
A New Method for Correcting
Urbanization-Induced Bias in Surface
Air Temperature Observations:
Insights From Comparative
Site-Relocation Data
Tao Shi 1,2, Yong Huang3, Dabing Sun1, Gaopeng Lu2 and Yuanjian Yang4*

1Wuhu Meteorological Bureau, Wuhu, China, 2School of Earth and Space Sciences, University of Science and Technology of
China, Hefei, China, 3Key Laboratory of Atmospheric Sciences and Satellite Remote Sensing of Anhui Province, Anhui Institute of
Meteorological Sciences, Hefei, China, 4Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters,
School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

The effect of urbanization on surface air temperature (SAT) is one of the most important
systematic biases in SAT series of urban stations. Correcting this so-called urbanization
bias has the potential to provide accurate basic data for long-term climate change
monitoring and research. In the western region of the Yangtze River Delta, 42
meteorological stations with site-relocation history from 2009 to 2018 were selected to
analyze the statistical characteristics of the differences in comparative site-relocation daily
average SAT. The annual average differences in comparative site-relocation SAT series
between the old and the new stations (SATDON) were used to characterize the impact of
urbanization bias on the air temperature observation series. Using remote sensing
technology, spatial datasets of land-use, landscape, and geometric parameters of the
underlying surface in the 5-km buffer zone around the station were established as the
observed environmental factors of the site, and the differences in these observed
environmental factors (DOEFs) between the old and the new stations were calculated
to indicate the change induced by urbanization. Next, multiple linear regression models of
SATDON and DOEFs were constructed, showing that the error range of the model for
simulated SATDON was 3.66–18.21%, and the average error was 10.09%. Finally, this new
correction method (NCM) and conventional correction method (CCM) were applied to the
correction of the urbanization bias of SAT series at Hefei station. After comparison, it is
found that the NCM could reveal clear contributions of the rapid and slow stages of the
urbanization process and resultant environmental changes around the stations to the
observed SAT. In summary, the NCM based on remote sensing technology can more
reasonably and effectively correct the urbanization bias caused by local human activities,
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as well as reduce the error caused by the selection of reference stations via the
conventional correction method.

Keywords: surface air temperature series, urbanization bias, remote sensing technology, relocation, correction
method

INTRODUCTION

Urbanization directly affects the types of land use/cover and
anthropogenic heat emissions around meteorological stations,
leading to major changes in the observation environment (Gallo
et al., 1996; Peterson, 2006; Trusilova et al., 2008; Chen et al.,
2020), which in turn has an important impact on the accuracy,
representativeness, and homogeneity of meteorological observation
data (Davey and Sr, 2005; Vose, 2005). The contribution of the so-
called urbanization bias (the effect of urbanization on surface air
temperature (SAT), the list of abbreviations used in this article and
their expanded names can be found inAppendix A) tometeorological
observation data usually stems from changes in the observation
environment against the background of urbanized areas (Ren et al.,
2017). The urbanization bias is the largest systematic bias in SAT
observation records in China and correcting this bias has the potential
to provide accurate basic data for large-scale climate change
monitoring and research (Wen et al., 2019b).

Urbanization bias has received a great deal of attention in the
literature (Hansen et al., 2001; Fujibe, 2009; Zhang, 2009; Zhang,
2014; Wen et al., 2019a). Zhang (2009) used the method of
subtracting the warming trend of rural stations from the warming
trend of urban stations to correct the regional average SAT series
of urban stations and obtained the regional average SAT series
after removing the urbanization bias. Fujibe (2009) divided the
meteorological stations in Japan into six categories in terms of the
population density within a certain radius around the city station
and corrected the urbanization bias in the third–sixth-category
sites using the first and second types of stations as reference
stations. Hansen et al. (2001) corrected the urbanization bias of
one typical station by utilizing the two-stage linear trend based on
the assumption that the SAT increased linearly in two periods.
Zhou et al. (2019) pointed occurrence probability of the heatwave
events in summer over the Yangtze River Delta is closely related
to the contribution of urbanization effect. These imply that the
correction method of urbanization bias is very crucial to explore
accurately the regional climate change.

However, the conventional correction method (CCM) of
urbanization bias still has some shortcomings as follows: 1)
many studies have utilized the population density or city size
as the criteria for classifying meteorological stations. For example,
Bai and Ren (2006) chose meteorological stations with a
population of more than 100,000 as urban stations, but Liu
(2006) divided the stations with a population of more than
40,000 and the stations that were not described as “rural” into
urban stations. However, there have also been some studies that
have utilized satellite remote sensing data to select reference
stations, such as Zhang. (2014), who visually selected the
stations outside the closed contour as reference stations in the
temperature field retrieved from remote sensing data. Thus, it can

be seen that there is no unified standard for the selection of
reference stations, and it is difficult to find a pure reference station
near the urban station as reference stations are inevitably affected
by urbanization, so the urbanization bias in the SAT series is the
minimum estimate (Zhang, 2014). 2) Previous studies corrected
the SAT series based on the assumption that the urbanization bias
presents a linear increase trend (Hansen et al., 2001; Zhang,
2009). However, in reality, the urbanization processes at different
times and in different regions are variable, so it is impossible to
subdivide the specific degree of contribution of the urbanization
bias to the SAT series on temporal and spatial scales. In addition,
there are considerable differences in the mechanisms and
magnitudes of the impact of urbanization on different
temperature elements (Li et al., 2014), despite the possibly
limited contribution to regional warming (Chao et al., 2020),
while its impact on extreme temperatures are huge (Li and
Huang, 2013; Li et al., 2014; Zhou et al., 2019).

In order to improve the representativeness of the observation
environment of meteorological stations, many stations with
severely damaged observation environments have been
relocated. Taking 2015 as an example, 92 meteorological
observation stations across the country were relocated in this
year alone (Meteorological Observation Centre of CMA, 2013;
Comprehensive Observation Department of China
Meteorological Administration, 2015). According to the
requirements of “the criterion of surface meteorological
observation,” “protection methods for meteorological
exploration environment and facilities,” and other documents
formulated and issued by China Meteorological Administration,
site selection has a series of strict restrictions on factors such as
altitude, distance, and obstacles. The area around the relocated
station should be dominated by open vegetation, and the
representativeness of the meteorological observation
environment must have been greatly improved. Meteorological
observation series can represent the climate background of the
region (Yang et al., 2013; Yang et al., 2017), so relocated stations
can be used as relatively pure reference stations. In addition, “the
criterion of surface meteorological observation” stipulates that
the relocation of meteorological stations must involve the
carrying out of at least one year of comparative observations
between the new site and the old site, and the difference in
comparative site-relocation annual average SAT between the old
and the new stations (SATDON) provides high-quality data for us
to study the impact of urbanization bias on the SAT series.
Therefore, SATDON can reduce the error caused by the
selection of reference stations via the traditional urban–rural
comparison method.

The meteorological observation environment refers to the
environmental space constituted by the minimum distance
necessary to avoid various interferences and ensures that the
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facilities of the meteorological observation station accurately obtain
the meteorological observation information. With the rapid
development of remote sensing technology, the use of satellite
data to study changes in the meteorological environment has
become an emerging method (Yang et al., 2013; Li et al., 2015;
Shi et al., 2015). Yang et al. (2013) evaluated the observation
environment by using land use/cover and normalized difference
vegetation index (NDVI) in the buffer zone around the
meteorological station. Li et al. (2015) quantitatively studied the
relationship between land use/cover change (LUCC) and the
thermal environment in the buffer zone and subdivided the
stations into three types by the contribution index of the
thermal environment. The above researches show that it is
feasible to utilize satellite data to investigate and study the
observation environment, and it has the advantages of
visualization and remodeling. However, existing remote sensing
research on the observation environment only uses indicators such
as LUCC and NDVI and does not fully consider the impact of the
spatial pattern and configuration of different land-use types on the
observation environment. Consequently, this study uses remote
sensing technology to establish land-use parameters, landscape
parameters, geometric parameters, and other spatial datasets
around meteorological stations to characterize the differences in
observation environment factors (DOEFs) between the old and the
new stations and analyzes and discusses the physical mechanisms
by which urbanization bias influences the SAT series.

The Yangtze River Delta (YRD) urban agglomeration is one of
the most highly urbanized areas in China for the past 30 years
(National Bureau of Statistics, 2019). However, the development of
Anhui in the western region of the YRD has been relatively slow,
having not developed rapidly until the past 10 years. Therefore, the
observation environments of national meteorological stations in
Anhui Province have been seriously damaged in the past 10 years,
and a large number of stations have been forced to relocate on a
frequent basis (Meteorological Observation Centre of CMA, 2013;
Comprehensive Observation Department of China Meteorological
Administration, 2015), and this provides us with an opportunity to
study the process of urbanization and station relocation. In
summary, taking Anhui Province as the research area,
meteorological stations with site-relocation history were selected
in this study, and the SATDON results between the old and the new
stations were used to characterize the impact of urbanization bias
on the SAT series. Landscape parameters, geometric parameters,
and other spatial datasets in the 5 km buffer zone around the
stations were established to characterize the DOEFs between the
old and the new stations, and statistical models of the SATDON and
DOEFs were constructed. This paper corrected the urbanization
bias of the SAT series at a typical station by the newmethod and the
conventional method, respectively, and the advantages of the new
method were discussed finally.

DATA AND METHODS

Data
1) Ground observation data. The SAT data mainly include

national reference climatological stations, which observe

8 times a day (once every 3 h); national basic
meteorological station, which observes four times a day
[02:00, 08:00, 14:00, and 20:00 BT (Beijing time)]; national
general meteorological stations, which observe three times
a day (08:00, 14:00, and 20:00 BT) and obtain the daily-
averaged SAT by calculating the arithmetic mean of the
temperature values observed for each time per day.

2) Satellite remote sensing data. The remote sensing data
used in this study were Landsat data from the
United States’ EOS (Earth Observation System) for the
detection of earth resources and the environment.
Specifically, this study uses the remote sensing images
of the Landsat-7/ETM+ (Yao et al., 2010) and Landsat-8/
OLI (Saputra et al., 2017) sensors to study the changes in
the observation environment of the stations relocated
before 2013 and after 2013, respectively. A comparison
of the band information of the above two remote sensing
images is given in Table 1.

Methods
Selecting Samples for Relocated Stations
For this study, we selected meteorological stations with site-
relocation history as the research samples from 2009 to 2018,
according to the historical evolution data and comparative
observation data of the relocated stations, surveys and
evaluation reports of the observation environment of the
national ground meteorological stations, and high-resolution
satellite remote sensing images. The selection criteria were as
follows: 1) the main reason for the relocation was that the
observation environment of the station had been seriously
damaged; 2) in order to minimize the influence of the
difference of regional and local climate background, the
difference in altitude between the sites (before and after
relocation) was less than 50 m, and a horizontal distance
between the sites of 20 km was selected according to previous
studies (Wen et al., 2019; Shi et al., 2011); 3) there was no
significant difference in topography; and 4) the type of
observation instrument, the frequency of daily observations,
and daily mean methods of temperature series did not change
before and after station relocation. Based on the above criteria, 42
samples of relocated stations were selected, as shown in Figure 1.
The relocated station samples include 25 urban stations and 17
reference stations, according to the meteorological station
classification method of Ren et al. (Ren et al., 2010), and the
samples were evenly distributed throughout northern Anhui, the
Yangtze–Huaihe region, Yangtze River area, southern Anhui, and
other regions. Therefore, the samples in this study can represent
the impact of the urbanization development level of different
regions in Anhui Province on different types of stations.

Determining the Research Range of the Station Buffer
Zone
Studies (Cai, 2008; Yang et al., 2013; Shi et al., 2015; Yang et al.,
2020a) have shown that since the observation height of the
thermometer shelter in the observation field is 1.5 m, the
maximum impact of urbanization on the observation data
usually does not exceed 5 km under advection and turbulence
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transport conditions. Therefore, for this study, we selected a station
buffer zone with a center radius of 5 km to quantitatively study the
impact of environmental changes on the SAT series.

Establishing a Dataset of Characterization Parameters
of the Observation Environment in the Buffer Zone
Land-use parameters (Carolina et al., 2013) reflect the results of
various land resource utilization activities produced by human
beings, which are an important part of urban environmental
change research. This study uses the supervised classification
method to classify land use in ENVI software and establishes four
parameter indicators: built-up area ratio (ARBT), water area ratio
(ARW), vegetation area ratio (ARV), and bare land area
ratio (ARB).

The landscape parameters mainly include the largest patch index
(LPI) (Wu, 2000) and the mean fractal dimension (FRAC_MN)
(Wu, 2000) of the land type. The LPI represents the dominant land

type in the study area. The larger the LPI value, themore obvious the
advantage of this type of patch in the overall landscape. The
FRAC_MN represents the index of the patch shape. The larger
the FRAC_MN, the more complex the shape of the patch and the
more discrete the patch distribution. For this study, eight parameter
indicators were calculated in the landscape index software Fragstats,
including the built-up largest patch index (LPIBT), water largest
patch index (LPIW), vegetation largest patch index (LPIV), bare land
largest patch index (LPIB), built-up mean fractal dimension
(FRAC_MNBT), water mean fractal dimension (FRAC_MNW),
vegetation mean fractal dimension (FRAC_MNV), and bare land
mean fractal dimension (FRAC_MNB).

The geometric parameters mainly include the distance
between the stations and the gravity centers of different
land types in the buffer zone, and the distance between the
station and the city center (Liu et al., 2014). For this study, we
used ArcGIS software to extract the land types of “built-up,”

TABLE 1 | Comparison of band information between the Landsat-7/ETM+ and Landsat-8/OLI sensors.

Band no Landsat-7/ETM + sensor Landsat-8/OLI sensor

Wavelength (μm) Spatial resolution (m) Wavelength (μm) Spatial resolution (m)

1 0.45–0.515 30 0.433–0.453 30
2 0.525–0.605 30 0.450–0.515 30
3 0.63–0.690 30 0.525–0.600 30
4 0.75–0.90 30 0.630–0.680 30
5 1.55–1.75 30 0.845–0.885 30
6 10.40–12.50 60 1.560–1.660 30
7 2.09–2.35 30 2.100–2.300 30
8 0.52–0.90 15 0.500–0.680 15
9 1.360–1.390 30
10 10.60–11.19 100
11 11.50–12.51 100

FIGURE 1 | (A) Location of Anhui in the western region of the YRD in China. (B) Land use/cover maps and the spatial distribution of the relocated station samples in
Anhui Province from 2009 to 2018.
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“water,” “vegetation,” and “bare land” in the station buffer
zone, then used the “Calculate Geometry” function to obtain
the gravity centers of the different land types, and finally, the
“Point Distance” function could then be used to calculate four
parameter indicators, including the distance between the
station and the gravity center of built-up land (DISBT),
water (DISW), vegetation (DISV), and bare land (DISB). In
the same way, the parameter indicator of the distance
between the station and the city center (DISC) could be
obtained in the ArcGIS software.

The current urbanization bias correction scheme still has
deficiencies, mainly due to the limited assessment indicators for
local observation environment around meteorological stations.
Landscape ecological morphology (Figure 2) can be used to
explore the relationship between the spatial pattern of urban land
use and urban local microclimate (Zhou et al., 2011; Estoque et al.,
2017). Landscape composition can distinguish land-use types, and
landscape configuration can fully consider the respective geographic
characteristics of different land-use types. In addition to the
conventional land-use assessment indicators, therefore, our
present work employs landscape ecological indicators and
geometric indicators to assess observation environment around
station. Finally, based on correlation analysis, six indicators, that
is, ARBT, ARW, LPIBT, LPIW, DISBT, and DISW, were finally selected.

Simulation and Correction Method for the
Urbanization Bias in the SAT Series
This article starts with the physical causes of the impact of
urbanization bias on the observation environment and
simulates the degree of impact of the urbanization bias on the
SAT series by constructing statistical models of SATDON and
DOEFs. Multiple linear regression is a statistical analysis method
to determine the quantitative relationship between a dependent
variable and multiple independent variables (Lynn, 2007; Li,
2020). Assuming there is a linear correlation between the
dependent variable Y and the k independent variables X1,
X2,..., Xk, then the functional relationship between Y and X
can be expressed as:

Y � β + β1X1 + β2X2 +/ + βkXk + ε, (1)

where β is the regression constant; β1, β2, . . ., βk are the
regression coefficients; and ε is the regression residual.

After substituting the land-use, landscape, and geometric
parameters in the buffer zone around the station into Eq. 1,
the simulated values of the changes in the SAT series could be
obtained, and then the urbanization bias could be corrected by
the simulated values:

T ′ i � Ti − ΔTi. (2)

Here, i is the year number from the earliest year of recording to
the latest year of correcting, T′i is the annual average SAT after
correction in the ith year (°C), and ΔTi is the change in the annual
average SAT series caused by urbanization bias in the ith year
compared with the earliest observation year (°C).

RESULTS

Case Analysis of a Typical Station
Hefei National Meteorological Observation Station had been
completely surrounded by built-up land before relocation
because of the process of urbanization in recent years
(Figure 3); the observational environment score of Hefei
station was only 63.2. After relocation, Hefei station moved
30.2 km to the northwest of the old site, with an altitude
difference of 6.0 m, and the observation environment of the
station greatly improved, with the score increased to 99.3.

Table 2 shows the DOEFs between the old and the new
stations in the 5-km buffer zone. ARBT decreased from 42.17
to 4.23% after relocation, indicating that the area of built-up land
around the station was greatly reduced; the FRAC_MNBT

declined to a certain extent, indicating that the distribution of
built-up patches around the station was more concentrated than
before relocation; and DISBT increased from 0.53 to 3.13km,
indicating that the built-up land type had weakened the
urbanization impact of the station after relocation. The
parameters of water, vegetation, and bare land also improved
to varying degrees. In addition, the SATDON in 2018 showed that
the annual average SAT of the new station (Figure 3B) was 0.83°C
lower than the old station (Figure 3C) and the decline reached
4.8%. In summary, the representativeness of the observation
environment at Hefei station improved after relocation, and
the SATDON could represent the degree of the impact of the
urbanization bias on the SAT series.

FIGURE 2 | Schematic diagram of the landscape pattern around the station.
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Analyzing the Statistical Characteristics of
the Samples’ Daily Average Differences
For this section, daily-averaged SATDON series were close to a
normal distribution and fluctuated in the range of −2.3–4.4°C
(Figure 4). The sample size, mean, and standard deviation were
15,347, 0.572, and 0.568°C (Table 3), respectively. The above

statistics showed that the sample had a large variation range, but
the data distribution was mainly concentrated near the mean
value, and the overall sample volatility was relatively small. The
kurtosis value of the sample was 2.057, the number of samples
with a daily-averaged SATDON of 0.4°C was the largest, reaching
1,515, and the number of samples with a daily-averaged SATDON

at 0.2–0.8°C reached 9,193, accounting for 59.6% of the total
number of samples, indicating that the daily-averaged SATDON

series was steeper than the normal distribution. The sample
skewness value was 0.673, and the number of daily-averaged
SATDON values greater than the mean was 8,226, accounting for
53.6% of the total sample and indicating that there were more
points on the right-hand side of the data distribution, close to
the mean.

In addition, there were 828 negative values in the sample,
accounting for 5.39% of the total number of samples, which
means that the SAT series of the old stations were lower than the
new sites (Figure 4). The influence of the meteorological station
observation environment on the SAT series was more
complicated. Buildings cause the wind speed to decay
downwind and reduce air circulation in the observatory,
thereby enhancing the locality of temperature observation.
However, under unstable stratification conditions during the
daytime, the shadowing effect of solar radiation caused by
buildings and aerosol cooling effects might make the SAT
observed by the stations surrounded by buildings lower than
the stations with open terrain (Li et al., 2011; Zheng et al., 2018;
Zheng et al., 2020; Yang et al., 2020b).

FIGURE 3 | (A) Location of Hefei station relative to Hefei city before and after relocation. (B) LUCC in the 5-km buffer zone of Hefei station after relocation. (C) LUCC
in the 5-km buffer zone of Hefei station before relocation.

TABLE 2 | DOEFs in the 5-km buffer zone of Hefei station after and before
relocation.

Parameter After relocation Before relocation

Land-use parameters ARBT (%) 4.23 42.17
ARW (%) 3.11 1.01
ARV (%) 91.09 56.04
ARV (%) 0.57 0.78

Landscape parameters LPIBT 5.97 24.73
LPIW 1.13 0.30
LPIV 60.18 38.88
LPIB 0.73 0.91
FRAC_MNBT 1.04 1.14
FRAC_MNW 1.18 1.09
FRAC_MNV 1.11 1.17
FRAC_MNB 1.09 1.14

Geometric parameters DISBT (km) 3.13 0.53
DISW(km) 1.73 3.69
DISV(km) 0.02 0.87
DISB(km) 1.28 1.01
DISC(km) 2.1 8.3
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Correlation Analysis of SATDON and DOEFs
A total of 37 samples were selected from the relocation samples to
analyze the correlation between SATDON and DOEFs, and
existing buffer parameters were filtered in order to establish a
revised model of urbanization deviation in the next step. Figure 5
presents the statistical significance test results and correlation
coefficient histogram between the SATDON and DOEFs, in which
the solid bars represent the significance level of the correlation
reaching 0.05, while the hollow bars represent the opposite.

SATDON had a significant positive correlation with ARBT after
relocation, and the correlation coefficient reached 0.7843, which
passed the significance level of 0.05. SATDON and ARW showed a
significant negative correlation, with a correlation coefficient of
−0.4819, which also passed the significance level of 0.05. This
showed that with the continuous increase in built-up land
around the meteorological station, the decrease in heat capacity
of the underlying surface and the increase in anthropogenic heat in
the buffer zone led to warming in the SAT series. The heat capacity
of water bodies is relatively large, meaning heat in the buffer zone of
a station could be taken away as water evaporates, which would lead
to a drop in the SAT series (Zeng et al., 2010). In addition, the
SATDON also had a high correlation with LPIBT, LPIW, DISBT, and
DISW after relocation, which showed that the more obvious the
advantages in the buffer landscape and the closer the distance of the
station to the built-up center of gravity, the greater the SATDON,
while for water this was opposite. Accordingly, this article uses six
indicators (ARBT, ARW, LPIBT, LPIW, DISBT, and DISW) to study
the response SATDON to the change in the DOEF in the buffer zone.

Simulation and Accuracy Evaluation of
Urbanization Bias in the Annual Average
SAT Series
The parameter indicators in the buffer zone have undergone great
changes after relocation. As shown in Figure 6, the change values
in the proportion of built-up area (ΔARBT) of all the relocation
samples were positive, which shows that the area of built-up land
around the relocated stations was reduced and 92.18% of the
ΔARBT values were concentrated in the range of 0–50%. The

FIGURE 4 | Probability density distribution of the DCSSATda of samples.

TABLE 3 | Statistics of the DCSSATda of samples.

Data series Sample size Median (°C) Mean (°C) Standard deviation (°C) Kurtosis Skewness

ΔTavg 15,347 0.500 0.572 0.568 2.057 0.673

FIGURE 5 | Statistical significance test results and correlation coefficient
histogram between SATDON and DOEFs.
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number of stations with a negative change value in water area ratio
(ΔARw) reached 22, which showed that the water area of most
stations increased after relocation. The change values of the built-up
LPI (ΔLPIBT) of all the relocation samples were positive, and 92.18%
of the ΔLPIBT values were concentrated in the range of 0–20. The
number of stations with a negative change value of water LPI
(ΔLPIW) also reached 22, which showed that the water advantage
of most stations increased after relocation. All the change values of
the distance between the station and the built-up center of gravity
(ΔDISBT) were negative, which showed that all samples of relocated
stations were far away from the center of gravity of built-up patches.
The change value of the distance between the station and the built-
up center of gravity (ΔDISBT) was negative, revealing that all samples
of relocated stations were far away from the center of gravity of built-
up patches. The number of stations with a positive change value of
the distance between the station and the water center of gravity
(ΔDISw) reached 24, which showed that most samples of relocated
stations were close to the center of gravity of built-up patches.

For this part of the study, we used statistics to analyze the
response relationship between the SATDON and DOEFs and
simulate the impact of the urbanization bias on the SAT
series. The sample was subjected to colinearity diagnosis in
SPSS; the statistical models of SATDON and DOEFs were
constructed finally:

ΔTavg � 2.085 × ΔARBT − 1.515 × ΔARw − 0.017 × ΔLPIw
− 0.039 × ΔDISBT + 0.133 × ΔDISw. (3)

Here, ΔTavg is the annual averaged SATDON of meteorological
stations. Table 4 shows coefficient of determination (R2) for
stepwise regression of the fitted model. With the increase of
independent variable, the R2 of the model increases. The R2 of the
fitting model finally reached 0.953, which passed the 0.05
significance test, indicating that the above five influencing
factors have a crucial impact on SATDON.

According to Eq. 3, the change values of the annual average
SAT of the remaining five relocated stations in the sample were
simulated to compare with the real change value of the sample. As
shown in Table 5, the difference between the simulated and real
value fluctuates in the range of 0.014–0.108°C. The simulation
error range is 3.66–18.21%, and the average error is 10.09%.

DISCUSSION

The conventional correction method (Zhang, 2009; Zhang, 2014;
Wen et al., 2019a) involves gradually decreasing the annual
average urbanization impact from the earliest year of the
target station series. The corrected series represents the

FIGURE 6 | DOEFs between the old and the new stations in the 5-km buffer zone: (A) ΔARBT; (B) ΔARW; (C) ΔLPIBT; (D) ΔLPIW; (E) ΔDISBT; and (F) ΔDISW.

TABLE 4 | Coefficient of determination (R2) for stepwise regression of the
fitting model.

Model R2 Standard deviation of
the estimation

1 0.927 0.265
2 0.931 0.237
3 0.939 0.222
4 0.943 0.214
5 0.953 0.209

TABLE 5 | Accuracy evaluation of urbanization bias in the average SAT series.

Station no ΔTavg Simulation value Simulation error (%)

58,122 0.941 0.993 5.52
58,214 0.593 0.701 18.21
58,338 0.602 0.692 14.95
58,109 0.852 0.921 8.10
58,220 0.383 0.397 3.66
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regional annual average SAT series in which the urbanization bias
has been removed:

T ′i � Ti − (ΔTu−r/10) × (i − 1). (4)

Here, i is serial number from the earliest year of recording to
the latest year of correcting, T′i is the annual average SAT after
correction in the ith year (°C), Ti is the annual average SAT before
correction in the ith year (°C), and ΔTu-r is the difference in the
SAT warming rate between the urban and reference station
(°Cdecade−1). It should be noted that Eq. 4 has an assumption
that the urbanization bias shows a linear growth trend.

For this part of the study, we take the annual average SAT
series of Hefei station from 1953 to 2018 (homogenization
correction was carried out to remove discontinuities or
jumping points caused by the relocation) as an example to
discuss the correction of the urbanization bias. The ΔTu-r of
Hefei station was 0.065°Cdecade−1 with Shouxian station selected
as the reference station (see Figure 1).

Because remote sensing images before the 1950s are not easy
to obtain, and the observation environments of meteorological
stations were basically unaffected by urbanization, we set the
initial value of the various parameters in the station buffer zone in
the earliest record year to be 0.

We used the new correction method based on remote sensing
to correct the urbanization bias of Hefei station. According to the
development process of Hefei’s urbanization, the remote sensing
image of six times (1979, 1987, 1998, 2004, 2009, and 2018)
covering the Hefei area was selected (Figure 7). The five

parameters of ARBT, ARW, LPIW, DISBT, and DISW were
interpreted and substituted into Eq. 3 to obtain the change
values of the annual average SAT series, and then the
urbanization bias was corrected using Eq. 2. In addition, we
also used the CCM to correct the urbanization bias of Hefei
station in the above the remote sensing image of six times, and the
results obtained by the CCM and NCM methods were compared
and analyzed.

The correction results obtained by the CCM were higher than
those of the NCM (Table 6). The CCM did not take into account
the impact of the urbanization bias on the reference station, and
therefore, the urbanization bias obtained from the reference
station was the minimum estimate.

The rate of urban development in Hefei was relatively slow
before 2004. From 2004 to 2018, the total GDP of Hefei increased
by ￥723.321 billion, with an annual average growth rate of
81.77%, and its economic growth rate ranked first in the YRD
region (National Bureau of Statistics, 2019). The warming rate in
the SAT series caused by the urbanization bias should change
with economic development, but the warming rate at Hefei
station obtained by the CCM was a fixed value
(0.065°Cdecade−1), and this assumption that the impact of
urbanization increases linearly year by year over time is
questionable (Zhang, 2009). The results of the NCM show that
the urbanization bias of Hefei station increased gradually from
0.233 to 0.457°C from 1979 to 1998. Due to the relocation of Hefei
station in 2004, the observation environment improved
significantly, and the NCM-based urbanization bias between
2004 and 2009 did not increase much, but the CCM-based

FIGURE 7 | Land use of Hefei city in the 20-km buffer zone and the location of Hefei station: (A) 1979; (B) 1987; (C) 1998; (D) 2004; (E) 2009; and (F) 2018.

Frontiers in Environmental Science | www.frontiersin.org April 2021 | Volume 9 | Article 6254189

Shi et al. Correcting Urbanization-Induced Bias

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


urbanization bias was increasing over time because station
relocation was not taken into account. The urbanization bias
of Hefei station increased quickly from 0.436 to 0.851°C as the city
experienced rapid development from 2009 to 2018. The NCM
constructed in this study produces results that are dynamically
consistent with the observation environment of the station and
the development of the city. In summary, the present work study
mainly focused on the sample application exploration of our new
urbanization bias correction method, which can make up for the
shortcomings of the conventional linear method. We will find
more relocation stations in the whole Yangtze River Delta region
to extend our new method application in the future.

Based on the R2 of the fitted results (Table 4), it is clear that all
the selected parameters can explain more than 90% of the
urbanization bias. In addition, urbanization is not only
reflected by the two-dimensional horizontal urban expansion
but also by the vertical morphology of the three-dimensional
urban spatial structure. Previous studies suggested that the
vertical geometry of urban canopy building also had an impact
on local microclimate (Oke, 2004; Bonacquisti et al., 2006; Chen
et al., 2020). In the future, we will expand three-dimensional
indicators to supply the indicators of urbanization bias
correction.

CONCLUSION

In this study, we selected 42 meteorological stations with site-
relocation history in the western region of the YRD from 2009 to
2018 as research example samples and then utilized annual
SATDON series between the old and the new stations to
characterize the impact of the urbanization bias on SAT series.
We proposed a new method for correcting urbanization-induced
bias in surface air temperature observations based on
comparative site-relocation data. The main conclusions are as
follows.

Spatial land-use, landscape, and geometric parameters of
the underlying surface in the 5-km buffer zone around the
station were good to be as the DOEFs of the site. The
comparative analysis revealed that parameters such as
ARBT, ARW, LPIBT, LPIW, DISBT, and DISW in DOEFs had
the highest correlation with SATDON, with absolute values of
correlation coefficients exceeding 0.4, passing the 0.05
significance test. After colinearity diagnosis, a new linear
regression model between five parameters (ARBT, ARW,
LPIW, DISBT, and DISW) and SATDON was finally

constructed to correct urbanization bias, which clearly
reflected the effects of rapid and slow phases of
urbanization and environmental changes around the site on
the observed SAT. The CCM did not take into account that the
reference station was affected by the urbanization, which may
underestimate urbanization bias. In addition, CCM cannot
consider the station relocation situation, which may
overestimate urban bias when the station relocated. In
contrast, the NCM constructed in this study can make up
these shortcomings to correct the urbanization bias caused by
local human activities more reasonably and effectively and can
also reduce the error caused by the selection of reference
stations in the traditional urban–rural comparison method.
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TABLE 6 | Comparison of results between the CCM and NCW at Hefei station.

Year Observation (°C) Urban bias
(°C) (CCM)

After correction
(°C) (CCM)

Urban bias
(°C) (NCM)

After correction
(°C) (NCM)

GDP

1979 16.124 0.169 15.954 0.233 15.891 -
1987 15.796 0.221 15.575 0.314 15.482 -
1998 17.129 0.293 16.836 0.457 16.672 270.47
2004 16.633 0.332 16.301 0.248 16.385 589.70
2009 16.720 0.364 16.356 0.436 16.284 2,102.12
2018 17.062 0.423 16.639 0.851 16.211 7,822.91
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