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In numerous applications of land-use/land-cover (LULC) classification, the classification
rules are determined using a set of training data; thus, the results are inherently affected by
uncertainty in the selection of those data. Few studies have assessed the accuracy of
LULC classification with this consideration. In this article, we provide a general expression
of various measures of classification accuracy with regard to the sample data set for
classifier training and the sample data set for the evaluation of the classification results. We
conducted stochastic simulations for LULC classification of a two-feature two-class case
and a three-feature four-class case to show the uncertainties in the training sample and
reference sample confusion matrices. A bootstrap simulation approach for establishing the
95% confidence interval of the classifier global accuracy was proposed and validated
through rigorous stochastic simulation. Moreover, theoretical relationships among the
producer accuracy, user accuracy, and overall accuracy were derived. The results
demonstrate that the sample size of class-specific training data and the a priori
probabilities of individual LULC classes must be jointly considered to ensure the
correct determination of LULC classification accuracy.

Keywords: stochastic simulation, bootstrap resampling, confidence interval, confusion matrix, accuracy
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INTRODUCTION

Land-use/land-cover (LULC) classification using remote sensing images has been applied in
numerous studies, including investigations involving environmental monitoring and change
detection (Cheng et al., 2008; Chen et al., 2017), research on urbanization effects (Herold et al.,
2002; Teng et al., 2008; Hung et al., 2010), and disaster mitigation (Zope et al., 2015; Yang et al.,
2018). Results of LULC classification are critical for practical application of these studies. In
supervised LULC classification using remote sensing images, a set of multi-class ground truth
training samples is collected and used to establish the classification rules and multi-class boundaries
in the feature space. These classification rules are then applied to an independent set of multi-class
ground truth reference samples. Reference sample classification accuracy, comprising the producer
accuracy (PA) and user accuracy (UA) for individual classes and overall accuracy (OA), is then
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summarized in a confusion or error matrix that is used to assess
the classification accuracy and classifier performance (Congalton
et al., 1983; Stehman, 1997a). Stehman and Czaplewski (1998)
proposed that thematic maps constructed from remote sensing
data should be subjected to a statistically rigorous accuracy
assessment. In particular, the a priori probabilities
(i.e., inclusion probabilities) of individual land-cover types
must be considered.

A core assumption in classification accuracy analysis is that
the confusion matrix is truly representative of the classification
results of the entire study area. Several factors in the LULC
classification process can affect the classification accuracies
presented in a confusion matrix. These include errors in
georeferencing, ground truth data collection, and errors
involving classifiers, classification schemes, spatial
autocorrelation modeling, sample size, and sampling
schemes (Congalton, 1991; Hammond and Verbyla, 1996).
Class-specific PA and UA values (or, correspondingly,
omission and commission errors) summarized in a
confusion matrix can be regarded as sample accuracy, and
these values are only estimates of the true and yet unknown
global accuracy (or population accuracy) concerning the entire
study area (Hay, 1988; Stehman and Czaplewski, 1998). These
accuracies or errors are inherently associated with uncertainty
because of the uncertainty in the selection of the training and
reference samples (Weber and Langille, 2007). Variance
approximation and standard error formulas of classification
accuracy estimates have been developed for quantifying this
uncertainty (Czaplewski, 1994; Stehman, 1997b). Bootstrap
resampling, a nonparametric approach, has been used to
generate large sets of confusion matrices and assign
confidence intervals for assessing the uncertainty of various
measures of classification accuracy (Steele et al., 1998; Weber
and Langille, 2007; Champagne et al., 2014; Hsiao and Cheng,
2016; Lyons et al., 2018).

In numerous studies, classification accuracy assessments were
conducted using a classifier training data set (Franklin and
Wilson, 1992; Bauer et al., 1994; Nageswara Rao and
Mohankumar, 1994; Hammond and Verbyla, 1996; Hung
et al., 2010; Hsiao and Cheng, 2016). Researchers have argued
that using the same data set in training and validation can result
in the overestimation of classification accuracy (Congalton, 1991;
Hammond and Verbyla, 1996). In this study, the confusion
matrix created using the same data set for training and
validation is referred to as the training sample confusion
matrix, and the confusion matrix constructed using an
independent data set of reference samples is called the
reference sample confusion matrix. Although assessing the
reference sample confusion matrix has become common
practice in the evaluation of LULC classification results, the
PA and UA presented in this matrix are contingent on the
training samples with regard to the classification rules
established in the training stage. In numerous applications of
LULC classification, the classification results are inherently
affected by the uncertainty in the selection of a training data
set used to determine the classification rules. Thus, for a thorough
assessment of classification accuracy, researchers must consider

the uncertainty in training data selection. To our knowledge, few
researchers (Champagne et al., 2014; Hsiao and Cheng, 2016;
Lyons et al., 2018) have conducted assessments of LULC
classification accuracy with this consideration in mind. Thus,
it is imperative for the remote sensing community to address two
key issues: 1) a systematic expression of the relationship between
the sample estimate of classification accuracy and the theoretical
global accuracy, taking into account uncertainty in the selection
of the training and reference data; and 2) a quantitative
expression of uncertainty in LULC classification accuracy.
Therefore, the study objectives are threefold: 1) to investigate
the effect of training and reference data selection on classification
accuracy, 2) to provide a theoretical expression of the relationship
between the sample accuracy and the theoretical global accuracy,
and 3) to propose an approach for quantitatively assessing the
uncertainty in LULC classification results. Specifically, we
performed a stochastic simulation of multi-class multivariate
Gaussian distributions and conducted LULC classification
using simulated samples to examine the proposed approach
and identify essential concepts.

METHODOLOGY

Thoughts and the Theoretical Basis
As mentioned in Introduction, PA, UA, and overall accuracy of a
reference sample confusionmatrix constitute estimates of the true
and yet unknown global accuracy. However, what exactly the
global accuracy represents has not been clearly defined, and the
following explanations are given to provide context for the
subsequent analysis and discussion. In accordance with terms
that are commonly used in numerous remote sensing studies,
map class refers to the LULC class assigned by the classifier,
whereas reference class refers to the ground truth class.

In a k-class LULC classification problem, the totality of pixels
within the study area forms a finite population, and all pixels
within a specific LULC class represent its subpopulation. The
term population confusion matrix (or population error matrix;
Table 1) was coined (Stehman, 1995; Stehman, 2009) to represent
the LULC classification results of the entire study area when the
true land-cover identities of all individual pixels are known. In
Table 1, N represents the total number of pixels in the entire
study area, and Nij represents the number of pixels of map class i
and reference class j. The column sum N+i is the total number of
pixels in the entire study area that truly belong to class i. The row
sum Ni+ represents the total number of pixels in the entire study
area assigned to class i. Three population accuracy measures,
namely, PA (Pp), UA (Pu), and overall accuracy (Po), can then be
expressed as follows:

Pp(i) � Nii/N+i (i � 1, 2, . . . , k), (1)

Pu(i) � Nii/Ni+ (i � 1, 2, . . . , k), (2)

Po � ∑k
i�1

Nii/N. (3)

The a priori probabilities, that is, the area proportions of
individual LULC classes, are expressed as follows:
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ai � N+i/N (i � 1, 2, . . . , k). (4)

These population accuracy measures are unknown and, in most
cases, are estimated using the reference sample accuracy. Table 2
shows a reference sample confusion matrix that summarizes the
LULC classification results of a reference sample data set.
Similarly, nij represents the number of pixels of map class i
and reference class j in the reference sample. In numerous
applications of LULC classification, the PA, UA, and overall
accuracy of the sample are calculated using the following
equations:

P̂p(i) � nii/n+i (i � 1, 2, . . . , k), (5)

P̂u(i) � nii/ni+ (i � 1, 2, . . . , k), (6)

P̂o �∑k
i�1

nii/n. (7)

Supervised LULC classification consists of a training stage and a
performance evaluation or validation stage, and a confusion
matrix is constructed and used for accuracy assessment. To
better define classification accuracy under different situations,
we devised the following general expression for various measures
of LULC classification accuracy.

Let Ω represent the set of all pixels in the study area (i.e., the
global data set), and let ST and SR, two independent data sets of
known ground truth LULC classes, represent the training and
reference samples, respectively. P(S1, S2) refers to the general
expression of the various measures of LULC classification
accuracy, where S1 and S2 represent the training and
validation data sets, respectively. Thus, the conventional class-
specific accuracies in the training sample confusion matrix and
the reference sample confusion matrix, as well as two other
measures of global accuracy, can be defined, as shown in Table 3.

The training sample–based global accuracy, equivalent to the
accuracy measures presented in Table 1, represents the
classification accuracy of the thematic map. The training
sample accuracy, reference sample accuracy, and training
sample–based global accuracy are all dependent on the
training data set. Thus, conclusions on accuracy assessment
using these measures are susceptible to training data
uncertainty. By contrast, the classifier global accuracy
represents the accuracy achieved by using the population
(i.e., the global data set) to establish the classification rules,
and thus, it is only dependent on the classifier used for LULC
classification. The global accuracy (be it PA, UA, or overall
accuracy) of a specific classifier has a unique and theoretical
value. The global accuracy, be it the training sample–based global

TABLE 1 | Population confusion matrix for k-class land-use/land-cover classification using classification rules established by a training data set.

Reference classes Row sum Population user’s accuracy

C1 C2 . . . Ck

Map classes C1 N11 N12 . . . N1k N1+ Pu(1)
C2 N21 N22 . . . N2k N2+ Pu(2)

. . .

Ck Nk1 Nk2 . . . Nkk Nk+ Pu(k)
Column sum N+1 N+2 . . . Nk+ N
Producer’s Pp(1) Pp(2) Pp(k) Po

TABLE 2 | Reference sample confusion matrix for k-class land-use/land-cover classification using classification rules established using a training data set.

Reference classes Row sum Population user’s accuracy

C1 C2 . . . Ck

Map classes C1 n11 n12 ... n1k n1+ P̂u(1)
C2 n21 n22 ... n2k n2+ P̂u(2)

...
Ck nk1 nk2 ... nkk nk+ P̂u(k)
Column sum n+1 n+2 ... n+k N
Reference-sample producer’s accuracy P̂p(1) P̂p(2) ... P̂p(k) P̂o

TABLE 3 | Measures of land-use/land-cover classification accuracy and their data dependencies.

Accuracy measure Expression Sample data dependency

Training-sample accuracy Pi(ST ,ST ), i � 1,2,/, k ST

Reference-sample accuracy Pi(ST ,SR) ST and SR

Training-sample-based global accuracy Pi(ST ,Ω) ST

Classifier global accuracy Pi(Ω,Ω) None
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accuracy or the classifier global accuracy, is unknown and can
only be estimated by using the confusion matrix of the LULC
classification results. For the convenience of discussion, only the
PA is considered in this study, but the same specifications and
simulations also apply to UA and overall accuracy. The classifier
global accuracy provides an objective measure for comparing the
performance of different classifiers.

The practical question is what the end users of land-cover
maps wish to learn from LULC-based thematic maps. Users may
be interested in the classification accuracy or the uncertainty of
the classification results. Classification accuracy and uncertainty
are different concepts; classification accuracy is defined as the
degree to which the thematic map corresponds to the reference
classification, whereas the uncertainty associated with the
estimator of a classification measure is defined as the
variability of that estimator over the set of all possible samples
(Olofsson et al., 2013). Moreover, the PA and UA presented in a
reference sample confusion matrix are contingent on land-cover
classes. In a local-scale evaluation of LULC classification results,
pixel-specific classification accuracy is desired. Spatial
interpolation techniques in both geographic and feature spaces
of pixel-specific classification accuracy or posterior class
probability have been developed (Steele et al., 1998; Chiang
et al., 2014; Khatami et al., 2017). Users may also be interested
in knowing the uncertainty of pixel-specific classification results.
By applying LULC classification to bootstrap samples of remote
sensing data, uncertainty in class assignment can be evaluated
using the class probability vector or the entropy of the class
composition of individual pixels (Hsiao and Cheng, 2016).

Most studies assessing the accuracy and uncertainty of LULC
classification results have used the reference sample confusion
matrix to estimate the training sample–based global accuracy
(i.e., the accuracies in Table 1) by using the reference sample
classification accuracy (i.e., the accuracies in Table 2). However,
the target accuracy, that is, Pi(ST ,Ω), is dependent on the training
sample ST. Thus, conclusions drawn from such practices are
inherently influenced by training sample selection. Even with a
given training sample ST, the reference sample accuracy
Pi(ST , SR) is still affected by the reference sample uncertainty.
Therefore, we propose Pi(Ω,Ω) as the target accuracy using a
classifier’s global accuracy because it is not prone to uncertainty
in training or reference data and because it allows users to
compare the LULC classification performance of different
classifiers.

To demonstrate the usefulness and advantages of using the
classifier’s global accuracy to assess the LULC classification
results, we conducted rigorous stochastic simulations of multi-
class multivariate Gaussian distributions to mimic an LULC
classification. We then compared three evaluation approaches.
The details of the simulations and related approaches are
described as follows:

Consider a situation inwhich k land-cover types(Ci, i � 1, 2, . . . , k)
are present in a study area. Assume m sets of sample data are
collected by simple random sampling or stratified random
sampling: S � {S1, S2, . . . , Sm}. Each sample data set comprises
pixels of known class identities from among the k land-cover
types. In an LULC classification, one sample data set, for example,

Sℓ , is selected as the training sample, and the remainder, that is,
m−1, data sets can be regarded as reference samples. If all
sample data sets were constructed using the same sampling
criteria or procedures, the so-called training sample and
reference sample are not statistically different. The sample
data set used to determine the discriminant functions or
classification rules in the LULC classification is considered
the training sample, and any of the m sample data sets can
be used as the training sample. Notably, an evaluation of LULC
classification accuracies can be considered a parameter
estimation process. For every evaluation approach, there
exists a target accuracy (i.e., the parameter to be estimated)
as well as an estimate of the target accuracy that is often derived
from the LULC confusion matrix.

Approach I: Reference Sample–Based Evaluation
Approach
Approach I is the commonly adopted method for assessment of
the LULC classification accuracy using the reference sample.
Upon the completion of an LULC classification using a
particular sample data set (e.g., Sℓ) as the training sample, the
LULC classification accuracy can be evaluated by using any of the
remainingm−1 sets of reference sample (Sj, j � 1, 2, . . . ,m; j≠ ℓ).
Let pi(Sℓ , Sj) represent the PA of the ith land-cover class, using Sℓ
and Sj as the training and reference samples, respectively.
Consider pi(Sℓ , Sj) to be the reference sample PA. Under this
approach, the training sample–based global accuracy, pi(Sℓ ,Ω), is
determined using the reference sample classification accuracy,
pi(Sℓ , Sj), as the estimator. For a given training sample set Sℓ , the
value of pi(Sℓ , Sj) varies with land-cover classes and reference
samples, and the estimation can be expressed as follows:

p̂i(Sℓ ,Ω) � pi (Sℓ , Sj); ℓ ≠ j. (8)

Using a large number of reference samples (Sj, j � 1, 2, . . . ,m; j≠ ℓ),
the uncertainty of the estimator can be evaluated. As the number of
reference samples increases, we can expect the mean value of the
reference sample PA to approach the producer’s true global accuracy
achieved with Sℓ as the training sample:

1

(m − 1) ∑
m

j�1,
j≠ l

pi (Sℓ , Sj) 							→m→+∞ pi(Sℓ ,Ω). (9)

In most cases, the number of reference samples in the LULC
classification is limited. Therefore, conducting a meaningful
evaluation of the classification results is challenging when only
one or a few sets of reference samples are used. Eq. 9 shows that
this approach, at its best, can only provide a good estimate of the
producer’s global accuracy, pi(Sℓ ,Ω), which is achieved by using a
specific training sample Sℓ .

Approach II: Training Sample–Based Evaluation
Approach
If each of the sample data sets {S1, S2, . . . , Sm} is sequentially
selected as the training sample in an LULC classification, it yields
m sets of training sample confusion matrices. This evaluation
approach estimates the classifier global accuracy, pi(Ω,Ω), by
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using pi(Sℓ , Sℓ), the training sample accuracy value, as the
estimator:

p̂i(Ω,Ω) � pi(Sℓ , Sℓ). (10)

Assume that all possible samples of a fixed sample size (i.e., the
ensemble of samples) are available. As the number of training
samples increases, the mean of the training sample accuracy
approaches the classifier global accuracy:

1
m
∑m
ℓ�1

pi(Sℓ , Sℓ) 							→m→+∞ pi(Ω,Ω). (11)

This equation indicates that the ensemble mean (m→ +∞) of
the training sample accuracy equals the classifier global accuracy.
In actual practice, we have only one training sample set (m � 1),
and thus, the only known training sample accuracy is used as an
estimate of the classifier global accuracy, and the training
sample–based evaluation is affected by the training data
uncertainty.

Approach III: Bootstrap Sample–Based Evaluation
Approach
Both approaches I and II are susceptible to training data
uncertainty. Approach III estimates the classifier global
accuracy by assigning a confidence interval of the classifier
global accuracy. This is achieved by bootstrap resampling from
the only training sample set.

Given a training data set Sℓ , suppose that a large number
(e.g., M � 1000) of bootstrap samples, such as SB1 , S

B
2 , . . . , S

B
M ,

are generated from the training data set. We conducted LULC
classification using each of these bootstrap samples as the
training sample, obtaining M sets of bootstrap sample
accuracy values: piℓ(SBj , SBj ), j � 1, 2, . . . ,M; i � 1, 2, . . . k.
The subscript ℓ indicates that bootstrap samples are
generated from the training data set Sℓ , and the bootstrap
sample accuracy is dependent on the training data set. Details
on bootstrap resampling and its application in LULC
classification were presented previously (Horowitz, 2001;
Hsiao and Cheng, 2016).

Let qB1 and qB2 , respectively, represent the 0.025 and 0.975
sample quantiles of piℓ(SBj , SBj ). Let j � 1, 2, . . . ,M. Thus,
[qB1 , qB2 ] forms a 95% confidence interval of pi(Ω,Ω), as
follows:

P[qB1 ≤ pi(Ω,Ω)≤ qB2 ] � 0.95. (12)

Notably, as the number of bootstrap samples increases, the mean
bootstrap sample accuracy approaches the training sample
accuracy (Hsiao, 2013):

1
M
∑M
j�1

piℓ(SBj , SBj ) 							→m→+∞ pi(Sℓ , Sℓ). (13)

The combination of Eqs. 11, 13 yields the following:

1
m
∑m
ℓ�1
⎛⎝ 1
M
∑M
j�1

piℓ[SBj , SBj ]⎞⎠ 							→
m→+∞,
M→+∞

pi(Ω,Ω). (14)

If only one training sample set is available (m � 1), the mean
and sample quantile range [qB1 , qB2 ] of the bootstrap sample
accuracy are a point estimate and a 95% confidence interval
of the classifier global accuracy, respectively. To validate
these relationships and to demonstrate the advantages of
using the classifier global, that is, accuracy to assess LULC
classification results, we performed stochastic simulation for
a simple case with two classes and two features (2C2F) and a
more complex case with four classes and three features
(4C3F).

Stochastic Simulation of LULC
Classification
Consider a special case of LULC classification with two land-
cover classes (C1 and C2) and two classification features (X1 and
X2). For each land-cover class, the two classification features form
a bivariate Gaussian distribution. The mean vector, the
covariance matrix of classification features, and the a priori
probabilities of C1 and C2 are listed in Table 4. The two

TABLE 4 | Parameters of the multivariate Gaussian distributions of individual classes in the two-class, two-feature (2C2F) case and the four-class, three-feature (4C3F) case.

2C2F Class 1 Class 2
Mean [ 80

120 ] [ 140150]
Covariance [ 1225 −525

−525 400 ] [ 900 390
390 400 ]

A priori probability 0.4 0.6

4C3F Class 1 Class 2 Class 3 Class 4

Mean ⎡⎢⎢⎢⎢⎢⎣ 87.96
61.85
118.42

⎤⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎢⎣ 127.69116.18
80.31

⎤⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎢⎣ 74.9049.92
92.98

⎤⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎢⎣ 104.9086.42
89.73

⎤⎥⎥⎥⎥⎥⎦

Covariance ⎡⎢⎢⎢⎢⎢⎣ 66.65 62.86 5.78
62.86 77.46 −8.41
5.78 −8.41 140.11

⎤⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎢⎣ 161.54 53.49 39.35
53.49 177.16 64.00
39.35 64.00 159.26

⎤⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎢⎣ 29.93 27.92 12.57
27.92 35.09 1.90
12.57 1.90 137.73

⎤⎥⎥⎥⎥⎥⎦ ⎡⎢⎢⎢⎢⎢⎣ 66.23 42.80 14.08
42.80 106.03 −9.52
14.08 −9.52 175.32

⎤⎥⎥⎥⎥⎥⎦
A priori probability 0.2 0.4 0.25 0.15
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classification features are negatively correlated (ρ � −0.75) for C1

and positively correlated (ρ � 0.65) for C2.
In k-class p-feature LULC classification using

multispectral remote sensing images, a pixel can be
characterized by a feature vector, XT � (x1, x2, . . . , xp), and
the probability density function of the ith class can be
expressed as follows:

f (X|Ci) � 1���
2π

√ p exp[− 1
2
(X − μi)TΣ−1

i (X − μi)], i � 1, 2, . . . , k.

(15)

where μi and Σi are the mean vector and the covariance matrix,
respectively. In our simulations, the Bayes classifier, which

considers the a priori probabilities of individual LULC classes,
was used. The class-specific discriminant functions of the
classifier are as follows:

di(X) � ln p(Ci) − 1
2
ln|Σi| − 1

2
(X − μi)TΣ−1

i (X − μi),
i � 1, 2, . . . , k.

(16)

where p(Ci) represents the a priori probability of the ith class. A
pixel with feature vector X is assigned to the class with the highest
value of the discriminant function, as follows:

Assign X to Ci if di(X)> dj(X), j � 1, 2, . . . , k; j≠ i. (17)

The simulation settings and details of the three evaluation
approaches are described as follows.

TABLE 5 | Classifier global accuracies of individual classes achieved by using the
Bayes classifier in the two-class, two-feature (2C2F) case and the four-class,
three-feature (4C3F) case.

2-class 2-feature case
Classifier global
accuracy

Class 1 Class 2

Producer’s 0.94385 0.91146
User’s 0.87664 0.96055
Overall 0.92442

4-class 3-feature case
Classifier global
accuracy

Class 1 Class 2 Class 3 Class 4

Producer’s 0.8761 0.9710 0.9373 0.8580
User’s 0.8891 0.9647 0.9226 0.8796
Overall 0.9266

FIGURE 1 | Conceptual illustrations of a two-class bivariate Gaussian
distribution and simulated sample data sets. Each sample data set consists of
80 data points from C1 and 120 data points from C2.

SIM-1
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Simulation Setting for Calculation of the Classifier
Global Accuracy
The classifier global accuracies of C1 and C2 cannot be
analytically derived. Thus, we simulated one large sample
data set (SΩ) containing 1,000,000 data points, 400,000 from
C1 and 600,000 from C2, of the two-class bivariate Gaussian
distributions. These data points were then classified by using the
Bayesian discriminant functions derived from the population
parameters presented in Table 4. With such a considerable
number of data points, the PA, UA, and overall accuracies can
be considered the classifier global accuracies: pi(Ω,Ω), i � 1, 2.
Their values are shown in Table 5.

Simulation Setting for Approach I
Using the parameters shown in Table 4, we generated 1,001
sample data sets (S1, S2, . . . , S1001) of the bivariate Gaussian
distributions for C1 and C2, respectively. Taking into account
the a priori probabilities of the two land-cover classes, each
sample data set comprised 200 data points, 80 from C1 and
120 from C2, with each point representing a vector of (x1, x2)
belonging to either C1 or C2. A conceptual illustration of the two-
class bivariate distributions and their simulated sample data sets
is shown in Figure 1. Detailed procedures for the simulation,
classification, and evaluation of approach I are described in
flowchart SIM-1.

SIM-2

SIM-3
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Simulation Setting for Approach II
Similar to that for approach I, in the simulation setting for approach
II, a sample data set comprised 200 data points, 80 and 120 from C1

and C2, respectively. Each data set was used as the training sample,
and each yielded one training sample confusion matrix. Under this
approach, m sample data sets were independently generated, and
the mean of the training sample accuracies was calculated from m
sets of training sample confusionmatrices. To evaluate the statistical
property regarding the training sample classification
accuracy (Eq. 11), we considered various numbers of sample
data sets (m � 20, 30, 40, 60, 80, 100, 150, 300, 400, 500).
The simulation and evaluation procedures are described in
flowchart SIM-2.

Simulation Setting for Approach III
The objective of this approach is to demonstrate that a 95%
confidence interval of the classifier global accuracy can be

established by using bootstrap samples. We first generated a
training data set from the two-class bivariate Gaussian
distribution. Next, we generated 1,000 sets of bootstrap
samples, with each set used as a training data set for LULC
classification, and this approach yielded a bootstrap sample
confusion matrix (1,000 in total). We then established a training
data–dependent confidence interval of the classifier global
accuracy by using the 0.025 and 0.975 sample quantiles.
These procedures were performed 1,000 times to obtain
1,000 confidence intervals. Finally, we evaluated the
proportion of the confidence intervals bounding the classifier
global accuracy. Details of the simulation are presented in
flowchart SIM-3.

Detailed procedures for the application of the bootstrap
resampling technique related to the LULC classification of
remote sensing images are provided in the Supplementary
Appendix.

FIGURE 2 | Histograms of different reference sample accuracies (based on 1,000 sets of reference samples) with respect to a given training sample.
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RESULTS AND DISCUSSION

The three evaluation approaches and the asymptotic properties of
the reference sample, training sample, and bootstrap sample
accuracies described in Methodology were validated using the
simulated LULC classification results. For the convenience of
explanation, a number affixed to PA and UA indicates the LULC
class. For example, PA1 represents the PA of C1.

Evaluation of Reference Sample
Classification Accuracy
Given one set of training samples (i.e., one simulation run of
approach I), 1,000 sets of reference samples were classified using
the class-specific discriminant functions established by the
given training sample set. Figure 2 presents histograms of
different reference sample classification accuracies (i.e., PA1, PA2,
UA1, UA2, and OA) for one set of training samples. The reference
sample classification accuracies varied relatively widely. For example,
the reference sample PA of C1 varied between 0.8 and 1.0, and the

reference sampleOA varied between 0.86 and 0.98. This demonstrates
that the conventional approach of evaluating LULC classification
results by using only one set of reference samples involves a high
degree of reference sample uncertainty. The figure also shows that the
mean of the 1,000 reference sample accuracies was nearly the same as
the global accuracy achieved by using the training sample (indicated
by the black dashed line and the blue line, respectively), but that it
differs from the classifier global accuracy (red line).

Each of the 1,000 sets of training samples generated in our
simulation corresponded to one set of training sample–based global
accuracies and 1,000 sets of reference sample accuracies. Figure 3
presents a comparison of themean reference sample accuracy, training
sample–based global accuracy, and classifier global accuracy for 100
sets of training samples (runs 501–600). Regardless of the training data
sets, the mean reference sample accuracy (red dashed line) remained
nearly equal to the training sample–based global accuracy (blue line).
However, overall, their values were not close to the classifier global
accuracy (dark green line). Because all the sample data sets were
independently generated from the same two-class bivariate Gaussian
distribution, the results of other simulation runs were similar. In sum,

FIGURE 3 | Comparison of the mean reference sample accuracy, training sample–based global accuracy, and classifier global accuracy. Each run corresponds to
one set of training sample and 1,000 sets of reference samples.
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the results invalidate the use of only one set of reference samples for
evaluating LULC classification results.

Evaluation of Training Sample Classification
Accuracy
Figure 4 shows the theoretical and training sample–dependent
decision boundaries as well as the isoprobability contours of the
bivariate Gaussian distribution of C1 and C2. Uncertainty in
decision boundaries attributable to training data uncertainty
was observable. Given the parameters shown in Table 4, the
Bayes classifier involves a unique set of theoretical decision

boundaries, as shown in Figure 4D. However, in an actual
LULC classification, the parameters of the two-class bivariate
Gaussian distribution are unknown and can only be estimated
from the training sample. Thus, the decision boundaries and
classification accuracies vary with training samples (Figures
4A–C). Figure 5 shows histograms of different training
sample accuracies (PA1, PA2, UA1, UA2, and OA), which
were based on 100 sets of training samples and mostly varied
between 0.8 and 1.0. This demonstrates the effect of training data
uncertainty on the LULC classification accuracies.

We further investigated the asymptotic property related to the
mean training sample classification accuracies. As the number of

FIGURE 4 | (A–C) Training samples and training sample–dependent decision boundaries. (D) Theoretical decision boundary and isoprobability contours of the
bivariate Gaussian distribution of C1 and C2. Blue and red parabolic curves represent the training sample–dependent and theoretical decision boundaries, respectively.
N1: number of training data points of C1; N2: number of training data points of C2.
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training data sets increased, the mean of training sample accuracy
approached the classifier global accuracy (Figure 6). This
demonstrates that the training sample accuracy is an unbiased
estimator of the classifier global accuracy. By contrast, the mean
reference sample accuracy approached the training sample–based
global accuracy, but not the classifier global accuracy (Figure 3).

Evaluation of Bootstrap Sample
Classification Accuracy
We generated 1,000 sets of training samples from the two-class
bivariate Gaussian distribution. Next, for each training sample set,
1,000 bootstrap samples were generated and used to establish the
95% confidence intervals of various accuracy measures. We then
evaluated the proportions of these confidence intervals that covered
the classifier global accuracies. Figure 7 shows the 95% bootstrap
confidence intervals and the mean bootstrap sample accuracies for
100 sets of training samples (runs 301–400). In each training sample
set, the mean of 1,000 bootstrap sample accuracies decreased very
close to the training sample accuracy. The classifier global accuracy
coverage probabilities of the bootstrap confidence intervals were
0.977, 0.945, 0.947, 0.977, and 0.953 for PA1, PA2, UA1, UA2, and
OA, respectively. These probabilities were slightly higher than 0.95
(for PA1 and UA2) or nearly equal to 0.95 (for PA2, UA1, and OA),
indicating that the bootstrap confidence interval was effective in
evaluating the classification accuracy.

Further Validation of the Bootstrap
Confidence Interval Using a 4C3F Case
To demonstrate the effectiveness of the proposed bootstrap
sample–based evaluation approach in more complex
applications of LULC classifications, we conducted a similar
stochastic simulation for a 4C3F LULC classification case,
assuming that the three classification features of individual
land-cover classes formed a trivariate Gaussian distribution. The
mean vector and the covariance matrix of the classification features
of individual land-cover classes are listed in Table 4. These
parameters were selected according to the characteristics of
different types of land cover (grass, built land, woods, and soil)
discussed in a previous study (Fan, 2016). The a priori probabilities
of the individual land-cover classes (classes 1–4) were 0.2, 0.4, 0.25,
and 0.15, respectively. A sample data set of 1,000,000 data points
was generated and used for an accurate estimation of the classifier
global accuracies. We also generated 1,000 sample data sets,
containing 400 data points each, that were then used as the
training data sets. For each training data set, 1,000 sets of
bootstrap samples were generated. Following the same
procedures described in Simulation Setting for Approach III, we
calculated the mean bootstrap sample accuracies and established
1,000 sets of 95% bootstrap confidence intervals.

The classifier global accuracies (PA, UA, and OA)
obtained using 1,000,000 sample points are shown in

FIGURE 5 | Histograms of different training sample accuracies based on 100 sets of training samples. The red vertical lines mark the classifier global accuracies.
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Table 5. The 95% bootstrap confidence intervals of the
classifier global accuracy and the mean bootstrap sample
accuracies for 100 sets of training samples (runs 301–400)
for the 4C3F case are shown in Figure 8. In each training
data set, the mean of 1,000 bootstrap sample accuracies was
very close to the training sample accuracy. The classifier-
global-accuracy coverage probabilities of the bootstrap

confidence intervals were 0.96, 0.976, 0.949, 0.955, 0.958,
0.955, 0.963, 0.958, and 0.936 for PA1, PA2, PA3, PA4, UA1,
UA2, UA3, UA4, and OA, respectively. These results
demonstrate that the bootstrap sample–based evaluation
method and the 95% bootstrap confidence intervals of
different measures of classification accuracy can be
applied as general approaches.

FIGURE 6 | Asymptotic behavior of the mean training sample classification accuracies. The mean training sample accuracies were calculated based on 20, 30, 40,
60, 80, 100, 150, 300, 400, and 500 sets of training samples. Each training sample set is composed of 80 and 120 data points from C1 and C2, respectively.
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Training Sample Confusion Matrix: A Closer
Look
The evaluations discussed thus far indicate that the training
sample accuracies (i.e., the accuracies presented in the training
sample confusion matrix) were unbiased point estimators of
their corresponding classifier global accuracies, whereas the
reference sample accuracies were affected by uncertainty in
the training data. The key statistical properties of the
training sample confusion matrix are further discussed as
follows.

Table 6 presents a training sample confusion matrix
generated in the LULC classification involving k classes.
Percentages of class-specific training data assigned to
individual LULC classes, rather than the number of training
data points classified into individual LULC classes, are shown,
and pji, referred to as the producer’s class probabilities, represents

the percentage of training data of the ith LULC class assigned to
the jth LULC class. Let n represent the total number of training
data points, and let ai (i � 1, 2, . . . , k) be the a priori probability
of the ith LULC class. If the numbers of the training data points
of individual LULC classes are proportional to their a priori
probabilities, then ain � n+i represents the number of training
data points of the ith LULC class. Similar to the a priori
probability, the a posteriori probability of the ith LULC class,
bi, is the proportion of training data points assigned to the ith
LULC class. Table 6 shows the relationships among PA, UA, and
OA, as follows:

∑k
i�1
(pjiai) � bj; j � 1, 2, . . . , k, (18)

pii(aibi) � ui; i � 1, 2, . . . , k, (19)

FIGURE 7 | Illustration of 95% bootstrap confidence intervals of different accuracy measures (2C2F case).
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FIGURE 8 | Illustration of 95% bootstrap confidence intervals of different accuracy measures (4C3F case).
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TABLE 6 | Training sample confusion matrix for k-class land-use/land-cover (LULC) classification.

Reference class (a priori probability) Row sum User’s accuracy A posteriori
probabilityC1 C2 . . . Ck

a1 a2 . . . ak

Map class

C1 p11 p12 . . . p1k ∑k
i�1

p1i
p11a1n∑k
i�1(p1i ain)

� p11a1∑k
i�1(p1i ai)

� u1

∑k
i�1(p1iain)

n

�∑k
i�1
(p1i ai) � b1

C2 p21 p22 . . . p2k ∑k
i�1

p2i
p22a2n∑k
i�1(p2i ain)

� p22a2∑k
i�1(p2i ai)

� u2

∑k
i�1(p2iain)

n

�∑k
i�1
(p2i ai) � b2

. . .

Ck pk1 pk2 . . . pkk

∑k
i�1

pki

pkkakn∑k
i�1(pkiain)

� pkkak∑k
i�1(pkiai)

� uk

∑k
i�1(pkiain)

n

�∑k
i�1
(pkiai) � bk

Column sum 1 1 . . . 1 k

OA � ∑k

i�1pii ai n
n � ∑k

i�1
piiai � ∑k

i�1
uibi

Producer’s accuracy p11a1n
a1n

� p11
p22a2n
a2n

� p22 . . . pkk akn
akn

� pkk User’s accuracy � Producer’s accuracy apriori probability
a posteriori probability

n+1 � a1n n+2 � a2n n+k � akn

Note: pji represents the percentage of the training data of the ith LULC class assigned to the jth LULC class.
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OA �∑k
i�1

piiai �∑k
i�1

uibi, (20)

where pii and ui are the PA and UA of the ith LULC class,
respectively. These equations indicate that the UA equals the
(ai/bi) adjusted PA. Moreover, the OA can be expressed as the a
priori probability–weighted sum of the PA and the a posteriori
probability–weighted sum of the UA.

The calculation of PA can be perceived as parameter
estimation using the training sample. As long as the sample
size (i.e., the number of training data points) of individual
LULC classes is sufficiently large, the class-specific PAs
achieved using the training data can be expected to be close
to the global PAs of their corresponding classifier. This is true
even if the training sample size of individual LULC classes is
not proportional to their a priori probabilities. Because the PA
of a specific LULC class does not depend on the methods by
which the training data of other LULC classes are classified, the
class-specific PA varies only slightly when the training sample
size is large. By contrast, the UAs are affected by the
proportions of training data of individual LULC classes.
Table 7 demonstrates that UA of a certain LULC class can
be largely increased or decreased by changing the proportions
of class-specific training data. Thus, taking into account the a
priori probabilities of individual LULC classes in the
calculation of the UAs is essential.

SUMMARY AND CONCLUSION

In this article, we present new concepts of LULC classification
accuracies, namely, the training sample–based global accuracy
and the classifier global accuracy, as well as a general expression

of various measures of classification accuracy that were based
on the sample data sets used for classifier training and
evaluation of the classification results. To demonstrate the
uncertainties of different measures of LULC classification
accuracies, we conducted stochastic simulations for a 2C2F
case and a 4C3F case of LULC classification. Moreover, a
bootstrap simulation approach for establishing 95%
confidence intervals of classifier global accuracies was
proposed. The conclusions are as follows:

(1) The classifier global accuracy, which represents the
accuracy that can be achieved by using the population to
establish the classification rules, is not affected by
uncertainties in training or reference data, and should
thus be regarded as the standard estimation target in
LULC classification.

(2) The reference sample classification accuracy, which is
commonly used, is susceptible to uncertainties in the
training and reference data and at best can only provide a
good estimate of the global accuracy achieved by using a
specific training data set.

(3) The training sample accuracy is an unbiased estimator of
the classifier global accuracy. By contrast, the mean
reference sample accuracy approaches the training
sample–based global accuracy, but not the classifier
global accuracy. Thus, the training sample confusion
matrix should replace the commonly used reference
sample confusion matrix in the evaluation of LULC
classification results.

(4) Rigorous stochastic simulations demonstrated the practical
applicability of the proposed bootstrapping approach
to the establishment of confidence intervals of LULC
classification accuracies. We recommend using at

TABLE 7 | Example of changes in user accuracy (UA) caused by changes in the percentage proportions (a priori probabilities) of class-specific training data (cases 1 and 2).

Case 1 Reference class (a priori probability) SUM UA
C1 C2 C3

(0.55) (0.30) (0.15)
Map class C1 97 7 0 104 0.93

C1 60 80 6 146 0.55
C1 8 3 39 50 0.78

SUM 165 90 45 300
PA 0.59 0.89 0.87 Overall accuracy 0.72

Case 2 Reference class (a priori probability) SUM UA
C1 C2 C3

(0.30) (0.55) (0.15)
Map class C1 53 13 0 66 0.80

C1 33 146 6 185 0.79
C1 4 6 39 49 0.80

SUM 90 165 45 300
PA 0.59 0.88 0.87 Overall accuracy 0.79

Reference class (a priori probability) SUM
C1 C2 C3

Map class C1 0.5879 0.0778 0 0.6657
C2 0.3636 0.8889 0.1333 1.3858
C3 0.0485 0.0333 0.8667 0.9485

SUM 1 1 1 3

Note: The producer’s class probabilities remain unchanged in both cases.
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least 100 bootstrap samples in constructing 95%
bootstrap confidence intervals of classifier global
accuracies.

(5) Class-specific PAs vary only slightly for large training
data sets. By contrast, UAs are affected by the proportions
of the training data of individual LULC classes. Thus,
considering the a priori probabilities of individual LULC
classes in the calculation of the UA is crucial.
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