)
GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR. (Black dot represents the difference is significant at a significance level of 0.05).
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In general, the zonal mean scaling exponents of NCEP SAT are
big in the tropics and small in the middle and high latitudes,
which also exhibit obvious seasonal variation. The zonal
distributions of scaling exponents in boreal spring are similar
with those in winter, with bigger scaling exponents in the
northern hemisphere than the southern hemisphere. The zonal
distributions of scaling exponents in summer and autumn are
also similar, with two sub-peaks in the northern hemisphere and
increasing trend from middle to high latitudes. In the tropics, the
zonal mean scaling exponents of INM-CM4 and FGOALS-g2 are
both smaller than those of NCEP SAT, while those of GFDL-
ESM2G are bigger. In a word, the performance of CMIP5 models
to LRC has seasonal variation.

Evaluation of Performance of the
Model-Simulated SAT Based on the Spatial
Distribution Characteristics of LRC
NCEP SAT has LRC characteristics in most parts of the global
continents. The scaling exponents are bigger in the tropics than
those in other regions. Scaling exponents range from 0.75 to 0.95 in
Central Africa and South Asia, and exceed 0.95 in North South
America (Figure 6A). Compared with the scaling exponents of

NCEP SAT,more than 60% of theDFA differences of CMCC-CMS,
CNRM-CM5, GFDL-ESM2G, IPSL-CM5A-MR and MPI-ESM-
MR are not significant at a significance level of 0.05, which
means the performance is good in most of global continents.
The performance of IPSL-CM5A-MR is the best among all
models with 69.1% of global continents where the simulation’s
errors are not significant, especially in the northern part of Eurasia,
South America and Australia (Figure 6H). CMCC-CMS, CNRM-
CM5, HadGEM2-AO and MPI-ESM-MR overestimate the LRC of
SAT in most parts of the tropics (Figures 6B,C,F,I), while both
FGOALS-g2 and INM-CM4underestimate the LRC of SAT inmost
parts of the global continents (Figures 6D,G). The performance of
INM-CM4, FGOALS-g2 and HadGEM2-AO is relatively poor.

To explore the performance of individual models in different
regions, we calculated the percentage of grids with insignificant
errors in each region. If the percentage of good performance grids in
one region exceeds 50%, it’s considered that the model performance
is good in this region. Based on this, the performance ofmost CMIP5
models is good in SIB, NEU, CAS and GRL regions, while relatively
poor in EAS, SAS, SEA and CNA. Both IPSL-CM5A-MR and
FGOALS-g2 have five regions with the best performance among
the 8 CMIP5 models. However, HadGEM2-AO has six regions of
the poorest performance among the 8 models.

FIGURE 7 | Scaling exponents of NCEP SAT (A) and difference between NCEP and those of SAT simulated by (B) CMCC-CMS, (C)CNRM-CM5, (D) FGOALS-g2, (E)
GFDL-ESM2G, (F)HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I)MPI-ESM-MR in spring. (Black dot represents the difference is significant at a significance level of 0.05).
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In boreal spring, the scaling exponents of NCEP SAT in most
parts of the global continents are greater than 0.6. The scaling
exponents are between 0.6 and 0.7 in eastern China, northern
Africa, northwestern North America, South America, eastern
Australia and Antarctic, and exceed 0.9 in northern South
America (Figure 7A). Compared with the scaling exponents of
NCEP data, those of model-simulated SAT are smaller in
northern South America, and those of SAT from CNRM-
CM5, FGOALS-g2 and INM-CM4 are smaller in the tropics
(Figures 7B,D,G). The percentage of insignificant simulation’s
errors of LRC is less than 60% for CMCC-CMS, GFDL-ESM2G
and MPI-ESM-MR. SAT of GFDL-ESM2G has stronger LRC
thanNCEP SAT in Australia, southern Africa and southern South
America (Figure 7E), while those of GFDL-ESM2G and INM-
CM4 have weaker LRC in Antarctica (Figures 7E,G). The
performance of FGOALS-g2 is the best with 71.9% of global
continents where the simulation’s errors of LRC are insignificant,
while the performance of MPI-ESM-MR is the poorest among all
eight models with 50.3% of global continents.

The performance of CMIP5 models is good in SIB, CAS and
TIB, while poor in WAF, AUS and SEA. The percentage of good
performance grids of 8 CMIP5 models exceeds 60% in SIB, while
less than 50% in AUS. INM-CM4 has five regions of the best
performance among 8 models. Followed by FGOALS-g2 and

GFDL-ESM2G, both of them have four regions. However,
CNRM-CM5 has six regions of the poorest performance,
especially in CAN. Next, both GFDL-ESM2G and MPI-ESM-
MR have four regions of the worst performance.

In boreal summer, the scaling exponents of NCEP SAT are
bigger than those in spring in most of global continents except in
the middle of Eurasia and northern South America. The scaling
exponents in the tropical region are greater than 0.8 (Figure 8A).
Compared with the scaling exponents of NCEP SAT, CNRM-
CM5, FGOALS-g2 and INM-CM4 have relatively better
capabilities in simulating SAT than the other five models, with
more than 60% of global continents where the simulation’s errors
of LRC are insignificant. The LRCs of SAT from CMCC-CMS,
IPSL-CM5A-MR and MPI-ESM-MR are weaker than those of
NCEP SAT in local areas of North American (Figures 8B,H,I).
Scaling exponents of FGOALS-g2 are bigger in eastern Eurasia,
Australia and Greenland (Figure 8D). GFDL-ESM2G and
HadGEM2-AO have smaller scaling exponents in the high
latitudes (Figures 8E,F). INM-CM4 has smaller scaling
exponents in most parts of the global continents (Figure 8G).

The percentage of good performance girds in NEU exceeds 62%
for most models except INM-CM4. In EAF, GRL, SAF, MED and
SEA, the performance ofmostmodels is poor. In EAF andGRL, the
percentage of good performance grids for all models is less than

FIGURE 8 | Scaling exponents of NCEP SAT (A) and difference between NCEP and those of SAT simulated by (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-g2, (E)
GFDL-ESM2G, (F)HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I)MPI-ESM-MR in summer. (Black dot represents the difference is significant at a significance level of 0.05).
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50%. FGOALS-g2 has seven best-performance regions, while
GFDL-ESM2G has seven regions of the poorest performance.

In boreal autumn, the distributions of scaling exponents of
NCEP SAT are similar to those in summer, with smaller values in
most part of Eurasia than those in other regions. The scaling
exponents of NCEP SAT are generally between 0.6 and 0.7 in the
middle and high latitudes of the southern hemisphere, central and
southern North America, and eastern Asia, while greater than
0.85 in northern South America, central and northern Africa,
South Asia and North America (Figure 9A). Compared with the
scaling exponents of NCEP SAT, those of CMCC-CMS, IPSL-
CM5A-MR and MPI-ESM-MR are bigger in the southern
hemisphere and North America, while smaller in northern
Africa and northeastern North America (Figures 9B,H,I). The
scaling exponents of CNRM-CM5 are close to those of NCEP in
most parts of the global continents, except in the northern and
southern parts of Eurasia, northern Africa, northeastern North
America, and northern South America (Figure 9C). Scaling
exponents of FGOALS-g2 are smaller in northern Eurasia,
central and North Africa, North America, northeastern North
America, and most parts of South America (Figure 9D). LRCs of
DTA simulated by GFDL-ESM2G are stronger in parts of Africa,
South Asia, eastern Australia, South America and North America,

while weaker in the middle of Eurasia, the northeastern part of
North America (Figure 9E). Scaling exponents of HadGEM2-AO
are close to those of NCEP SAT in most regions of the southern
hemisphere, while greater in most part of the northern
hemisphere (Figure 9F). INM-CM4 has weaker LRC in parts
of Africa, northern South America, eastern Australia, northern
Eurasia, northeastern North America, and Antarctica
(Figure 9G).

All the 8 CMIP5models performwell in SIB. InMED and TIB,
most of the models except HadGEM2-AO have good
performance. The performance of most models is poor in
NSA, MEX, CNA and SAF. In CNA, the percentage of good
performance grids for CMCC-CMS, CNRM-CM5, FGOALS-g2
and HadGEM2-AO is less than 10%. INM-CM4 has six regions of
the best performance among the 8 models. CMCC-CMS has four
regions of the best performance. However, HadGEM2-AO has
five regions of the poorest performance, and CMCC-CMS has
four regions.

In boreal winter, the distributions of scaling exponents of
NCEP SAT are similar to those in spring, with bigger values in
Eurasia, northern South American and middle and southern
South African than those in other areas. The scaling
exponents are between 0.6 and 0.7 only in eastern China,

FIGURE 9 | Scaling exponents of NCEP SAT (A) and difference between NCEP and those of SAT simulated by (B)CMCC-CMS, (C)CNRM-CM5, (D) FGOALS-g2,
(E)GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I)MPI-ESM-MR in autumn. (Black dot represents the difference is significant at a significance
level of 0.05).
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southwestern Australia, south South America and south central
North America. In the rest of the global continents, the scaling
exponents are generally above 0.75, and exceed 0.9 in North
America and Central Africa (Figure 10A).

Compared with scaling exponents of NCEP SAT, those of
CMCC-CMS, IPSL-CM5A-MR and MPI-ESM-MR are greater in
South Eurasia, northern South America, Antarctic, and parts of
Australia, while smaller in middle and southern Africa,
Greenland, northern South America (Figures 10B,H,I). Those
of CNRM-CM5 are smaller in equator, Central Europe, northern
South America, while greater in central Australia as well as
middle and northern North America (Figure 10C). The
scaling exponents of FGOALS-g2 and INM-CM4 are smaller
in Greenland, northern South America, southeastern North
America, central and southern African and Antarctic, while
greater in southern North America, northern Australia
(Figures 10D,G). LRCs of SAT simulated by GFDL-ESM2G
are stronger in the tropics while weaker in Antarctic, north-
eastern North America and central Eurasia (Figure 10E). LRCs of
SAT simulated by HadGEM2-AO are weaker in the tropics, while
stronger in other areas (Figure 10F). Scaling exponents of INM-
CM4 are smaller in most part of the global continents except in
the mid-latitude regions (Figure 10G).

All the 8 models perform well in SIB and GRL region. In TIB,
most of the models except HadGEM2-AO have good
performance. The performance of most models is poor in
CNA and SEA. In CAN, all the 8 models have poor
performance. CMCC-CMS has the best performance in six
regions, and CNRM-CM5 has five best-performance regions.
However, HadGEM2-AO has seven regions in which the
performance is the poorest. Both CMCC-CMS and CNRM-
CM5 have five regions of the poorest performance.

CONCLUSION

Based on the LRCs of daily average SAT, the performance of 8
CMIP5 models in global continents is quantitatively evaluated
using DFAmethod. The DFA results of NCEP SAT show that the
SAT has a long-range correlation in most regions of the global
continents. The scaling exponents of NCEP SAT show zonal
distribution characteristics, which are bigger in tropics than that
in middle and high latitudes. The zonal distribution of SAT from
CMCC-CMS is the most similar to that of NCEP data in spring,
summer and throughout the year. The zonal distributions of
scaling exponents of IPSL-CM5A-MR and GFDL-ESM2G are the

FIGURE 10 | Scaling exponents of NCEP SAT (A) and difference between NCEP and those of SAT simulated by (B) CMCC-CMS, (C) CNRM-CM5, (D) FGOALS-
g2, (E) GFDL-ESM2G, (F) HadGEM-AO, (G) INM-CM4, (H) IPSL-CM5A-MR, (I) MPI-ESM-MR in winter. (Black dot represents the difference is significant at a
significance level of 0.05).
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most similar to those of NCEP data in autumn and
winter,respectively. Compared with the zonal distribution of
NCEP SAT, that of FGOALS-g2 has the greatest bias in spring
and autumn. HadGEM2-AO has the greatest bias in summer, and
HadGEM2-AO has the greatest bias in winter.

Although the performance of models varies in different seasons,
there is still something in common. Scaling exponents of SAT
simulated by CMCC-CMS, IPSL-CM5A-MR as well as MPI-ESM-
MR are smaller in North American while greater in other regions
than those of NCEP SAT in all four seasons. This means LRCs of
the simulated SAT are stronger than those of NCEP in most areas
except North American. Scaling exponents of SAT simulated by
FGOALS-g2 and INM-CM4 are less than those of NCEP SAT in
most areas, especially in northern South American, most part of
African and parts of Eurasia. Scaling exponents of SAT from
GFDL-ESM2G are greater in most part of middle latitude of
southern hemisphere. Scaling exponents of SAT from CNRM-
CM5 and HadGEM2-AO are greater in North American in all four
seasons.

The performance of the 8 models also varies in different
regions. The scaling exponents of most model-simulated SAT
are close to those of NCEP data at middle and high latitudes of the
Northern Hemisphere, such as SIB, NEU, GRL and CAS regions,
which means the dynamical characteristics of climate systems in
these areas are well simulated by the models. However, the DFA
errors are big in East Asia and CAN regions. In spring, the
performance of most models is good in SIB, CAS and TIB,
especially in SIB, but poor in WAF, AUS and SEA. In
summer, the performance of most models is good in NEU
area, but poor in EAF, SAF, GRL, MED and SEA area. Kumar
et al. (2014) showed that some CMIP5 models had warm bias in
boreal summer and the performance of the models was poor over
EAF, SAF and SEA. In autumn, most models have good
performance in SIB, MED and TIB areas, but poor
performance in NSA, MEX, CAN and SAF areas. In winter,
most models have good performance in SIB, GRL and TIB areas,
but poor performance in CAN and SEA areas.

The performance of IPSL-CM5A-MR is the best among the 8
models while that of HadGEM2-AO is the poorest throughout
the year. Liu et al. (2014) also pointed out that HadGEM2-AO
had poor performance on SAT over China, while INM-CM4 had
good performance. The performance of models varies greatly
with seasons. FGOALS-g2 has good performance in spring and
summer. GFDL-ESM2G has good performance in autumn.

CNRM-CM5 and CMCC-CMS has good performance in
winter. However, MPI-ESM-MR has the poorest performance
in spring. The performance of CMCC-CMS and GFDL-EMS2G is
poor in summer. HadGEM2-AO has poor performance in
autumn and winter.

Generally speaking, the comparison of individual models for
certain regions and seasons reveals that the most of models can
reasonably simulate the dynamical characteristics of climate
systems in most regions, while there are inter-model
differences in various regions and seasons. These differences
maybe induced by the processes of climate models, which
needs a further examination in the future. Therefore,
appropriate models should be selected according to the
research regions and seasons.
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