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There have been a variety of attempts to model and quantify the amount of land-based
waste entering the world’s oceans, most of which rely heavily on global estimates of
population density as the key driving factor. Using empirical data collected in seven
different countries/territories (China, Kenya, South Africa, South Korea, Sri Lanka, Taiwan
and Vietnam), we assessed a variety of different factors that may drive plastic leakage to
the environment. These factors included both globally available GIS data as well as
observations made at a site level. While the driving factors that appear in the best
models varied from country to country, it is clear from our analyses that population
density is not the best predictor of plastic leakage to the environment. Factors such as land
use, infrastructure and socio-economics, as well as local site-level variables (e.g., visible
humans, vegetation height, site type) were more strongly correlated with plastic in the
environment than was population density. This work highlights the importance of gathering
empirical data and establishing regular monitoring programs not only to form accurate
estimates of land-based waste entering the ocean, but also to be able to evaluate the
effectiveness of land-based interventions.
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INTRODUCTION

The impacts from marine plastic pollution to wildlife, human health, and the economy are well
documented (Gall and Thompson, 2015; Beaumont et al., 2019) and are likely to continue to increase as
global plastic production rises (Geyer et al., 2017). Because an estimated 80% of marine plastic
pollution has land-based origins (Derraik, 2002), the most efficient way to address the problem is by
stopping plastic waste leakage from land to the sea. Plastics typically enter the ocean from land as
mismanaged waste transported via rivers or wind (Kershaw and Rochman, 2015), though local human
deposition in coastal areas also contributes (Hardesty et al., 2016). While debris on land is found
ubiquitously and has been reported from the most remote to themost densely populated corners of the
earth, it is not equally distributed (Barnes et al., 2009; Martins et al., 2020; Napper et al., 2020).

Many studies have investigated debris at local or regional scales (e.g., Wessel et al., 2019;
Miladinova et al., 2020; Vidyasakar et al., 2020) These studies are predominately carried out along the
coastal margin (Serra-Gonçalves et al., 2019) though studies along rivers and at river outlets are
becoming more common (e.g., Battulga et al., 2019; Cordova and Nurhati, 2019; Van Calcar and Van
Emmerik, 2019). However, these empirical studies are, by necessity, restricted to a limited area, so in
order to understand debris distribution on a broader scale, modeling and predictions are critical. For
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the most part, these studies use globally available data sources as
proxies for the amount of mismanaged waste entering the
environment (but see Lebreton et al., 2017).

Jambeck and colleagues used global data sets to predict
mismanaged waste and calculated that an estimated 4.8–12.7
million MT of plastic entered the ocean in 2010 (2015). They
hypothesized that population size and the quality of waste
management systems in a country were most important
predictors of the amount of debris lost to the marine
environment. Lebreton et al. (2017) similarly relied
predominately on global estimates of population density and
mismanaged plastic waste, but additionally factored in runoff to
estimated that between 1.15 and 2.41 MT of plastic is transported to
the ocean via rivers. This research also relied on published empirical
studies to calibrate themodels. Models of floating plastic distribution
in the ocean used coastal population density to seed the models (e.g.,
Van Sebille et al., 2012; Van Sebille, 2014), with (in instances) the
addition of impervious surface area (Lebreton et al., 2012) and
mismanaged waste (Van Sebille et al., 2015).

More recent studies have acknowledged the fact that
mismanaged waste varies not only with population density,
but also with factors such as socio-economic status (Borrelle
et al., 2020; Lau et al., 2020). Gross Domestic Product (GDP) is
positively correlated with reported per capita waste generation,
but negatively correlated with the proportion of mismanaged
waste, and these relationships can vary between rural and urban
areas (Lebreton and Andrady, 2019).

If we are to make accurate predictions, it is critical to test the
foundational assumptions that are being made when modeling
waste leakage. To date, studies have predominately used global
population density estimates without the addition of empirical
data, and many of these studies have presumed that population
density is an adequate proxy for debris leakage (e.g., Van Sebille
et al., 2012). To test these assumptions, we gathered empirical
data on debris in the environment in 7 countries/territories
(hereafter referred to as countries for simplicity): mainland
China, Kenya, South Africa, South Korea, Sri Lanka, Taiwan,
and Vietnam. We asked three key questions:

1) What drives the distribution of debris in inland areas?
2) How similar (or different) are these drivers among the

seven countries studied?

3) Do models based on population density accurately
represent debris observed in the local environment?

To address these questions we assessed a number of potential
drivers, including land use, survey type, infrastructure,
environmental and socio-economic factors, local population
density, and site level information such as steepness and
vegetation height (Table 1).

MATERIALS AND METHODS

What Drives the Distribution of Debris in
Inland Areas?
This research was undertaken as part of the CSIRO global plastics
losses project (https://research.csiro.au/marinedebris/projects/
globalplasticsleakageproject/), which is aimed at understanding
the amount of plastic that is lost from land to the marine
environment. The goal is to use empirical data to quantify and
better understand debris leakage rates globally, based on locally collected
data across an array of countries. We selected countries based on a
combination of factors, including the country’s ranking in estimated
mismanaged waste generated annually (per Jambeck et al., 2015).
Between 2017–2019 we worked with local partners in each country
to select an urban area within a major watershed. The urban areas
selected were Shanghai, China; Mombasa, Kenya; Capetown, South
Africa; Yeongsan, South Korea; Negombo/Colombo, Sri Lanka;
Kaohsiung, Taiwan, and Haiphong, Vietnam. Inland survey sites
were then chosen within a 200 km radius of the central point (with
the exceptionof Shanghai,China,where siteswere chosenwithin100 km
due to excessively long travel timebetween sites). Siteswere selectedusing
a stratified random sampling design, taking into account a variety of
environmental and socio-economic factors [population density, distance
to infrastructure (roads and rail), distance to coast and river, proxies for
socio-economic status, and land use]. For each country we pre-selected
approximately 40 inland sites, but due to accessibility constraints and the
variability in capacity of our local partners, the total number of sites
surveyed varied between 23 and 47 (Table 2).

At each site we conducted between 3–6 transects of 25m2,
distributed in proportion to the site uses present within 200m of the
central site point (e.g., walkways, natural vegetation, roadways, etc.).
Transects were usually 12.5m × 2m, except in the case of roadsides,

TABLE 1 | Local (recorded at site or transect level), and global (determined from global GIS layers) covariates investigated in the study.

Local Global

Physical/environmental Steepness of land
Vegetation height
Substrate color
Percent of bare ground
Survey type

Distance to the coast
Distance to the nearest river
Landuse

Population or population proxies Number of people visible Population density within 1 km2

Mean nightlights within 1 km2

Infrastructure Distance to the nearest rail station
Distance to the nearest road

Socio-economic Total value of the built environment (rural, urban, and total)
Land use
Nightlight/population residuals
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where they were 25 m × 1 m to ensure the safety of the participants.
Observers walked the length of the transect, and categorized any
anthropogenic debris within the transect that could be seen from
standing height. Debris was placed into one of 84 categories, labeled
as either fragment or whole (for a complete methodology, see
Schuyler et al., 2018b). At each transect, data were also collected
on local conditions that could influence the amount of debris found,
including the number of people visible at the site, the steepness of
the land, the height of the vegetation, substrate color (dark/light),
and percent of bare ground in the transect. Both themethods for the
survey as well as the local variables to consider were selected based
on previous published studies conducted at large scales (Hardesty
et al., 2017a; Hardesty et al., 2017c).

Because one of the goals of this project is to estimate the amount
of debris leakage on a global scale, we identified covariates for
which global datasets existed, that might influence debris levels on a
larger scale. In our previous work, land use, infrastructure, and
socio-economic factors were among the most important
influencers of debris levels (Hardesty et al., 2016). We identified
the following environmental and socio-economic variables at each
site: population density within 1km2, total value of the built
environment (rural, urban, and total) identified from the United
Nations Global Exposure dataset (GAR15) (UNISDR, 2015),
distance to the coast, distance to the nearest rail line, road, and
river, mean nightlights within 1 km2, and land use. We wanted to
incorporate a globally available, socio-economic GIS layer at the
finest resolution possible in our analysis, so we explored two
potential options. While most socio-economic indicators are
national, the GAR15 dataset, developed for assessing economic
risk from disasters, is one of the only socio-economic datasets with
near-global coverage and sub-national resolution. GAR-15 includes
several indicators, including the value of the urban environment,
the value of the rural environment, and the total value of assets in a
given area, all of which we included in our analyses. Our second
option was to use the relationship between lighting at night and
population density. In general, the higher the population density,
the more nightlights you would expect in a given area. However, in
areas with higher income or resources, we would assume a
disproportionally higher level of lights than would be predicted
by population density alone. Therefore, we used the residual
deviation around the linear relationship of nightlights regressed
on population density as a second proxy for socio-economic status.

We combined the data from all seven and used model selection
on generalized additive models (GAMs) with a Tweedie
distribution (mgcv package) in the R statistical environment to
find the models with the lowest AIC score (Burnham and

Anderson, 2002; Wood, 2011; Bartoń, 2018; R Core Team,
2018). We chose GAMs so that we could experiment with
smooths of different factors, though ultimately we settled on
parametric terms to be able to predict debris outside of our
study area. We used a Tweedie distribution because debris is
measured as count data, and the distribution gives the flexibility
for the model to range between gamma to Poisson. Because there
were a number of factors that could potentially influence the debris
in the environment, we used dredge (MuMin package) to
determine which factors explained the greatest variability in the
data. To avoid collinearity, we restricted the analysis to ensure that
no two variables with a correlation factor greater than 0.7 could be
included in the same model. We also restricted dredge from
including both nightlights and population density in the same
model, as nightlights, to some extent, could act as a proxy for
population.

The dredge process yielded a range of models which were
within 2 AICc points of the best model. Because these models are
within the 95% confidence set around the best model in terms of
AIC model selection, we used model averaging techniques
(Table 3). To determine which factors best explained the
variability in the averaged model, we calculated the effect size
by multiplying the median value of the factor (assuming 1 for
categorical variables), by the coefficient from the model (Figures
1, 2). We also calculated the variable importance score, which
represents the proportion of the total models in which each term
appears. For example, if land use appeared in 8 out of the 10
models within 2 AIC points, it would receive a variable
importance score of 0.8. The variable importance indicates
how consistently a given term is included in the models (Table 4).

How Similar (or Different) are the Drivers
Between Countries?
For each country individually, we used the same analyses as above
to identify the covariates that best described the variability in
debris, with the same restrictions as above (Figure 2).

Do Models Based on Population Density
Accurately Predict Debris?
To determine whether population density is an accurate proxy for
debris, we ran a GAM using total debris counts as the response
variable, and population density (within 1 km2) as the predictor
variable. We compared the deviance explained and AIC with the
null model, and with our full model (Table 3).

TABLE 2 | Range, mean, and median items per meter squared found on inland surveys in each country/territory.

Country/territory (urban center) # Transects (survey sites) in total Range debris items/m2 Mean debris items/m2 Median debris items/m2

Mainland China (Shanghai) 84 (28) 0–52.4 1.51 0.36
Kenya (Mombasa) 159 (44) 0–10.9 0.59 0.04
South Korea (Yeongsan) 107 (34) 0–3.84 0.40 0.12
South Africa (Capetown) 74 (23) 0–30.4 2.05 0.46
Sri Lanka (Negombo) 118 (36) 0––40.0 1.18 0.14
Taiwan (Kaohsiung) 142 (47) 0–16.0 1.33 0.58
Vietnam (Haiphong) 80 (26) 0–10.7 1.21 0.54
ALL COUNTRIES 764 (238) 0–52.4 1.10 0.24
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RESULTS

The total number of items on each transect varied from 0–242
items. South Korea had the overall lowest average debris density
(0.4 items/m2), while South Africa, had the highest (2.05 items/
m2) based on inland surveys (Table 2).

What Drives the Distribution of Debris in
Inland Areas?
For the combinedmodels, significant terms included visible humans
(positively correlated), landuse (forested and dense settlements
lower than urban settlements), survey type (disused significantly
greater than agriculture), distance to river (positively correlated), rail

TABLE 3 | Description of models used in the model averaging (all within 2 AIC values). Lowest AIC indicates the lowest AIC value for the models within each of the countries.
Models in the model averaging are all within 2 AIC points of the lowest. Null AIC is the AIC of a regression with no covariates included. Note that the AIC values cannot be
compared between countries, because they are using different data sets. AIC values can be compared between all countries, and all countries with population density only
because they are using the same data set.

Country/territory Number of models
in model average

Lowest AIC Null AIC Range dev. Expl.

China 12 627.4 699.6 66.0–72.2
South Korea 65 1417 1457 23.4–30.4
Taiwan 34 1279.4 1300.2 11.7–15.4
Vietnam 16 675 723 44.3–55.5
Sri Lanka 12 791.32 883.25 56.3–58.5
South Africa 35 681.06 708.66 29.65–41.54
Kenya 10 905.78 979.69 45.4–50.8
All countries, best model 23 4141.6 8799.83 35.9–36.9
All countries population density only 1 8792.33 8799.83 1.24

FIGURE 1 | Effect size plots for all countries together. Color represents the p-value significance level, and the lines are the standard error for each term. Triangles denote
a positive coefficient for a given factor, whereas circles denote a negative coefficient. The effect size is calculated as the median value of the factor times its coefficient.
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and coast (negatively correlated), and country (Figure 1). All of
these terms appeared in all models, with a resulting effect size of 1.0
(Table 4). Population/nightlight residuals appeared in 90% of all
models, while the other terms appeared in fewer than half of the
models. It is worth nothing though, that either nightlights or
population density did appear in 62% of the models.

How Similar (or Different) are the Drivers
Between Countries?
Drivers were not completely consistent among countries. The
best models for each country individually varied both in the terms
included, as well as the directions of those terms (e.g., whether

they were positively or negatively correlated with observed debris
densities) (Figure 2; Table 4). Two terms appeared in all models:
visible humans (positive correlation in all countries except Sri
Lanka), and distance to the coast (negative correlation in all
countries except mainland China and Kenya). A further six terms
occurred in all but one country: slope (all but Vietnam), distance
to the nearest rail (all but mainland China), light/population
residuals (all but Kenya), total built value of the rural
environment (all but Sri Lanka), mean nightlights (all but
Taiwan) and distance to the nearest road (all but Kenya).

For individual country models, significant terms included
visible humans (South Africa, Kenya), slope of land (South

FIGURE 2 | Effect size plots for China, Kenya, South Africa, South Korea, Sri Lanka, Taiwan, and Vietnam. Color represents the p-value significance level, and the
lines are the standard error for each term. Triangles denote a positive coefficient for a given factor, whereas circles denote a negative coefficient. The effect size is
calculated as the median value of the factor times its coefficient.
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Korea), vegetation height (Kenya), substrate color (South Africa),
distance to the coast (Sri Lanka, Kenya), distance to the nearest
rail (Vietnam, Sri Lanka), distance to the nearest road (Sri Lanka),
total built value (rural) (Vietnam), landuse (Sri Lanka, Kenya),
and distance to the nearest river (Vietnam) (Figure 1).

Variable importance scores were similarly diverse, with different
terms appearing more frequently in different countries (Table 4).

Do Models Based on Population Density
Accurately Predict Debris?
The relationship between population density alone and total
debris was significant and positive (p < 0.001). The deviance
explained was 1.25%. The deviance explained of the 23 full
models contributing to the model averaging was between
35.9–36.9.

DISCUSSION

To date, most studies of plastic leakage rates consist either
of surveys conducted predominately at coastal or beach
locations in a single region or country (e.g., Hardesty et al.,
2017a; Schöneich-Argent et al., 2019), or rely on globally
available proxy data to model predicted debris on a global or
regional scale, without incorporating empirical data (e.g.,
Jambeck et al., 2015; Lebreton and Andrady, 2019; Borrelle
et al., 2020; Lau et al., 2020). Here we combine the two
approaches, using survey data to test the utility of a variety
of local and global proxy layers.

What Drives the Distribution of Debris in
Inland Areas?
Studies of debris on the open ocean and along coastlines have found
that physical factors such as currents, waves, wind and tides have an
important effect on the distribution and accumulation of debris
(Olivelli et al., 2020; Van Sebille et al., 2020), but the drivers of inland
debris distribution are less well understood.

When the data were pooled, land use (a globally measured
covariate) survey type (a locally determined covariate), and
Country, explained a significant amount of the variability in
the data. The significant influence of survey type was driven in
large part by the elevated levels of litter found in disused areas.
Both land use and survey type were also found to be significant in
studies conducted in both the United States and Australia
(Hardesty et al., 2017b; Hardesty et al., 2017c). Other factors
that contributed to the patterns observed included distance to
coast, distance to railroad station, and distance to river. However,
their effect sizes were considerably lower than land use, survey
type, and country.

Previous work has shown that socio-economic status is one of the
most influential factors in predicting debris, with higher socio-
economic indicators associated with reduced debris loads
(Schuyler et al., 2018a). This is likely due to a combination of
influences including income, education, infrastructure, access to
social structures, and behavioral norms (Ajzen, 1991). For the
combined seven country model, three socio-economic indicators
appeared among the best models; light/population residuals, the
built value (urban), and the built value (all) (Figure 1). While none
were statistically significant, they all contributed to explaining the
variability in the data (and were thus included in the best models).

TABLE 4 | Variable importance scores. Blank cells indicate that the driver was not present in the top models. Importance scores are calculated as the proportion of the
models within the model averaging in which the driver appears.

Driver All countries Mainland
China

Kenya South
Africa

South
Korea

Sri Lanka Taiwan Vietnam

Physical/environmental
Steepness 0.05 0.17 0.02 1.00 0.12 0.07
Vegetation height 1.00 0.02 0.23 0.88 0.67
% bare ground on transect 0.14 0.02 0.20 0.03 0.60
Substrate color 0.16 1.00 0.98 0.04
Distance to coast 1.00 0.89 1.00 0.22 0.91 1.00 0.03 0.07
Distance to river 1.00 0.83 0.04 0.96 0.04 1.00
Land use 1.00 0.29 0.91 0.37 1.00 1.00
Survey type 1.00 1.00

Population/population
proxies
Visible humans 1.00 0.04 1.00 0.98 0.90 0.06 0.29 0.18
Population density 0.32 0.31 0.77 0.06 0.11 0.10
Mean nightlights 0.30 0.65 0.32 0.18 0.21 0.09 0.38

Infrastructure
Distance to rail 1.00 0.91 0.02 0.12 1.00 0.97 1.00
Distance to road 0.45 0.23 0.10 0.14 1.00 0.21 0.14

Socioeconomic
Pop/nightlight residuals 0.90 0.24 0.16 0.24 0.06 0.16 0.44
Tot CR 0.12 0.25 0.20 0.02 0.81 1.00
Tot val 0.22 0.14 0.24 0.28
Tot CU 0.40 0.21 0.43 0.20 0.19 0.07

Country 1.00 NA NA NA NA NA NA NA

Frontiers in Environmental Science | www.frontiersin.org May 2021 | Volume 9 | Article 5834546

Schuyler et al. Factors Driving Environmental Debris Distribution

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


The values for all three indicators trended toward a negative
relationship with debris density, indicating that as an area was
higher in socio-economic status, the debris loads were lower/
reduced. This finding reflects the negative correlation between
GDP and per capita mismanaged waste that has been reported in
other work (Lebreton and Andrady, 2019). While richer countries
tend to generate more waste per capita, they also tend to have better
waste management systems, which ultimately results in a lower
proportion of mismanaged waste. Here we showed that the trend
reported on a county-wide scale, also holds on a sub-national level.

How Similar (or Different) are the Drivers
Between Countries?
Overall, the individual models were quite good at explaining the
variability in the debris data, with deviance explained values of up
to 72% (Table 3). These models generally incorporated factors
measured at the site level, such as local land use, vegetation
height, survey type, and substrate color.

We found high heterogeneity between countries, both in terms
of the magnitude of debris, and the most relevant drivers for the
patterns observed. In fact, in the combined model, country is one
of the strongest predictors of the total amount of debris reported.
The differences observed between the countries remained present
even after accounting for the driving factors measured, and may
be a result of other underlying factors including political/social
differences, legislation, and geography. This reveals another
challenge in predicting debris leakage rates on a global level.
Each country demonstrated different baseline quantities of
debris, with substantial variability observed among survey
sites, both within and among countries. This demonstrates the
importance of establishing baselines and monitoring programs
on a local and regional scale, rather than relying solely on large-
scale, global model-based predictions.

Do Models Based on Population Density
Accurately Predict Debris?
One goal of both land and ocean-based debris research is to
understand and quantify the distribution of debris, which can
inform efforts to both prevent waste leaking and to remove litter
than has already arrived in the environment. Because it is
impossible to sample ubiquitously, researchers rely on globally
available data sets to provide proxy measures for the amount of
waste or leakage in a given area. Loss rates are often based on
population density (e.g., Van Sebille et al., 2012), and,
increasingly, the proportion of mismanaged waste (e.g.,
Lebreton and Andrady, 2019) though occasionally factors such
as runoff and artificial barriers may be incorporated into
estimates (e.g., Lebreton et al., 2017). These predictions
assume that debris leakage rates are proportional to
population density, though there is little empirical evidence to
support this hypothesis. In the United States, research showed
that while land-based debris did increase with population where
population densities are low, this relationship did not hold at
higher population densities (Ribic et al., 2010). Cities, even in less
developed countries, can leverage economies of scale, and may

have better systems for managing waste. Thus, the relationship
between population and mismanaged waste is not necessarily
linear.

In our modeling of empirical data from seven different
countries, neither local population density nor one proxy for
population (nightlights) were among the most critical factors
to explain the variability in the data. Many of the top models
did not include either term, and their effect was never
significant, whether looking at individual countries or at all
countries combined. Moreover, population density was
negatively correlated with debris in two of the five
individual models in which it appears, and nightlights were
negatively correlated with debris density in four of the six
countries. In our model regressing population density alone
against the total amount of debris across all survey sites, while
the relationship was significant and positive, the deviance
explained was only 1.25% of the pattern observed.

The distribution of sampling sites in individual countries is
quite wide ranging, both geographically as well across the suite
of social and environmental factors, land use and human
activities (e.g., incorporating urban and rural sites). If
population density is not a critical factor at this scale, it is
unlikely that the pattern will be reversed at international or
continental scales.

The results of the this work indicate that it is critical to develop a
more nuanced approach for estimating debris levels, if we are to
develop accurate predictive models. Debris densities are extremely
heterogeneous, and vary depending on a range of factors, including
broad scale characteristics such as land use, finer scale details such as
survey type, socio-economic patterns, existing infrastructure and
environmental factors. The underlying drivers of debris distribution
are complex, and difficult to capture accurately. What is clear,
though, is that in all of the models, population density alone did
not adequately explain the observed debris distribution. Relying on
population density as a primary (or sole!) proxy, as has been done
previously, will lead to an inaccurate characterization of debris
distributions, and potentially to flawed policy responses based
accordingly.

We ranked the seven countries surveyed based on empirical
data collected by our teams according to the total debris load. We
compared these counts to the per capita rank presented in Jambeck
et al. (2015). Our ranking is based on the country coefficient in the
model with all countries, and therefore considers population and
the other debris drivers in the model. We found very little
similarity in rank between our empirical estimates and those
reported by Jambeck et al. (2015) (Table 5). This is likely due
to a combination of factors. First, our analyses included local
variables, as well as additional global scale variables that the
Jambeck paper did not incorporate. Second, our analyses were
based on empirical data. Finally, our surveys took place at a city or
watershed scale rather than at a country level. The differences
between the relative rankings only serves to highlight the
importance of accurate models based on empirical data, so that
limited resources for addressing the problems of litter and
mismanaged waste can be most effectively deployed.

Many studies that empirically quantify debris leakage are
conducted along beaches and coastlines (Serra-Gonçalves
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et al., 2019). However, it is of critical importance to also measure
inland debris if we are to fully understand loss rates to the
environment. Debris from inland areas is transported to the
sea via rivers, along roadways and by wind transport.
Measuring debris in non-coastal areas helps to contextualize
the factors that influence where debris originates in the
environment, before it moves along various pathways,
potentially arriving in the coastal or marine environment.
Because of the high heterogeneity of inland areas, and the
idiosyncratic nature of waste generation, it is crucial to design
sampling that takes into account the inherent variability not only
in the physical landscape, but also in the suite of factors that
influence debris distribution.

Summary/Conclusion
Efforts to remove or prevent debris from entering the
environment would be facilitated by a better understanding of
the variability in its distribution, and the factors that affect debris
density in the environment. The models presented here can also
be used to derive large scale predictions of debris hotspots based
not only on global data layers, but also on empirical data. These
predictions could inform local and regional waste management
policies and decisions on waste infrastructure. The results of this

study demonstrate that the environmental context (e.g., landuse,
site type) is critical in understanding and predicting the amount
of debris in the environment. Importantly, population density is
not the driving force behind debris distribution, and there is
significant variability in the drivers of inland debris across
countries. It is of critical importance to establish monitoring
programs to understand the baseline levels of debris, not only in
order to have accurate estimates of ocean debris inputs, but also
so that the effectiveness of land-based interventions can be
assessed.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made
available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

QS, BH, and CW developed the methods. All authors contributed
to data collection and logistics. QS and CW developed the
analytical techniques. TL prepared GIS covariates. QS wrote
the manuscript, with editing by BH, CW, RR, and JH.

FUNDING

This work has been funded by CSIRO Oceans and Atmosphere,
Oak Family Foundation, Schmidt Marine Technology, the PM
Angell Foundation and Earthwatch Institute Australia.

ACKNOWLEDGMENTS

We would like to extend our deepest gratitude to the tireless
efforts of volunteers, students, and staff members who helped to
collect data in the field. Also thank you to the two reviewers for
their constructive comments.

REFERENCES

Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behav. Hum.
Decis. Process. 50, 179–211. doi:10.1016/0749-5978(91)90020-t

Barnes, D. K. A., Galgani, F., Thompson, R. C., and Barlaz, M. (2009).
Accumulation and Fragmentation of Plastic Debris in Global Environments.
Phil. Trans. R. Soc. B 364, 1985–1998. doi:10.1098/rstb.2008.0205
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