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Inorganic turbidity can limit light penetration in water and reduce phytoplankton
photosynthesis. Anthropogenic activities such as mining can produce or augment the
amount of suspended inorganic particles in water. Recent mining disasters in Brazil have
released tons of mine tailings into aquatic ecosystems, with known and unknown negative
consequences for aquatic life, biodiversity, and ecosystem services beyond the human
and material losses. Here, we investigated the effects of inorganic turbidity on
phytoplankton chlorophyll content and composition caused by sediments from two
areas in Lake Batata, one natural and the other impacted by bauxite tailings. We
experimentally compared the effects of different levels of turbidity (12, 50, and 300
NTU) caused by the addition of sediments from the two lake areas on a chlorophyll-a
gradient (5, 15, and 25 μg/L). Inorganic turbidity did not consistently reduce chlorophyll-a
concentrations. In treatments with high chlorophyll-a, high turbidity was associated with
lower chlorophyll-a concentrations at the end of the experiment. On the other hand, in low-
chlorophyll treatments, high turbidity was associated with higher chlorophyll-a
concentrations. In treatments with sediments from the natural area, overall chlorophyll-
a levels were higher than in treatments with sediments from the impacted area.
Phagotrophic algae dominated both in treatments with sediments from the impacted
area (Chrysophyceae 34%, Chlorophyceae 26%, and Cyanobacteria 22% of total density)
and in treatments with sediment from the natural area (Euglenophyceae 26%,
Chrysophyceae 23%, and Chlorophyceae 20%). We conclude that high turbidity does
not lead to a reduction in chlorophyll-a concentrations and sediment from the natural area
allowed higher chlorophyll-a levels, indicating that impacted area sediment affected more
phytoplankton.
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1 INTRODUCTION

Turbidity is an important feature of aquatic ecosystems. It can be
caused by dissolved organic matter or suspended particles in the
water column and is usually measured by lateral dispersion (90°)
of an incident light beam. Turbidity is often considered an aquatic
environmental stressor because it directly modifies the scattering,
absorption, and attenuation of light penetration in water, thereby
affecting primary production and aquatic metabolism (Kirk,
1985). Suspended solids responsible for increasing water
turbidity can derive from natural processes such as glacier
melting (Dierssen et al., 2002), cyanobacterial blooms or high
densities of planktonic microalgae (more often in shallow lakes)
(Descy et al., 2013), and sediment resuspension by wind,
benthivorous fish, or lateral flooding (Donohue and Garcia-
Molinos, 2009). Recent studies suggest that climate warming
can intensify turbidity by increasing evaporation rates and
reducing lake depths (Jeppesen et al., 2014; Menezes et al.,
2019). This tendency, together with seasonal variation in
freshwater ecosystems, can exacerbate turbidity variation,
creating larger range gradients, especially on floodplains
(Sorribas et al., 2016).

Turbid waters (e.g., with suspended organic or inorganic
solids) are often associated with low aesthetic value, limited
recreational use, pollution, disease transmission, and human
health impact, with increased treatment costs for consumption
(Davies-Colley and Smith, 2001). Nowadays, inorganic turbidity
is considered one of the most important aquatic pollutants
(Parkhill and Gulliver, 2002), including turbidity generated by
anthropogenic activities (Bentley et al., 2016). Anthropogenic
interventions in the landscape increase soil erosion and sediment
transport to freshwater environments, which are among the most
threatened ecosystems in the world (Malmqvist and Rundle,
2002; Cantonati et al., 2020). Some examples of anthropogenic
alterations are agricultural expansion, the development of large
industries, and mining activities. These activities can alter

sediment dynamics and transport to rivers and lakes,
profoundly altering drainage basins (de Jong et al., 1995). One
of the first large-scale mining environmental impacts known in
Brazil is the discharge of 25,000 m³ of bauxite tailings daily for
10 years (1979–1989) in Lake Batata; a restoration project was
initiated in 1989 (Esteves et al., 1990). Recently, large mining
disasters in Brazil have released tons of waste into aquatic
ecosystems. In 2015, a dam maintained by the company
Samarco Mineração S. A. collapsed in the city of Mariana,
Minas Gerais state, discharging approximately 60 million m³ of
iron waste that spread along 660 km of the Doce River. A thick
layer with low nutritional value was created along the river,
increasing heavy-metal concentrations and causing silting,
animal mortality, material damage, and loss of human lives
(IBAMA, 2015; Grilo et al., 2018). In 2019, another dam
owned by Vale S. A. collapsed in the city of Brumadinho, also
in Minas Gerais. This accident released 12 million m³ of iron ore
tailings into the Paraopeba River and resulted in severe
environmental effects and even more loss of life (Thompson
et al., 2020).

The effects of mine tailings on aquatic environments can differ
from those of natural sediments. For example, tailings from the
Mariana dam collapse have been linked to increased
cytogenotoxicity (Quadra et al., 2018) and potential risk of
DNA damage (Segura et al., 2016). In the plankton, the
harmful effects of tailings may also be related to the fine
particles (smaller than 50 μm) that according to laboratory
tests tend to remain in suspension for long periods (Roland
and Esteves, 1998). Since the inorganic particulate matter that
composes tailings has low nutritional value and hinders
zooplankton filtering (Levine et al., 2005), the tailings may
reduce zooplankton density, reproduction, and feeding rates
(Bilotta and Brazier, 2008). Although turbidity may be capable
of structuring bacterioplankton communities (Sánchez et al.,
2017), inorganic turbidity caused by tailings is not necessarily
harmful as it can form aggregates with particulate material and
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become important sources of nitrogen and phosphorus for
bacteria, considerably changing the trophic dynamics in turbid
environments (Gerbersdorf and Wieprecht, 2015). However,
because transparency decreases, turbidity caused by suspended
tailings can affect visually oriented species, for example increasing
predation effort by visually oriented planktivorous fish (Lin and
Pellegrini Caramaschi, 2005), reducing predation on zooplankton
and favoring an increase in their density, which in turn can affect
primary producers through trophic-cascade effects (Sweka and
Hartman, 2001; Liljendahl-Nurminen et al., 2008).

Another major effect of suspended material is light
attenuation in the water (Izaguirre et al., 2012), with
subsequent loss of phytoplankton photosynthesis (Lind
et al., 1992; Phlips et al., 1995). In addition to reducing

phytoplankton density and growth rate, light attenuation
can also modify communities by promoting the prevalence
of resistant species (Kruk and Segura, 2012; Bortolini et al.,
2014). In environments that become artificially turbid, the
phytoplankton composition may shift toward algae groups
that are better adapted to low light conditions, such as
Microcystis aeruginosa, which can outcompete green algae
for light (Yang and Jin, 2008). In other examples,
Cyanobacteria dominance shifted toward Cryptophytes in a
mesocosm with turbidity from glacial flour (Cianci-Gaskill
et al., 2020), and in turbid shallow lakes, diatoms such as
Fragilaria or Cyclotella may dominate (Izaguirre et al., 2015).
In general, large groups of diatoms can be resuspended
together with sediments by wind action, and are likely to be
selected in shallow, shaded environments (Crossetti et al.,
2012). These are often classified in Kruk’s morpho-
functional Group V, which is composed mainly of
mixotrophic or phagotrophic unicellular flagellates. These
organisms can compete better in turbid environments since
they do not depend exclusively on light availability to acquire
organic carbon (Kruk et al., 2010; Costa et al., 2019).

Turbid environments can vary widely in turbidity over time,
due to seasonal environmental changes, which can also affect
plankton distribution, generating gradient patterns. Considering
that the effects of turbidity on primary production depend on the
concentration and type of suspended particles, and also that both
natural and anthropogenic turbidity are increasing in aquatic
ecosystems, it is crucial to understand their role in fundamental
processes such as phytoplankton primary production. By
combining different levels of chlorophyll-a with different levels
of inorganic turbidity, we experimentally tested the following
hypotheses: 1) chlorophyll contents will be higher in treatments
with lower inorganic turbidity; 2) high inorganic turbidity will
promote a shift in phytoplankton composition by selecting
species adapted to low light conditions; and 3) turbidity
caused by inorganic sediments from an area impacted by mine
tailings will have a stronger negative effect on chlorophyll
concentration than will turbidity caused by natural sediments.

2 MATERIALS AND METHODS

2.1 Experimental Design
The experiment was conducted in the Laboratory of Aquatic
Ecology (UFJF, Minas Gerais, Brazil) with sediment originally
collected in Lake Batata, an Amazonian floodplain lake in the
state of Pará, Brazil. The sediments were collected from the
natural area (non-impacted) and the impacted area (with
remaining bauxite tailings). Lake Batata was chosen as a
model ecosystem because of its historical impact from bauxite
tailings, as described below. The water and phytoplankton
community evaluated in the experiment were collected from a
lake in the UFJF Botanical Garden, also described below.

Before the experiment, the water collected in the Botanical
Garden lake was incubated for 24 h in a thermostated cabinet
(WTW model TS 606/2-i) at a constant temperature of 18°C, the
mean temperature of the region (Moreira, 2014). This procedure

FIGURE 1 | Experimental design: combinations of three chlorophyll
levels (Low, Medium, High) and turbidity (Low, Medium, High), forming nine
categories of triplicate treatments including controls. HT: High Turbidity; MT:
Medium Turbidity; LT: Low Turbidity; HC: High Chlorophyll; MC: Medium
Chlorophyll; LC: Low Chlorophyll.
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was required to keep the aquatic communities acclimated since
changes in the original temperature could modify plankton
metabolism and affect the experimental results. After the 24-h
acclimation period, the water samples were divided to make stock
solutions for treatment setup. The stock solutions received three
different quantities of sediment according to the desired turbidity
level. This procedure was conducted for both types of sediments
in Lake Batata, i.e., from the impacted area (Impacted Batata, IB)
and the non-impacted area (Natural Batata, NB). For individual
treatments, we used 500-ml beakers filled with 400 ml of stock
solution and covered with aluminum foil.

For each type of sediment (IB and NB), the experimental
treatments were assembled to test the effects of three levels of
inorganic turbidity: High (HT), Medium (MT), and Low (LT),
and three levels of chlorophyll-a: High (HC), Medium (MC), and
Low (LC). Three controls contained only High chlorophyll-a
(HC-C), Medium chlorophyll-a (MC-C), or Low chlorophyll-a
(LC-C) (Figure 1). Treatments were labeled by turbidity level,
followed by chlorophyll-a level. For example, the treatment with
high turbidity (HT) and high chlorophyll-a (HC) was labeled
“HTHC”. This coding is used throughout the text. Each treatment
was conducted in triplicate, including controls.

Turbidity treatments were standardized to represent the three
levels: HT = 300 NTU, MT = 50 NTU, and LT = 12 NTU. These
values correspond to the highest, median, and lowest values
historically recorded in Lake Batata (MRN, 2018). Turbidity
was measured by an Instrutherm TD-300 turbidimeter. The
chlorophyll-a levels were established as follows. The “high
chlorophyll-a” threshold was based on the maximum
chlorophyll-a level reached in the water at the Botanical
Garden lake after concentration with a 25 μm-mesh plankton
net, averaging 25 μg/L. “Medium chlorophyll-a” was a mixture
containing 50% from HC and 50% LC, resulting in 15 μg/L on
average. “Low chlorophyll-a” corresponded to the natural
chlorophyll concentration in the water, 5 μg/L on average.
Further details can be found in Supplementary Material,
Supplementary Section S1.

The treatments were randomized to prevent stochastic
effects on the results. They were further conditioned in a
thermostated cabinet at 18°C, with constant stirring on a
WTW Oxitop IS 12 stirring plate with magnetic bars
(4 cm × 0.5 cm) over the 7 days of the experiment. In the
experimental conditions, the particulate material was
constantly resuspended, reproducing local environmental
conditions for phytoplankton, for example in case of a
natural event such as wind resuspension or other turbidity-
increasing impacts. An LED light was kept inside the
thermostated cabinet, with 12-h light and dark
photoperiods. An International Light IL 14004 radiometer
was used to measure the irradiance at each point of the
stirring plate, which ranged from 434 μW/cm2 (min) to
496 μW/cm2 (max), average 445 ± 19.8 μW/cm2. Before
each daily measurement, the pH of treatments was
measured with a Hanna HI 8424 pH meter.

Water samples from all treatments and controls were taken at
the beginning (t0) and the end of the experiment (t7) period.
Water samples (except for total phosphorus analyses) were

filtered through a 1.2-μm-pore glass-fiber filter and later
analyzed for dissolved organic carbon (DOC), dissolved
nitrogen (DN), and dissolved inorganic phosphorus or
orthophosphate (DP) concentrations. DOC and DN were
analyzed following sodium persulfate digestion in a Shimadzu
5000A TOC L Analyzer; TP and DP were estimated by the
molybdenum-blue method (Wetzel and Likens, 1991).

2.2 Model Ecosystem
The sediments used in the experiments were collected from Lake
Batata. Lake Batata is located on the floodplain of the Trombetas
River and is ecologically important because of the bauxite tailings
that were continuously dumped into the lake between 1979 and
1989. Nowadays, the deposited bauxite tailings cover
approximately 30% of the lake area. Lake Batata is a unique
environment with a suite of studies conducted since a long-term
restoration project started in the late 1980s (Esteves et al., 1990;
Esteves, 1998; Scarano et al., 2018; Josué et al., 2021). The
restoration project consisted of replanting the impacted area
with native species in order to keep the impacted sediments
attached and immobilized on the lake margins and increase the
organic matter content of the sediments (Dias et al., 2011). Even
after the restoration actions, which are still in progress, the lake
continues to have two distinct areas, one natural (Natural Batata,
NB) and the other impacted (Impacted Batata, IB). Because of its
importance, Lake Batata was used as a model system in this study.

Historically, sediments from NB have had higher total
nitrogen (TN), dissolved organic carbon (DOC), and organic
matter (OM) contents than IB (Roland and Esteves, 1993; Leal
et al., 2004). However, due to restoration, the sediment organic-
matter content was recently found to be very similar in NB and IB
(Josué et al., 2021). NB also has higher interstitial water content,
indicating a higher water-retention capacity (Callisto and Esteves,
1996a; Leal et al., 2003), and the sediments have a muddy-
appearing organic layer composed of fine particles (Callisto
and Esteves, 1996a), mainly fine sand and silt. In contrast, the
IB sediments contain a large clay fraction, which remains
suspended in the water column for a longer time (Callisto and
Esteves, 1996b; Roland and Esteves, 1998) and in shallow areas is
often resuspended by wind, increasing the turbidity. The bauxite
tailings in IB are inert and nontoxic to phytoplankton and are
composed mainly of silicates (47%), aluminum oxide (21%), and
iron oxide (21%) (Lapa, 2000).

2.3 Sediment Samples
Sediment was collected from the uppermost 10 cm in NB. For IB
we collected 10 cm of sediment just below the surface organic
layer, which was formed following the lake’s restoration project.
The organic layer was easily distinguishable in the field by its
darker color, reaching a depth of nearly 6 cm in the restored areas,
as also reported by Penha (2015).

Before the experimental treatments were assembled, the
sediments were placed in sealed Erlenmeyer flasks, sterilized in
an autoclave for 20 min, and dried at 60°C for 24 h (Quaggio and
Raij, 1979). After cooling, the sediments were macerated to
homogenize the particles, since the granulometry could affect
the experimental results by creating noise through the turbidity

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 9 | Article 6058384

Nunes et al. Mining Tailings Effects on Chlorophyll-a

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


effect (Merten et al., 2014; Yao et al., 2014). The grain size was
analyzed to assess the mean size of particles. After maceration,
sediment samples were sifted through sieves of different mesh
sizes (1 mm, 500 μm, 250 μm, 150 μm, 75 μm, and <75 μm)
coupled to a TecnoFund model AEP agitator to separate the
material according to particle fractions, and classified according
to the Wentworth scale (Buchanan, 1984). Organic-matter
content in sediment aliquots was analyzed by loss-on-ignition
for 4 h at 550°C, according to Carmouze (1994). All sediments
were taken to the laboratory in the Federal University of Juiz de
Fora (UFJF, Juiz de Fora, Minas Gerais) to set up the experiment.

2.4 Water Samples
Water samples were taken from an artificial lake in the UFJF
Botanical Garden (21°44′18″ S, 43°22′07″ W). The water used in
the experiments was sieved through a 68-μm plankton net to
remove zooplankton that could affect the results (further details
in Supplementary Material). To characterize the water samples,
we analyzed the water temperature (°C), pH, oxidation/reduction
potential (mV), electrical conductivity (μS/cm), turbidity (NTU),
dissolved oxygen (mg/L and %), and total dissolved solids (mg/L),
which were measured with a Horiba model U-50 multiparameter
probe. Total chlorophyll-a of cyanobacteria and eukaryotic algae
was measured in situ using a phytoplankton analyzer (PHYTO-
PAM, Walz, Germany). Chlorophyll-a concentrations were
measured for total chlorophyll-a (total Chl-a) and the main
algal groups as given by the fluorometer: blue-green (Blue
Chl-a), green (Green Chl-a), and brown (Brown Chl-a) as
determined by the fluorescence readings at four wavelengths
(470 nm, 520 nm, 645 nm, and 665 nm, respectively)
(Schreiber et al., 1998). PHYTO-PAM separates algal groups
by using the measurements of these four excitation
wavelengths, according to the absorbance spectra of their
light-harvesting complexes (LHC), which act as antennae
pigments. For instance, Cyanobacteria show a strong signal at
the 645 nm channel, most green algae show a signal at the 470 nm
channel, and the majority of diatoms show a strong signal at 470
and 520 nm wavelengths. The equipment was calibrated using
Anacystis sp. as the reference for “blue-green algae”,
Ankistrodesmus sp. as the reference for “green algae”, and
Phaeodactylum sp. as the reference for “brown algae” (Heinz
Walz GmbH, 2003). Below we refer to algal groups by the
fluorometric response, as chlorophyll groups as given by
PHYTO-PAM, considering Cyanobacteria as blue-greens or
“blue algae”; Chlorophyceae, Euglenophyceae, and
Zygnematophyceae as “green algae”; and Chryptophyceae,
Chrysophyceae, Bacillariophyceae, and Dinophyceae as “brown
algae” (Schreiber, et al., 1998; Beecraft et al., 2017). PHYTO-PAM
was also used to determine the daily algal yield, which
corresponds to the effective quantum yield of photosystem II
in an incident PAR radiation beam. These measurements can
help to understand the photosynthetic performance of
communities.

Phytoplankton samples from the initial (t0) and final (t7)
experiment times were preserved with acid Lugol’s iodine
solution and conditioned in the dark. Phytoplankton
abundance was estimated using an Olympus IX71 inverted

microscope, with the settling technique according to Utermohl
(1958). Cells, filaments, and colonies were counted at ×40
magnification in random fields until the taxon accumulation
curve stabilized. Taxa were identified to genus level and
categorized as major taxonomic groups, using taxonomic keys
(Komárek and Anagnostidis, 1998, 2005; van den Hoek et al.,
1995).

2.5 Data Analysis
A pilot experiment indicated that the sediment suspension
(only sediments and water) contributed to a small chlorophyll-
a signal (here termed background chlorophyll-a) and could
therefore affect the treatment readings by PHYTO-PAM. We
corrected for this source of bias by subtracting the treatment
readings at the initial time (containing the sum of real
chlorophyll-a and background reading from sediment) from
the control values (containing equivalent real chlorophyll-a
value) for each treatment. This difference, the background
chlorophyll-a calculated for each treatment, was then
subtracted from each chlorophyll-a value generated on each
day during the course of the experiment (details in
Supplementary Material, Topic 2). The values resulting
from this correction were termed “corrected chlorophyll”.

Nutrients and limnological parameters were submitted to
paired t-tests in R software (R Core Team, 2019) to assess the
variation between initial (t0) and final (t7) concentration
values. The stoichiometric molar ratios between dissolved
fractions of carbon (C), nitrogen (N), and phosphorus (P),
i.e., C:N, N:P, and C:P, were calculated from the DOC, DN, and
DP concentrations. We compared our results to the C:N:P
ratio for tropical freshwater plankton calculated by (They
et al., 2017; reference C:N:P ratios of 307:30:1), considering
the particular features and dynamics of these environments
that affect the nutrient dynamics.

Chlorophyll-a values were compared between treatments
with a repeated-measures GLM (General Linear Model)
analysis, also in R. In these models, we indicated the
temporal non-independence of data, with “time” as a
random factor. For comparison between sediment types, we
used “sediment type” (IB or NB) as a comparison factor and
“time” as the random factor. Bonferroni adjustment was used
for post-hoc comparisons.

Chlorophyll-a values by treatment over the incubation time were
submitted to linear regression in JMP-SAS 14 software to obtain
general trend lines and linear-regression equations (Y � ax + b)
in which b, which we term “slope”, is the associated coefficient of
variation that indicates if the regression line is assuming an
increasing or decreasing trend. This parameter helped us to
understand the chlorophyll-a tendencies over time. For all
statistical analyses, we used a significance level of 95% with α = 0.05.

3 RESULTS

3.1 Sediment and Water Characterization
The sediments from Lake Batata were predominantly coarse
and medium-grained sand for NB and medium and fine-
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grained sand for IB (Table 1). Organic-matter contents were
21.48% for NB and 20.43% for IB.

Nutrient contents of water from the UFJF Botanical Garden
lake were 30.7 ± 0.9 μg/L TP, 6.8 ± 0.4 μg/L DP 3.7 ± 0.1 mg/L
DOC, and 0.2 ± 0.05 mg/L DN. At the time of the analysis, water
turbidity was 25.2 NTU and pH was 7.4 (Table 2). The
chlorophyll-a concentration in the lake was approximately
5.51 ± 0.22 μg/L. The green, brown, and blue pigment bands
were, on average, 46.2, 46.9, and 5.2% respectively.

3.2 Experimental Results
3.2.1 Chlorophyll-a Trends
Chlorophyll-a in the NB sediment treatments ranged from
4.76 μg/L in MTLC to 34.32 μg/L in HTHC. Chlorophyll-a in
IB sediment treatments ranged from 5.31 μg/L in LTLC to
30.89 μg/L in HTHC (Figure 2). Comparing treatments by
sediment type showed that NB and IB were significantly
different (F = 8.53, p < 0.01). For NB sediment, there were
effects of turbidity (F = 51.36, p < 0.01), chlorophyll-a levels (F
= 423.02, p < 0.01), and the interaction between them (F = 3.04,
p = 0.01). For IB sediment, turbidity also had a significant
effect in treatments (F = 32.57, p < 0.01), as well as chlorophyll
levels (F = 513.29, p < 0.01) and the interaction (F = 14.02, p <
0.01). Post-hoc comparison tests for NB treatments showed
that low-turbidity treatments were not significantly different
from medium-turbidity treatments for both sediment types,
but all chlorophyll-a treatments differed from each other
(Table 3).

The slopes of chlorophyll-a overtime for NB treatments
ranged from –1.06 to 0.82 (Figure 3), and chlorophyll-a in
treatments LTLC and MTMC significantly increased over time
(ANOVA, p < 0.05). The slopes of chlorophyll-a overtime for IB
ranged from –1.28 (MTHC) to 0.82 (LTHC). LC treatment slopes
were directly proportional to turbidity levels, and high-
chlorophyll-a slopes were inversely proportional to turbidity,
decreasing as turbidity increased (Figure 3).

Algal yields ranged between 0.07 and 0.7 in NB sediment
treatments. For IB sediments, algal yields ranged between 0.17
and 1.12 (Figure 4).

3.2.2 Pigments and Taxonomic Composition
In NB treatments, dominant species belonged mostly to the green
group (51–53% average) and brown group (46–48%), especially
in LC treatments. For other treatments such as MC, the green
group was dominant (61–74%, Figure 2). The same was found for
HC treatments, where the green group was also dominant
(i.e., HTHC = 51–73%, Figure 2).

For IB sediment treatments, in LC and MC the green group
dominated (55–98%) and (63–83%), respectively. In treatment
MTHC the brown group (69%) prevailed, followed by the green
group (30%). In HC treatments, the phytoplankton composition
varied along the turbidity gradient. For instance, in LT the green
group slightly dominated over (48%) over the brown group
(43%), in MT the brown group dominated (69%) over the
green group (30%), and in HT the green group
predominated (73%).

In the IB treatments, Chrysophyceae, Cryptophyceae,
Euglenophyceae, and Chlorophyceae were the dominant
groups. The phytoplankton composition did not change
drastically in most of the treatments except for IB HTHC and
HTLC (Figures 5, 6). In the NB treatments, Euglenophyceae and
Dinophyceae dominated, followed by Chlorophyceae and
Cyanobacteria. In the HTLC treatment, Cyanobacteria
increased markedly from the initial (t0) to the final (t7) time
of the experiment. Other treatments also showed an increase in
the Cyanobacteria contribution (e.g., HTMC, MTHC, MTLC,
and LTHC).

3.2.3 pH, Nutrient Concentrations, and Stoichiometric
Ratios
During the experiment the pH varied between 7.45 and 8.97 in
NB and between 7.49 and 8.98 in IB. Both showed significant
changes (p < 0.05) over time for LT treatments of NB sediment
and most IB treatments (Table 4). In the NB treatments, DOC
concentrations varied from 4.0 to 8.3 mg/L, DN from 0.18 to
0.87 mg/L, TP from 24.92 to 179.22 μg/L, and DP from 3.74 to
15.74 μg/L. In the IB treatments, DOC concentrations varied
from 4.2 to 5.7 mg/L, DN from 0.14 to 0.27 mg/L, TP from 35.47
to 134.87 μg/L (Table 5), and DP from 6.2 to 10.8 μg/L. There was

TABLE 1 |Granulometric composition of sediments (NB) and (IB) by particle size, sediment classification by particle size, and amount of sediment retained in sieves (g) and in
percentage (proportional to sample size 25 g).

Sediment Particle size (aprox.) Sediment classification Percentage
of sample (g)

Percentage
of sample (%)

NB 1 mm Very coarse sand 3.53 14.1
500 µm Coarse sand 5.19 20.7
250 µm Medium sand 9.20 36.8
150 µm Fine sand 4.86 19.4
75 µm Very fine sand 1.4 5.7
<75 µm Silty clay 0.7 2.9

IB 1 mm Very coarse sand 2.06 8.2
500 µm Coarse sand 2.17 8.7
250 µm Medium sand 14.58 58.3
150 µm Fine sand 5.39 21.6
75 µm Very fine sand 0.1 0.3
<75 µm Silty clay 0.1 0.3

NB means Natural Batata and IB means Impacted Batata sediments.
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significant variation (p < 0.05) over the incubation time for DOC
in LT treatments of NB sediment and MT treatments of IB
sediment. For DN, only the MTLC treatment of NB showed
significant variation over the incubation time (Table 6).

N:P ratios ranged from 3:1 to 11:1 in NB and from 1:1 to 5:1 in
IB. The C: N ratios ranged from 18:1 to 56:1 for NB and from 44:1
to 72:1 for IB, with a tendency to decrease toward the end of the
experiment. The C:P ratios ranged from 181:1 to 307:1 in NB and
from 86:1 to 253:1 in IB (Table 7).

4 DISCUSSION

One of the main factors that influence aquatic photosynthesis is
light availability in the water column, which is closely linked to
turbidity (Kirk, 1985). Turbidity levels are increasing in many
aquatic ecosystems as a result of anthropogenic factors such as
urbanization, agricultural and industrial expansion, and mining
activities (Rodrigues et al., 2018). In this study, we experimentally

assessed the effect of turbidity on phytoplanktonic chlorophyll-a
by combining different levels of chlorophyll-a and turbidity. Our
results showed that despite the expected turbidity-shading effects,
photosynthesis continued even in the high-turbidity treatments,
with a prevalence of green and brown algae in water with both
sediments tested (NB and IB) at the end of the experiment. The
turbidity effect was stronger with IB sediments and in treatments
with higher initial chlorophyll-a levels.

4.1 Turbidity Effects on Chlorophyll-a
Concentrations
In general, it is expectable that high turbidity will reduce light
incidence in the water and negatively affect primary production,
reducing chlorophyll-a content in more-turbid systems, as we
hypothesized here. In our experiments, the high-chlorophyll-a
treatments showed lower and negative slopes as turbidity
increased, but the low-chlorophyll-a treatments had increasing
slopes along with turbidity, confirming our first hypothesis.

A tendency toward growth of primary producers in turbid
environments has been reported in systems where wind
resuspends the sediment periodically, such as estuaries
(Pinckney et al., 2011) and shallow lakes. In these systems,
internal nutrient remobilization can cause eutrophication
(Søndergaard et al., 2003). In Lake Batata, resuspension of
sediments in the impacted area increases chlorophyll-a
concentration by increasing the nutrient supply (Panosso,
1993). In these cases, nutrients stored in the sediments are
often resuspended in the water column, favoring
phytoplankton primary production (Nõges and Nõges, 1999).
Nutrient availability may be an associated explanation for our
findings in the low and medium-chlorophyll treatments, as we

TABLE 2 | Limnological characterization of the water in the UFJF Botanical
Garden lake.

Parameter Values

Water temperature (°C) 27.4
pH 7.4
Oxidation/reduction potential (mV) 262.5
Electrical conductivity (μS/cm) 0.03
Turbidity (NTU) 25.2
Dissolved oxygen (mg/L) 11.5
Dissolved oxygen (%) 147.4
Total dissolved solids (g/L) 0.021

FIGURE 2 | Chlorophyll-a variation (μg/L) by time (days) responding to turbidity levels. (A), NB results; (B), IB results. Horizontal labels above graphs show initial
turbidity levels and vertical lateral labels show chlorophyll-a levels forming experimental design combinations. Colors refer to chlorophyll groups. Chlorophyll-a scales
differ between (A) and (B). NB means Natural Batata and IB means Impacted Batata.
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recorded high phosphorus concentrations. Furthermore, in the
low-chlorophyll-a treatments, the light spread and was reflected
inside the systems as diffuse radiation, which can be better used
by fewer phytoplankton cells. Productivity in the low-
chlorophyll-a treatments may have been favored by light
scattering, a factor determined by the properties of suspended
particles, which can benefit phytoplankton in turbid systems
because of the light wavelengths used for photosynthesis,
generating different chlorophyll responses (Falkowski and
Raven, 2007; Kirk, 2011). In our treatments, the light might
not have been a limiting factor in the low-turbidity treatments
because of the small size of the beakers used as microcosms, since
there was not enough volume to create an aphotic zone. We,

therefore, compare this situation to natural environments at the
surface of the water column, where, besides not being light-
limited, algae exposed to photoinhibition can benefit from
microhabitats formed by suspended particles in glacier
meltwater-fed lakes (Sommaruga, 2015), estuaries (MacIntyre
and Cullen, 1996), or tropical ponds (Mayer, 2020). Further,
particulate matter is reported to facilitate algae aggregation
(Guenther and Bozelli, 2004), and in our experiment, it may
have prevented the cells from sinking and helped in light-
capturing in treatments with less competition. Sediment could
have acted as a substrate for bacterial aggregation, facilitating
nutrient cycling through bacterial-phytoplankton metabolism
coupling in low-chlorophyll-a treatments (Zak and Grigal,
1991; Naeem et al., 2000; Barlett and Leff, 2010).

Along with competition for light, another plausible
explanation for the decreasing slope patterns in treatments
with high initial chlorophyll-a (HTHC, MTHC, and LTHC) is
that sediment particles, together with shading from
phytoplankton cells, could reduce light availability in the
systems, resulting in low light availability for phytoplankton
absorption; alternatively, the systems may have reached
support capacity, limiting resources for phytoplankton growth.
The values for algal yield were mostly below 0.83, a threshold
where the phytoplankton community is under light stress in
performing photosynthesis (Dau, 1994; Schreiber, 2004;
Falkowski and Raven, 2007). Therefore, our findings support
the hypothesis that inorganic turbidity may be an important
bottom-up control factor by causing light limitation to primary
production in aquatic ecosystems and reducing chlorophyll-a
concentrations in these systems, especially in treatments with

TABLE 3 | Post-hoc tests by sediment (NB and IB) and treatment. Only statistically
significant (p < 0.05) results are shown.

Sediment Treatment comparison p

NB HT MT <0.01
HT LT <0.01
HC MC <0.01
HC LC <0.01
MC LC <0.01

IB HT MT <0.01
HT LT <0.01
HC MC <0.01
HC LC <0.01
MC LC <0.01

NB means Natural Batata and IB means Impacted Batata. HT: High Turbidity; MT:
Medium Turbidity; LT: Low Turbidity; HC: High Chlorophyll; MC: Medium Chlorophyll;
LC: Low Chlorophyll.

FIGURE 3 | Treatment slopes by sediment concentration. (A), NB results; (B), IB results. Each dot shows the calculated slope of chlorophyll values over time.
Turbidity levels are indicated on the x-axis and chlorophyll-a levels are separated by color. Treatments with significant changes in slope are highlighted (+). NB means
Natural Batata and IB means Impacted Batata.
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high initial chlorophyll-a. One consequence of this process could
be the reduction of carbon transfer to herbivorous zooplankton
and higher trophic levels (Kirk, 1991). For instance, cladocerans
in turbid water can be strongly affected because most are filter-
feeders (Hart, 1988; Kirk, and Gilbert, 1990).

Studies on natural systems impacted by bauxite tailings
have reported lower primary and secondary production (Cole
et al., 1992; Grobbelaar, 1992; Cuker, 1993), along with
reductions in diversity, density, or biomass of
phytoplankton in impacted areas (Huszar, 2000). However,

communities can change in composition to groups that are
better adapted to the new conditions. In our experiment, it is
also likely that the plankton organisms that persisted might
have adapted to low light conditions by developing
compensatory mechanisms. Some of the mechanisms may
involve reducing the respiration rate, increasing the
concentration of photosynthetic pigments, and even
changing the proportions of accessory pigments to increase
photon capture, in a process called ontogenetic chromatic
adaption (Müller et al., 2003; Reynolds, 2006; Kirk, 2011).

FIGURE 4 | Differences in algal yield among treatments of the sediments. (A), NB results; (B), IB results. NB means Natural Batata and IB means Impacted Batata.
HT: High Turbidity; MT: Medium Turbidity; LT: Low Turbidity; HC: High Chlorophyll; MC: Medium Chlorophyll; LC: Low Chlorophyll. The gray dotted line shows the mean
yield value for NB (0.41) and for IB (0.49) treatments.

FIGURE 5 |Density (ind/mL) of main phytoplankton groups by sediment and by treatment at the initial time (T1) and final time (TF). (A), NB results; (B), IB results. NB
means Natural Batata and IB means Impacted Batata. HT: High Turbidity; MT: Medium Turbidity; LT: Low Turbidity; HC: High Chlorophyll; MC: Medium Chlorophyll; LC:
Low Chlorophyll.
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4.2 Turbidity Effects on Chlorophyll-a
Pigments and Phytoplankton Composition
Different kinds of particles in suspension can cause different
intensities and compositions of the light spectrum that reaches
microorganisms (Kirk, 2011). As a consequence, the distribution
and dominance of chlorophyll-a and other pigments may be
related to light availability and quality.We hypothesized that high
turbidity would cause a change in phytoplankton composition

toward low-light-adapted algae; however, our results disagreed
with this statement.

Mixotrophy is an algal nutrition mode that includes
photosynthetic and heterotrophic sources. It allows protists
to supplement their needs by absorbing organic substrates,
phagocytizing particulate organic carbon and/or bacteria.
However, energy acquisition from the environment does not
ensure independence from photosynthesis, and light
availability remains important for mixotrophic
phytoplankton survival (Burkholder et al., 2008; Naselli-
Flores and Barone, 2019). The use of organic nutrients
when light is limited allows mixotrophic phytoplankton to
maintain growth, lending an important competitive advantage
over strict phototrophs and heterotrophs (Jones et al., 2009). It
is important, therefore, to distinguish between forms of
organic carbon acquisition performed by mixotrophs, since
to some degree, most phytoplankton can absorb dissolved
carbon through osmotrophy (Naselli-Flores and Barone,
2019). Individuals capable of ingesting particles and
bacterial aggregates are considered phagotrophic and are
normally flagellated. These terms are used here to
distinguish among the most abundant genera in treatments
(Supplementary Figure S2) and the predominant form of
nutrition (Supplementary Table S4).

Phagotrophic algae such as Chrysophyceae can maintain
heterotrophic metabolism under light-limiting conditions, thus
compensating for a loss of photosynthesis (Katechakis et al.,
2005). Chrysophyceae species often increase or even dominate in
turbid systems (Costa et al., 2019). However, in our experiment, no
consistent dominance shift in algal composition occurred between
the initial and final times in treatments, disagreeing with our second
hypothesis. In treatments where the brown group was dominant,
phagotrophic groups such as Euglenophyceae, Crysophyceae, and
Cryptophyceae were present. These organisms are capable of
consuming organic carbon available in the water, facilitating
survival and dominance even under low light (Kruk and Segura,

FIGURE 6 | Percent contribution (%) of main phytoplankton groups by sediment and by treatment at the initial time (T1) and final time (TF). (A), NB results; (B), IB
results. NB means Natural Batata and IB means Impacted Batata. HT: High Turbidity; MT: Medium Turbidity; LT: Low Turbidity; HC: High Chlorophyll; MC: Medium
Chlorophyll; LC: Low Chlorophyll.

TABLE 4 | pH values by sediment type (NB and IB) and treatment type at the
beginning and end of the experiments.

Sediment Treatment pH

Initial Final

NB HTHC 8.97 ± 0.33 8.86 ± 0.31
HTMC 8.46 ± 0.2 8.75 ± 0.3
HTLC 8.24 ± 0.26 8.06 ± 0.27
MTHC 8.27 ± 0.17 8.2 ± 0.2*
MTMC 7.98 ± 0.16 8.13 ± 0.14
MTLC 7.73 ± 0.11 7.55 ± 0.11*
LTHC 7.93 ± 0.12 8.07 ± 0.14
LTMC 7.61 ± 0.1 8.6 ± 0.13*
LTLC 7.45 ± 0.08 7.26 ± 0.08*

IB HTHC 8.17 ± 0.23 7.57 ± 0.18*
HTMC 8.89 ± 0.37 8.8 ± 0.26*
HTLC 8.98 ± 0.32 9.03 ± 0.67
MTHC 7.73 ± 0.09 7.18 ± 0.12
MTMC 8.12 ± 0.14 8.15 ± 0.13*
MTLC 8.25 ± 0.16 7.92 ± 0.13*
LTHC 7.49 ± 0.11 7.57 ± 0.18*
LTMC 7.78 ± 0.08 7.84 ± 0.09*
LTLC 7.87 ± 0.01 7.6 ± 0.12*

Asterisk (*) indicates a significant difference (p < 0.05) between initial and final values.
NB means Natural Batata and IB means Impacted Batata. Treatment acronyms are a
combination of HT: High Turbidity; MT: Medium Turbidity; LT: Low Turbidity; HC: High
Chlorophyll; MC: Medium Chlorophyll; LC: Low Chlorophyll.
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2012; Bortolini et al., 2014; Costa et al., 2019). Shifts to the
dominance of brown algae in turbid environments were reported
in semiarid regions (Costa et al., 2016), with phytoplankton shifting
initially to cyanobacteria dominance and then to brown algae. In our
systems, phytoplankton composition responded to turbidity, with
the maintenance of initially present phagotrophic algae that further
prevailed due to good adaptation to low light conditions.

Most freshwater species of green algae showwide plasticity in their
responses to low light conditions (Karsten et al., 2017). In turbid
systems, chlorophytes can be expected to decrease because they are
sensitive to high turbidity (Reynolds et al., 2002). In our system,
however, photosynthetic plasticity is a likely reason for the dominance
of Chlorophyceae species in the high-chlorophyll-a treatments. This
held even under high-turbidity conditions (HTLC in IB), where

TABLE 5 | Dissolved organic carbon (DOC) and dissolved nitrogen (DN) by sediment type (NB and IB) and treatment at the beginning and end of the experiments.

Sediment Treatment DOC (mg/L) DN (mg/L)

Initial Final Initial Final

NB HTHC 7.5 ± 0.57 8.8 ± 1.27 0.87 ± 0.07 1.14 ± 0.23
HTMC 6.4 ± 0.15 6.9 ± 0.15 0.76 ± 0.04 0.7 ± 0.01
HTLC 8.3 ± 5.81 6.5 ± 0.19 0.75 ± 0.21 0.66 ± 0.14
MTHC 5.7 ± 0.29 5.9 ± 0.01 0.39 ± 0.12 0.59 ± 0.01
MTMC 5.3 ± 0.19 6.1 ± 0.52 0.36 ± 0.13 0.4 ± 0.03
MTLC 4.6 ± 0.15 5.5 ± 0.13* 0.24 ± 0.05 0.39 ± 0.01*
LTHC 5.4 ± 0.07 5.4 ± 0.28 0.35 ± 0.08 0.48 ± 0.02
LTMC 4.7 ± 0.20 5.4 ± 0.18* 0.19 ± 0.03 0.31 ± 0.08
LTLC 4.0 ± 0.12 4.8 ± 0.14* 0.18 ± 0.06 0.25 ± 0.02

IB HTHC 5.7 ± 0.16 4.9 ± 0.27 0.27 ± 0.08 0.28 ± 0.08
HTMC 4.5 ± 0.05 4.6 ± 0.14 0.24 ± 0.02 0.38 ± 0.08
HTLC 4.5 ± 0.15 5.1 ± 0.09* 0.24 ± 0.04 0.31 ± 0.05
MTHC 5.5 ± 0.05 4.6 ± 0.18 0.27 ± 0.07 0.20 ± 0.08
MTMC 4.2 ± 0.06 4.4 ± 0.14* 0.16 ± 0.04 0.27 ± 0.06
MTLC 4.2 ± 0.03 5.0 ± 0.11* 0.14 ± 0.03 0.23 ± 0.02
LTHC 4.3 ± 0.04 4.5 ± 0.01* 0.21 ± 0.02 0.35 ± 0.06
LTMC 4.5 ± 0.01 4.4 ± 0.07 0.19 ± 0.02 0.26 ± 0.02
LTLC 4.2 ± 0.07 4.7 ± 0.19* 0.2 ± 0.03 0.24 ± 0.06

Asterisk (*) indicates a significant difference (p < 0.05) between initial and final values.
NBmeans Natural Batata and IB means Impacted Batata. Treatments acronyms are a combination of HT: High Turbidity; MT: Medium Turbidity; LT: Low Turbidity; HC: High Chlorophyll;
MC: Medium Chlorophyll; LC: Low Chlorophyll.

TABLE 6 | Total phosphorus (TP) and dissolved phosphorus (DP), by sediment type (NB and IB) at the beginning and end of the experiments.

Sediment Treatment TP (µg/L) DP (µg/L)

Initial Final Initial Final

NB HTHC 177.51 ± 12.5 190.17 ± 30.57 15.74 ± 5.55 13.18 ± 0.92
HTMC 179.22 ± 12.56 137.45 ± 32.1 7.22 ± 0.24 10.08 ± 1.53
HTLC 74.41 ± 13.41 130.4 ± 23.49* 6.61 ± 0.44 8.53 ± 0.11*
MTHC 85.33 ± 6 80.7 ± 3.22 10.29 ± 1.89 16.63 ± 0.65*
MTMC 46.1 ± 1.58 43.45 ± 6.86 6.96 ± 0.84 7.81 ± 0.39
MTLC 54.79 ± 4.28 45.58 ± 14.33 5.06 ± 0.72 6.92 ± 0.26*
LTHC 66.74 ± 3.85 72.14 ± 4.96 9.96 ± 0.9 21.1 ± 2.67*
LTMC 31.85 ± 4.5 30.24 ± 2.03 6.46 ± 0.33 8.49 ± 0.15*
LTLC 24.92 ± 1.25 19.79 ± 0.94* 3.74 ± 0.42 7.81 ± 0.73

IB HTHC 35.47 ± 3.24 21.60 ± 2.70* 6.07 ± 0.31 6.39 ± 0.63
HTMC 134.87 ± 8.77 30.28 ± 2.14* 13.17 ± 1.71 7.05 ± 1.35*
HTLC 94.04 ± 14.85 117.66 ± 39.17 10.83 ± 2.83 14.14 ± 1.92
MTHC 28.74 ± 0.19 28.74 ± 0.19 6.2 ± 0.26 6.60 ± 0.15
MTMC 71.97 ± 11.57 84.8 ± 6.39 8.05 ± 0.81 10.4 ± 1.78
MTLC 57.67 ± 5.78 36.55 ± 19.45 8.35 ± 0.49 10.49 ± 1.83
LTHC 112.89 ± 6.89 35.61 ± 5.69* 10.01 ± 1.88 6.83 ± 0.34
LTMC 58.25 ± 5.84 64.02 ± 4.6 8.21 ± 1.88 10.92 ± 2.73
LTLC 43.78 ± 3.17 44.09 ± 2.94 6.52 ± 0.6 8.58 ± 0.91

Asterisk (*) indicates a significant difference (p < 0.05) between initial and final values.
NB means Natural Batata and IB means Impacted Batata. Treatment acronyms are a combination of HT: High Turbidity; MT: Medium Turbidity; LT: Low Turbidity; HC: High Chlorophyll;
MC: Medium Chlorophyll; LC: Low Chlorophyll.
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phagotrophs such as Chrysophyceae were also present, thus
maintaining most of the photosynthetic activity. Cyanobacteria
species occurred in almost all treatments, perhaps because of the
presence of a favorable light spectrum for this group (Luimstra et al.,
2020), i.e., the blue band (430 nm). Cyanobacteria can be especially
dominant under nitrogen-limiting conditions because they can
perform N2 fixation (Reynolds, 2006). In general, Cyanobacteria
species are S strategists and perform well in nitrogen-limited
environments (Wang et al., 2020). The Nutrient-Load hypothesis
proposed by Brauer et al. (2012) states that Cyanobacteria species are
better competitors in light and/or nitrogen-limited environments, so
light availability and the nutrient ratio in our systems could have been
favorable for Cyanobacteria to establish, since this group can grow
both in low C:P (Penha, 2015) and low N:P (Schindler, 1975; Smith,
1983) ratios, as in our systems. Also, picocyanobacteria tend to
increase under high inorganic turbidity (Brasil et al., 2017;
Somogyi et al., 2017). This agrees with the increase in
Cyanobacteria in our experiment since filamentous cyanobacteria
were found at the end of the experiment, indicating an adaption to
low light (Kirk, 2011). In our treatments, Leptolyngbya and
Chroococcus were the most numerous species; they are considered
good competitors and able to dominate in shallow and turbid
environments (Scheffer et al., 1997).

4.3 Effects of Sediment Type
Even though the sediments used in our experiments came from the
same lake (Lake Batata), they had different chemical compositions
and physical properties, causing different turbidity effects, as shown
elsewhere (Esteves et al., 1990; Roland et al., 1997). Roland andEsteves
(1998) reported that particles from natural-area sediments in Lake
Batata usually settle faster and more easily than the light bauxite-
tailing particles (Roland and Esteves, 1998). Thus, the effect of bauxite
tailings on chlorophyll-a and to some extent on photosynthesis can

last longer. We hypothesized that inorganic turbidity containing
bauxite tailings would generate stronger negative effects on
chlorophyll-a levels, and our hypothesis was confirmed. The effect
ofNB sediment on chlorophyll-a wasmilder sinceNB sediment led to
higher chlorophyll-a values (6.39% higher than IB) but low yield,
indicating more difficult conditions for these communities to
photosynthesize. NB sediment favored Crysophyceae and
Euglenophyceae, which have a lower requirement for light
irradiance because they can compensate through mixotrophy
(Flynn et al., 2013; Mitra et al., 2016). The most likely explanation
is that the NB sediment had a shading effect, allowing algae to persist
but at a higher metabolic cost.

Themine-tailing sediments led to lower slopes in IB, indicating the
same negative effect seen in in-situ measurements, where lower
primary production in the impacted area has been reported
(Roland, 1995; Roland et al., 2002; Guenther and Bozelli, 2004).
Similar results were found in another system impacted by gold-mine
tailings (Moreira et al., 2016). Nowadays, the negative effects of
bauxite tailings in Lake Batata are not the same as at the
beginning of the monitoring program 30 years ago. In the dry
period, when the water is more turbid, phytoplankton reaches
high densities because nutrient availability has increased with the
recovery of the lake (Bozelli et al., 2015). In turbid environments with
low phytoplankton primary production related to tailings, the
principal effect on the trophic web is loss of energy transfer
through trophic levels, indirectly affecting zooplankton (Bozelli and
Esteves, 1995) and fish (Shoup and Wahl, 2009). In our tailings
turbidity treatments, chlorophyll-a, and to some extent primary
production, were maintained, mainly due to the success of
phagotrophic Chlorophyceae and Chrysophyceae, groups adapted
to low light conditions (Reynolds, 2006). Despite the lower
chlorophyll-a values, IB sediments allowed higher yields, even
higher than 0.83 in some treatments, a level at which algae are not

TABLE 7 | C:N, N:P and C:P ratios (in mol/L) by sediment type and treatment at the beginning and end of the experiments.

Sediment Treatment Ratio C:N (mol/L) Ratio N:P (mol/L) Ratio C:P (mol/L)

Initial Final Initial Final Initial Final

BN HTHC 20.2 ± 1.0 22.9 ± 0.4 6.1 ± 3.4 9.2 ± 1.3 121.1 ± 40.8 167.6 ± 18.7
HTMC 19.9 ± 0.6 23.8 ± 5.1 11.2 ± 0.8 7.6 ± 1.3 223.4 ± 9.6 173.0 ± 28.7
HTLC 28.5 ± 22.4 23.37 ± 0.2 12.3 ± 4.3 8.2 ± 1.7 307.2 ± 200.9 190.5 ± 7.2
MTHC 34.4 ± 21.7 36.0 ± 4.8 4.4 ± 0.3 3.8 ± 0.2 142.7 ± 32.0 89.3 ± 3.6
MTMC 37.1 ± 11.5 32.5 ± 1.3 5.7 ± 2.4 5.5 ± 0.2 192.4 ± 21.2 196.9 ± 23.6
MTLC 45.7 ± 8.0 26.3 ± 2.3 5.1 ± 0.9 6.1 ± 0.3 227.8 ± 27.1 198.4 ± 6.9
LTHC 56.7 ± 6.4 41.7 ± 8.8 3.7 ± 0.8 2.5 ± 0.3 137.2 ± 14.5 64.3 ± 6.8
LTMC 56.1 ± 19.5 46.1 ± 6.0 3.2 ± 0.5 4.0 ± 1.1 181.0 ± 13.2 158.8 ± 8.1
LTLC 18.36 ± 1.7 4.8 ± 0.14 4.5 ± 2.4 3.4 ± 0.6 263.9 ± 35.5 155.2 ± 11.6

BI HTHC 50.4 ± 14.8 43.1 ± 11.2 5.0 ± 1.6 4.8 ± 1.6 253.0 ± 12.5 193.4 ± 21.6
HTMC 44.3 ± 3.5 28.9 ± 5.1 2.0 ± 0.4 5.9 ± 1.2 86.5 ± 11.1 168.4 ± 27.9
HTLC 45.3 ± 7.9 38.7 ± 5.4 2.4 ± 0.6 2.4 ± 0.4 108.4 ± 22.8 91.2 ± 12.7
MTHC 50.6 ± 16.4 59.1 ± 19.5 4.7 ± 1.4 3.2 ± 1.2 222.6 ± 7.9 174.6 ± 4.3
MTMC 61.5 ± 12.0 39.8 ± 8.8 2.2 ± 0.3 2.8 ± 0.9 131.0 ± 11.5 107.7 ± 13.8
MTLC 72.9 ± 18.9 51.9 ± 3.7 1.8 ± 0.5 2.4 ± 0.6 125.0 ± 6.7 121.4 ± 21.4
LTHC 48.6 ± 4.8 30.9 ± 5.9 2.3 ± 0.5 5.5 ± 1.2 108.8 ± 17.9 166.7 ± 8.1
LTMC 55.5 ± 5.3 39.4 ± 2.6 2.6 ± 0.6 2.7 ± 0.8 141.1 ± 29.9 105.5 ± 24.7
LTLC 48.9 ± 6.4 47.5 ± 11.3 3.3 ± 0.3 3.0 ± 0.8 161.7 ± 12.4 138.8 ± 8.7

NB means Natural Batata and IB means Impacted Batata.
Treatment acronyms are a combination of HT: High Turbidity; MT: Medium Turbidity; LT: Low Turbidity; HC: High Chlorophyll; MC: Medium Chlorophyll; LC: Low Chlorophyll.
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considered to be under light stress. This may be due to the physical
properties of bauxite tailings, which despite reducing light input, may
have allowed favorable wavelength dispersion. This requires further
investigation beyond the scope of our study.

5 CONCLUSION

Our results showed that the turbidity effect was stronger in treatments
with higher sediment concentrations. However, high turbidity did not
necessarily lead to a linear reduction in chlorophyll-a concentrations,
and photosynthesis was maintained even with the turbidity shading
effect in treatments with both sediment types (NB and IB). In NB the
conditions for photosynthesis were better since treatments with this
sediment type had higher chlorophyll-a values than IB, and also
higher contributions of brown algae (Euglenophyceae, Dinophyceae,
Bacillariophyceae). In IB, the phytoplankton was composedmainly of
Chrysophiceae, Cryptophyceae, Chlorophyceae, and Cyanobacteria.
Accordingly, the IB sediments affected the phytoplankton
composition and chlorophyll-a more than the NB sediments.

Although the effect of turbidity on the metabolism of freshwater
phytoplankton is widely known, our study advances the
comprehension of how turbidity caused by mine tailings affects
photosynthesis and phytoplankton composition, which may support
recovery protocols and environmental policies for aquatic ecosystems.
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