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Climate change and population growth have heavily impacted the ecosystem’s water
resources, essential for anthropogenic activities. These also apply to the Andean city of
Chachapoyas, located in the north of Peru, which has gone through a substantial
population increase in recent years, therefore increasing its water demand. This
research aimed to assess dry and wet events from 1981 to 2019 that have taken
place in Chachapoyas, by applying the Standardized Precipitation Index (SPI), and the
Standardized Precipitation Evapotranspiration Index (SPEI). These events were
periodically characterized, and the index relationship was determined at different
timescales. The SPI and SPEI indices were calculated at the city’s only weather station
for timescales of 3, 6, 12, and 24months using climatic data. The indices showed a
remarkably consistent behavior for timescales of 12 and 24months detecting an extreme
drought event in 1993, while for timescales of 3 and 6months a severe drought event was
detected in the same year. Contrastingly, there has been an increase in extremewet events
in the last decade, hence Chachapoyas is categorized between "moderate drought" and
“moderate wet”. It should be noted that the indices have a high correlation between them
when calculated for the same timescale. The results were statistically significant (p < 0.05).
Considering the results obtained related to dry and wet events and their relation with
economic activities such as environmental management, we can conclude that the SPI
and SPEI indices are useful and valuable tools for local and regional governments.
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INTRODUCTION

Climate change, a potentially destructive event with catastrophic consequences for humanity and
ecosystems (Lin and Chan, 2015), affects precipitation, temperature, humidity, and winds. Thus,
strongly impacting agriculture, agricultural communities, food sovereignty, and the sustainability of
the world’s population at risk, especially in developing countries (Nicholls and Altieri, 2019). Several
studies carried out in Latin America, demonstrate that crop yields will significantly decrease, hence
severely affecting the availability of food (Jones and Thornton, 2003; Jat et al., 2016; Altieri and
Nicholls, 2017; Sá et al., 2017).

Rainfall variability in dry and wet events is entirely subjective depending on where in the world
they happen. (Van Loon and Laaha, 2015). For example, extreme droughts in sub-Saharan countries
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are not the same as in the tropical Andes. Nevertheless, droughts
are defined as natural weather events, where there is a significant
precipitation deficit over a relatively long period of time (Cerón
et al., 2015). The prediction of these events is complex as they
depend on the study area (Sánchez-Montoya et al., 2018).
Furthermore, these events are usually poorly characterized,
due to the difficulty of quantifying their severity, magnitude,
and extent (Quintana-Seguí et al., 2016).

Droughts can be classified into four categories: meteorological,
agricultural, hydrological, and socioeconomic. Meteorological
drought is a consequence of a rainfall deficit. Agricultural
drought implies low soil moisture that causes a decline in crop
growth and production. Hydrological drought refers to low levels
of surface and groundwater. Socioeconomic drought is associated
with the supply and demand of water needed for economic good
and is affected by the combination with some of the other
droughts (Wilhite and Glantz, 1985; Dai, 2011; Van Loon and
Laaha, 2015; Zhang L. et al., 2017; Zarei, 2019). However,
meteorological drought can be considered the leading cause of
a drought. In contrast, other droughts represent the impacts
generated by a prolonged deficit of precipitation in certain
compartments, such as soil moisture, surface water levels, or
economic sectors (Stojanovic et al., 2017). Meteorological
droughts are defined as intervals of time during which a
specific area’s humidity consistently drops below what is
climatologically expected (Huang et al., 2017). Droughts are
characterized by indices, which are indirect indicators that rely
on meteorological information to quantify these phenomena and
assess their effects (Hao et al., 2016). In recent decades, several
indices have been developed for drought characterization (Zhang
L. et al., 2017). The most superficial indices use only precipitation
data, while the most complex use parameters such as
temperature, evapotranspiration or loss of soil humidity, etc.
(Liu et al., 2018). The most recognized indices are the
Standardized Precipitation Index (SPI), the Palmer Drought
Severity Index (PDSI), the Standardized Precipitation
Evapotranspiration Index (SPEI), the Crop Moisture Index
(CMI), the Rainfall Anomaly Index (RAI), and the Effective
Drought Index (EDI) (Bohn et al., 2007; Ahmad et al., 2016;
Aybar-Camacho et al., 2017; Balbo et al., 2019). The most used
indices are SPI and SPEI due to their lower complexity (Anshuka
et al., 2019), however, they exhibit advantages and disadvantages
for their application in the characterization of dry and wet events
(Hayes et al., 1996; Tsakiris and Vangelis, 2004; Zhang Y. et al.,
2017). Among their advantages are straightforward calculations,
and the ability to identify different types of dry or wet events by
having multiscale criteria. Being the scales of 1, 3, and 6 months
relevant for agricultural drought impacts; the 12 months scale is
especially relevant for hydrological drought impacts; the
24 months scale is relevant for socioeconomic drought impacts
(Tan et al., 2015). Conversely, their major disadvantage is the
tendency to underestimate or overestimate dry and wet events
when applied to shorter timescales (Anshuka et al., 2019).

Droughts in South America are of particular interest due to
their effects on agriculture, livestock, soil degradation, water
management, economy, and society. The study of dry events
in this area, whether by evaluating the variables implicated or by

applying indices, has been carried out to find out their
relationship with the El Niño phenomenon (Espinoza et al.,
2011; Sobral et al., 2019; Mohammadi et al., 2020), their
connection with climate change (Vicente-Serrano et al., 2015)
or their effect on vegetation (Feldpausch et al., 2016).

The city of Chachapoyas is located in the northern Andes of
Peru. It is an area of great importance, not only because it is the
Amazonas region’s capital, but because it is a city that
economically depends on livestock and agriculture. The effects
of dry and wet events have been thoroughly studied in central and
south Ecuador, a predominately Andean region. Studies in this
area have concluded that Quito is a good indicator of drought in
this region. It was also found that climate change will affect the
drought’s characteristics, such as magnitude and duration, with a
drastic decrease in future scenarios in this area (Domínguez-
Castro et al., 2017; Zhiña et al., 2019). However, there are very few
studies that report reliable data from remote areas of the Peruvian
Andes. In Peru’s Central Andes, it has been found that there is a
2% decrease in rainfall per decade. Meanwhile, in the southern
Andes of Peru, the most intense droughts between 1981 and 2016
occurred during the El Niño events of that period. It is worth
mentioning the elaboration of a precipitation danger map for the
Peruvian Andes in terms of the intensity and duration of
droughts, being entirely satisfactory considering that it is
based on a low-density meteorological network (Silva et al.,
2008; Domínguez-Castro et al., 2018; Imfeld et al., 2019).

Most of the antecedents mentioned earlier are at medium or
large scale, without having a regional scale. Therefore, it is
necessary to study dry and wet events at a local scale,
especially in an Andean city in northern Peru, to increase and
improve water resources management knowledge. Therefore, the
dry and wet events that occurred from 1981 to 2019 in the city of
Chachapoyas are analyzed. At the same time, the main
climatological parameters were analyzed descriptively. In
addition, the SPI and SPEI indices were applied and
compared, to identify temporarily dry and wet events. Finally,
the relation of the indices throughout different time scales was
analyzed. All this will help to have a better understanding of water
availability in the area.

MATERIALS AND METHODS

Study Area
The city of Chachapoyas is located in the northern Peruvian
Andes (Figure 1), at 2,338 m.a.s.l. with an average annual
precipitation of about 800 mm and an average temperature of
15.6°C. The annual temperature oscillation is very low, with 1°C
on average monthly temperatures. The lowest minimummonthly
temperature values are reported between June and August
(Figure 2A), while the highest maximum monthly
temperature values happen from August to December
(Figure 2B). As in other Andean regions, rainfall is seasonal,
with a wet season from October to March, and a dry season from
April to September (Figure 2C) (Rascón et al., 2020). In respect to
the water resources of the city of Chachapoyas, they are in the
form of rainwater and surface water. Within the superficial
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waters, emphasizing the Tialacancha River, that supplies potable
water to the city, and lops Santa Lucia, Villohuayco, and
Jatunsacha streams, which serve to supply to the cattle ranch
and agriculture of the zone (Chávez Ortiz et al., 2016; Salas et al.,
2018). Although, as in most Andean cities, very few climate
studies are available due to the absence of reliable weather station
networks. Chachapoyas possesses only onemeteorological station
(LAT -6.2083, LONG -77.8671, ELEV 2442), which belongs to the
meteorological stations’s network of the National Meteorology
and Hydrology Service of Peru (SENAMHI). However, this
station presents substantial gaps in its data, especially in past
readings. That is why the PISCO (Peruvian Interpolated data of
the SENAMHI’S Climatological and hydrological Observation)
data grid was used.

Weather Data
Climatological data was obtained from the National
Meteorological and Hydrological Service of Peru (SENAMHI),
specifically, from the spatial database for monthly precipitation at
a grid resolution of 0.05° for a series starting in January 1981 to
the present, called PISCO, both for monthly precipitation,
minimum and maximum monthly temperature. This grid was
created using terrestrial observations from the SENAMHI
meteorological stations’ network, together with data from the

global base of the CHIRPS project (Climate Hazards InfraRed
Precipitation with Station data) (Aybar et al., 2019).

The generation of the PISCO climate data grid encountered
several limitations, such as the low-density of stations in areas
with complex geography, the low quality of the station data,
and the biases inherent in satellite data. Therefore, PISCO was
generated based on the integration of CHIRP data, serially
complete gauge datasets, radar-based climatologies, and
geostatistical and deterministic interpolation methods
(Aybar et al., 2019). For the quality control of the grid,
automatic control was applied, evaluating the data of each
station, the god ranges, the temporal and spatial coherence. In
this way, they eliminated outliers in the data that exceeded the
established limits. Later, through data visualization they
inspected the breaks evident in the time series and
eliminated the non-homogeneous segments, filling in the
gaps by using the modified CUTOFF algorithm and
quantum maps. As a result, there is a high correlation
between the grid data and the stations (0.75–0.99), with the
higher the correlation, when there is a station closer (Aybar-
Camacho et al., 2017). PISCO data are available free of charge
on the following website: http://iridl.ldeo.columbia.edu/
SOURCES/.SENAMHI/.HSR/.PISCO/. Therefore, they were
processed with the statistical software R version 3.6.3,

FIGURE 1 | Geographic localization of study area.
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through the “raster” and “ncdf4” libraries (Pierce, 2019;
Hijmans, 2020; R Core Team, 2020). Monthly data from the
Chachapoya’s weather station were obtained for the
1981–2019 period for precipitation, minimum and
maximum temperatures.

Drought Indices
Drought indices were developed to provide a quantitative
assessment of the characteristics of each drought event. The
most simple indices solely use average rainfall data, while
other more sophisticated indices use other parameters such as
temperature, evapotranspiration, loss of soil moisture, and prior
soil moisture (Zhang et al., 2019).

The SPI, developed by Mckee et al. (1993) quantifies
precipitation deficit to evaluate droughts. This method is
highly recommended by the World Meteorological
Organization (WMO) for drought characterization
(Kostopoulou et al., 2017). SPI is calculated by adjusting a
gamma probability distribution to a standardized normal
distribution (with a mean equal to zero and variance equal to
one), thus calculating the final SPI value (Mineo et al., 2019). It
was determined that the gamma distribution was the distribution
that best fitted the precipitation data, because of its good
adjustment. This distribution provides good models to
describe precipitation events, and besides, it has been
frequently used in previous investigations carried out in

FIGURE 2 | Annual behavior of rainfall (A), minimum temperature (B) andmaximum temperature (C) in the city of Chachapoyas. The upper whisker of each boxplot
indicates the maximum value of each parameter in eachmonth, while the lower whisker indicates the minimum value of each parameter in each month, for the entire data
series from January 1981 to December 2019.
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Andean zones (González and Dominguez, 2012; González, 2015;
Zambrano et al., 2017; Endara et al., 2019; Cerón et al., 2020).
First, the SPI adjusts the gamma probability density function
(PDF) of the precipitation record for each weather station. Then,
the adjusted values are transformed to the normal PDF, which
represents the SPI value. For periods of time greater than
1 month, the initial basic procedure for SPI estimation is to
use moving sums. By having a long and reliable series
(30 years or more) it is possible to calculate the SPI for any
previously registered month (i months). The SPI enables
researchers to determine the rareness of a drought or an
anomalous wet event at a particular timescale for any place in
the world. It is important to mention that, for this study, the SPI
was carried out for timescales of 3, 6, 12, and 24 months.

In contrast to the SPI, which solely uses precipitation data; the
SPEI, developed by Vicente-Serrano et al. (2010), is a new and
more comprehensive multiscale index. This index integrates
precipitation data, temperature data, and variables like
evapotranspiration. It is noted that several formulae, such as
the Thornthwaite, Hargreaves, and Penman-Monteith equations
are utilized to determine evapotranspiration values in order to
calculate SPEI (Stagge et al., 2014). Furthermore, tools that
provide objective and quantitative assessments of drought
severity can be developed from the aforementioned indices
(Vicente-Serrano et al., 2012). Hence, generating a valid and
accurate database that enables constant monitoring of event
conditions through early warnings (Avilés et al., 2015). From
these, adaptation and mitigation strategies can be formulated or
implemented in order to alleviate the impacts of these hazards
(Cortez et al., 2018). The calculation procedure is similar to that
of the SPI; however, the SPEI uses the differences between
monthly precipitation and evapotranspiration values, which
represents a simple climate water balance. This difference is
then adjusted to a logistic distribution, which is then
transformed to a standard normal distribution with a zero
mean and one variance (Vicente-Serrano et al., 2010).

It should be emphasized that for their estimation, SPI and
SPEI when using distributions adjusted to a normal distribution,
will make the mean value of SPI and SPEI close to zero (Mckee
et al., 1993; Vicente-Serrano et al., 2010).

The SPI and SPEI indices use the same classification for
drought or humidity events. This classification divides the
events into different categories, determined by index values
(Table 1). To determine the occurrence of dry and wet events,
a threshold was established between 1 and −1. These thresholds

are those recommended by theWMO guidelines for SPI droughts
(Zargar et al., 2011; World Meteorological Organization, 2012).
They also correspond to a probability of occurrence of 0.159
(Agnew, 2000).

Data Analysis
Firstly, a descriptive variable analysis was made from box plots,
followed by a graphical comparison of indices for each timescale.
Hence, defining the intensity, duration, and timescales of the
most important dry and wet events. Subsequently, SPI and SPEI
values were obtained through the use of the R software (version
3.6.3), the “SPEI” package for equivalent timescale (3, 6, 12, and
24 months), using precipitation data, minimum and maximum
temperature, and the station’s latitude (Beguería and Vicente-
Serrano, 2017; R Core Team, 2020). Although the best method for
calculating evapotranspiration is the Penman-Monteith, there are
several limitations to it due to the difficulty of obtaining
meteorological parameters such as air humidity, wind speed,
radiation, and atmospheric pressure. For this reason, the
method proposed by Hargreaves (1994) was selected. In
addition, some studies show a great correlation between the
Penman-Monteith method and the Hargreaves method
(Beguería et al., 2014).

Then, with SPI and SPEI values in different scales, the
temporal analysis was made to know the evolution of the dry
and wet events. For this, moderate, severe, and extreme dry and
wet events were identified, comparing the index values with the
classification determined in Table 1. On the other hand, using the
indices as indicators, a drought or wet event for a time scale i, is
defined as the period during which the index reaches values below
-1 (drought) or above 1 (wet), ending when it reaches values
between −1 and 1. With this, the duration and approximate
timescale of such events is determined, being the intensity the
value given by the indices. Simultaneously, using data previously
obtained through descriptive statistics (average, maximum,
minimum SPI and SPEI values at different scales, as well as
their standard deviation), a temporal analysis was carried out in
order to assess the behavior of the dry and wet events. Finally,
because the higher timescales of the indices did not comply with
the Smirnov-Kolmogorov assumption of normality (Wei and
Simko, 2017; R Core Team, 2020), the Spearman rank-order
correlation coefficient (p < 0.05) was calculated using the R
software (version 3.6.3) with the “corrplot” package, to
measure the level of correlation and direction that exists
between the SPI and SPEI indices across timescales.

RESULTS AND DISCUSSION

Historical Behavior of Climate Variables
Figure 3 shows that the highest average monthly precipitation
data were collected from 1990 to 1999, followed by a decrease in
2000–2009, however recuperating in the current decade.
Nevertheless, in the period 2010–2019, there was a drop in
these temperatures. The climate water balance remained more
or less constant during the first three decades, while in the last
decade there were the conditions of lower deficit of the period

TABLE 1 | SPI and SPEI classification and categories1.

Category Index value

Extremely wet SPEI/SPI > 2.0
Severely wet 1.5 < SPEI/SPI ≤ 2.0
Moderately wet 1.0 < SPEI/SPI ≤ 1.5
Close to normal −0.5 < SPEI/SPI ≤ 0.5
Moderate drought −1.5 < SPEI/SPI ≤ −1.0
Severe drought −2.0 < SPEI/SPI ≤ −1.5
Extreme drought SPEI/SPI ≤ −2.0
1Based on Mckee et al. (1993) and Bigi et al. (2018).
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studied, something ordinary, taking into account that rainfall in
this decade has a rebound. The minimum monthly average
temperatures have had a small increase during the first
three decades. The maximum average monthly temperatures
have behaved differently, with an increase from 1981–1989 to
1990–1999, and then a decrease in the following two decades.
Additionally, the average monthly minimum and maximum
temperatures have decreased by almost 0.5 °C compared to the
1990s. This behavior reflects that no important climatic events,
such as El Niño, have taken place throughout the last decade
(2001–2010) (OMM, 2012). El Niño is generally related to global
warming, which causes temperatures to rise in the upper layers of
the Pacific Ocean (Todd et al., 2018). However, until 2006, La
Niña, decreasing temperatures of the Pacific Ocean’s surface, and
neutral events were predominant. The aforementioned events
were followed by a short-lived El Niño event, indicating that
climate change’s long-term effects may have been masked by this
natural variability (Castillo-Castillo et al., 2017).

SPI and SPEI Indices
SPI and SPEI results for the city of Chachapoyas were calculated
for the time scales of 3, 6, 12, and 24 months. On a three month
scale, the series shows high frequency oscillation (Figure 4), due
to the short time in which the variables are taken into account,

thus changes are assimilated at great speed (Kimaru et al., 2019).
The behavior of both indices is quite similar. In general, values
range from −3.0 to 2.0, with severe to moderate wet events being
more frequent in the SPEI (Figure 4B). On the contrary,
according to the SPI (Figure 4A), severe dry events
intersperse with moderately wet events. In particular and
according to the SPI values, the city of Chachapoyas
experienced four extreme droughts (2001, 2005, 2010, and
2018). However, only one extreme event was reported by the
SPEI (2010). Most of these detected dry events coincided with
the years with the highest number of forest fires in the area of
Chachapoyas, being the years of 2005, 2010, and 2018, the ones
with more fires (Manríquez Zapata, 2019; Castillo et al., 2020).
Therefore, the occurrence of fires could be associated with
extreme dry events. Moreover, the SPI (2006, 2012, and
2018) reported, three extremely wet events although only one
was noted by the SPEI (2018). It should be noted that there is a
disparity between SPI and SPEI results from 2017 to 2019, where
the SPEI indicates the occurrence of only wet events This
disparity between the indices occurs because of the increase
in precipitation, the only variable that the SPI index takes into
account, occurs before the decrease in temperature, a variable
that the SPEI requires to calculate the climate water
balance(Stojanovic et al., 2020).

FIGURE 3 | Historical precipitation behavior from 1981 to 2019 (A), climate water balance (B), minimum temperature (C) and maximum temperature (D), variables
used for SPI and SPEI calculation. Red dots are outliers. Black dots correspond to the data for each parameter for the entire series studied.
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The SPI and SPEI values on a 6-month time scale oscillate
between −2.5 and 2.0 (Figure 5). Both dry and wet events were of
lower intensity and longer duration, which is normal when the
time scale is increased (Vicente-Serrano et al., 2010; Kimaru et al.,
2019). In this scale, the SPI (Figure 5A), is the only one that
indicated that two extreme droughts took place in 2001 and 2005,
in contrast to SPEI (Figure 5B), which classifies the same
droughts as severe. On this scale, both indices continue to
show disparity from 2017 to 2019.

According to the three and six-month, SPI and SPEI
timescales dry and wet events intensify from the middle of the
1981–2019 period, specifically in the year 2017 for wet events. At
the same time, the SPI classified wet events as more intensive than
the SPEI. It is important to highlight, that indices at small time
scales have greater variability, causing dry or wet events to be very
frequent and of very short duration. On the other hand, on larger
time scales, this variability decreases, and as a result, dry or wet
events are less frequent but have a longer duration (Mckee et al.,
1993; Avilés et al., 2015).

The 12-months SPI and SPEI indices are more stable
(Figure 6). As previously mentioned, dry and wet events are
less frequent but of more duration due to slower index value
fluctuation. Both the SPI and SPEI, show greater intensity in dry

events at the initial phase and greater intensity towards the final
phase in wet events. Overall, both indices oscillate between −2.5
and 2.0, evidencing an extreme drought in 1993, and an extremely
wet event in 2017. It is to be noted that the extreme drought event
of 1993, is detected by the 3 and 6 months SPI and the SPEI, as a
severe drought event. This is mainly due to the indices’ behavior.
In small timescales (3 or 6-months), the indices behavior is very
variable due to their fast response to precipitation and
temperature changes. In contrast, when the timescales are
longer (12 or 24 months), the indices respond more slowly to
changes in climate variables. This makes the events less frequent
but more long-lasting and, in some cases, more intense (Castillo-
Castillo et al., 2017).

Finally, according to the 24-months scale, both SPI and SPEI
show more considerable differences regarding the intensity and
occurrence of dry and wet events (Figure 7). The time disparity
towards the end of both indices is now less than in short time
scales. The SPEI values indicate more significant humidity
surplus than the SPI, not only because of an increase in
precipitation over the last decade but also because of a
reduction in maximum and minimum temperatures
(Figure 3). As a result, severe and extreme wet events have
occurred since 2011. Additionally, the 12- and 24-months SPI

FIGURE 4 | SPI 3-months (A) and SPEI 3-months (B) for the 1981–2019 period with wet, normal and drought bands. The amount of change (including the
statistical significance) for each index is shown at the left bottom of each subgraphic.
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and SPEI indices indicate a drought of great duration and
intensity from 1991 to 1994, as well as two wet events of
equivalent duration and intensity from 2012–2016 to
2017–2019. This variation in intensity is due to the fact that
precipitation data has a seasonal component since both SPI and
SPEI depend on the area’s rainfall (Ahmad et al., 2016). It should
be noted that although the SPEI values generally oscillated
between −3.0 and 2.0, the 24-months SPEI is the only one
that has presented values close to −3.0 (Figure 7A), in
comparison to other SPEI values at smaller scales. This may
suggest that the importance of temperature and
evapotranspiration is greater for longer time scales (Stojanovic
et al., 2020).

The highest occurrence of wet events started in 1999. This can
be observed on all time scales for both indices. Specifically, from
1999–2001, 2012–2016, to 2017–2019, where three intense
periods of wet events were identified.

These results coincide with those reported by Imfeld et al.
(2019) on the droughts in the southern Peruvian Andes. Imfeld
et al. (2019) points out that in this area, the wet period from 2012
to 2016 ended up coinciding with El Niño, which took place in
2014/2016. Similarly, Vicente-Serrano et al. (2017) reported one
of the wettest events in the Ecuadorian Andes in 1999, which

ended in 2001. They used the SPEI index with a time scale of
12 months.

Studies in other parts of the world report on different
behaviors. In several locations within the interior valleys of
the central Cordillera de la Costa in Venezuela, several
droughts were determined using the SPI for a 1 month time
scale (1973–1974, 1982–1983, 1997–1998, 2002–2003,
2009–2010, 2013–2014), some of which coincide with the
wet events in Chachapoyas (Cortez et al., 2018).
Furthermore, Cunha et al. (2019), in their study on extreme
droughts in Brazil from 1964 to 2019, registered an increase in
extreme droughts during the last two decades in central and
northern Brazil by using the 12-months SPI metric. Similarly,
results reported by Stojanovic et al. (2018), from their
assessment of droughts from 1980 to 2015 in Central
Europe and their association with the moisture contribution
from the Mediterranean Sea, indicate an increasing trend of
extreme droughts, identified with the one-month SPEI index.

Temporal Characterization
The indices descriptive statistics on different time scales in the
city of Chachapoyas have averages close to zero, something
expected by the way they are calculated. (Table 2).

FIGURE 5 | SPI 6-months (A) and SPEI 6-months (B) for the 1981–2019 period with wet, normal and drought bands. The amount of change (including the
statistical significance) for each index is shown at the left bottom of each subgraphic.
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After assessing results for each index and time scale, the
maximum intensity of a wet event, with a value of 2.565, was
obtained from the 12-months SPI, while the maximum
intensity of a drought was obtained from the 3-months SPI,
with a value of −3,869. Likewise, the standard deviation
oscillates between 0.966 and 1.027. Hence, the values
mentioned above indicate that the city of Chachapoyas
stays between the “moderate drought” and “moderately wet”
categories. As previously noted, the intensity of dry and wet
events is higher within shorter time scales. The SPI is an index
that only takes into account rainfall, which is why the events of
dry and moisture are more intense (Liu and Liu, 2019).
Likewise, the SPEI, also takes into account the
evapotranspiration, which generates that this index does not
show the same intensities as the SPI for the same dry and wet
events (Lee et al., 2017). In the case of Chachapoyas, there are
several differences in the number of dry and wet events
according to both indices, generally finding more events
with the SPI than with the SPEI. This difference is mainly
due to the evapotranspiration parameter, which depends on
temperature (Vicente-Serrano et al., 2010, 2014). Therefore,
including this parameter causes differences in the intensity and
quantity of dry and wet events detected by indices (Vicente-
Serrano et al., 2014; Vicente-Serrano et al., 2015; Lee et al.,

2017; Páscoa et al., 2017). In addition, SPEI usually represents
dry and wet events better than SPI in both arid and humid
climates (Beguería et al., 2014), something which is not
happening in the city of Chachapoyas, which stands out for
its seasonal rainfall and mild temperatures (Rascón et al.,
2020).

Relationship Between Indices at Different
Time Scales
Precipitation is the parameter that regulates dry and wet events,
either its deficit or surplus in a given period. At the same time, it is
the main parameter used for the elaboration of both indices. That
is why the correlation between the SPI and the SPEI is so high on
the same timescale. However, the indices’ correlation decreases
when the timescales differ and more when comparing short and
long timescales. This difference may be due to the decrease in
temperatures, affecting evapotranspiration during the entire time
series studied (Vicente-Serrano et al., 2010; Stagge et al., 2014). It
must also be taken into account that evapotranspiration is a very
important parameter in this area of the Andes, due to its
relationship with climate water balance and the high
seasonality of rainfall in this Andean region.(Carrillo-Rojas
et al., 2019) (Figure 8).

FIGURE 6 | SPI 12-months (A) and SPEI 12-month (B) for the 1981–2019 period with wet, normal and drought bands. The amount of change (including the
statistical significance) for each index is shown at the left bottom of each subgraphic.
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A correlation coefficient of 0.98 and 0.99 indicates that the
periodic evolution of SPI and SPEI at the same temporal scale is
similar. These results coincide with those obtained by Stojanovic
et al. (2018), who determined a correlation value of 0.96 between
the SPI and the SPEI at a 1 month scale when assessing droughts
in central Europe. It should be noted that verifying if the inclusion
of evapotranspiration data causes significant variations in SPEI
values with respect to SPI values is important (Stagge et al., 2015).
In the case of the city of Chachapoyas, the range of correlation
between SPEI and SPI values varies from 0.54 to 0.99. These
results are slightly lower, however akin to those reported by
Stagge et al. (2014) for SPI and SPEI values in Europe.

CONCLUSION

This study analyzed the dry and humid events, as well as the main
climatological parameters of the city of Chachapoyas in the
period from 1981 to 2019, through the application of the
drought indices SPI and SPEI and simple statistical analysis.
After applying the SPI and SPEI indices in the city of
Chachapoyas, it can be stated that wet events are
predominant, compared to droughts. The most critical
drought took place in the 1990s, while the most crucial wet
events have occurred in the last 10 years. This finding is
astounding because other studies that have been mentioned
above found an inverse behavior to that of Chachapoyas. The
SPEI, when including temperatures, shows an upward trend in
the intensity, severity, and duration of wet events concerning the
SPI. Considering that the SPEI is linked to changes in
temperature, it allows researchers to assess better the
beginning and end of dry and wet events at any time scale in
comparison to the SPI. In the case of Chachapoyas, the indices
have a high correlation between them regarding the same
timescale.

Considering the tremendous impact of dry and wet events in
production processes such as agriculture or livestock, or their
relationship with forest fires or water availability for the

FIGURE 7 | SPI 24-months (A) and SPEI 24-months (B) for the 1981–2019 period with wet, normal and drought bands. The amount of change (including the
statistical significance) for each index is shown at the left bottom of each subgraphic.

TABLE 2 | Statistical summary of the SPI and SPEI indices at different time scales.

Index–Time scale Mean SD Min Max

SPI 3-months −0.005 1.027 −3.869 2.501
SPEI 3-months 0.005 0.987 −2.500 2.328
SPI 6-months 0.003 0.991 −3.645 2.434
SPEI 6-months 0.006 0.983 −2.358 2.251
SPI 12-months 0.005 0.976 −3.099 2.565
SPEI 12-months 0.007 0.979 −2.181 2.293
SPI 24-months 0.005 0.966 −2.126 2.397
SPEI 24-months 0.008 0.981 −2.168 2.101
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population, both the SPI, based exclusively on precipitation and
the SPEI, sensitive to temperature changes, are positioned as a
valuable analysis tool. Therefore, local and regional governments
can use this tool to develop prevention, monitoring and
mitigation plans for dry and wet events or to improve impact
management plans.
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