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In Galicia (NW Spain), kiwifruit (Actinidia chinensis var. deliciosa) is intensively produced
using conventional practices (CONV) that ensure high yields, despite the fact that the
excessive use of agrochemical inputs leads to soil organic matter depletion, increased
water pollution and biodiversity losses. Although more sustainable practices have been
implemented in the area (i.e., integrated, INT and organic farming, ORG), it remains
unclear how these practices will affect C dynamics mediated by soil biota. Therefore,
in this study, we investigated the effects of agricultural management practices and
earthworm additions (macrofauna) on soil C losses [CO2 emissions and dissolved
organic carbon (DOC)] in relation to the amount of bioavailable soil carbon [salt
extractable organic carbon (SEOC) and microbial carbon indicators (microbial biomass
or Cmic and the Cmic/Corg ratio)]. The experimental design consisted of a 105-
days laboratory incubation of intact soil cores collected in the field (40 from each
agroecosystem) and earthworm additions over ambient (2.43 ± 0.05 g/earthworm) to
half of the experimental units (+EW), with the remaining half acting as controls. Our
results showed that earthworm additions led to significant increases in their abundance
in all three management treatments, but with the ORG soils sustaining the greatest
population sizes. However, no significant effect on soil C transformations were observed
in response to these earthworm increases, and instead, legacy agricultural practices
overrode macrofauna control on C turnover. Consequently, more C was lost from the
CONV treatments than from the ORG ones (on average, 60% more CO2 and 53%
more DOC) as a result of CONV practices promoting microbial-mediated processes and
hence, amplifying C mineralization versus C stabilization. Furthermore, C release from
the INT soils was intermediate between the other two treatments, which suggests that
more sustainable farming practices could help in achieving climate change mitigation.
These findings provide clear evidence of how local adaptation (at farm level) toward a
more environmentally friendly land management could represent a promising strategy to
increase soil C sequestration. Future agricultural approaches would need to incorporate
the potential benefits from other agroecosystem services beyond those derived from
productivity and market values.
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INTRODUCTION

Sustainable agricultural practices, such as integrated (INT) and
organic (ORG) farming have been increasingly implemented
worldwide to enhance soil organic matter retention (Diacono and
Montemurro, 2009), aggregate stability (Bai et al., 2018) and soil
biodiversity (Ponge et al., 2013; Henneron et al., 2015) as well as
to reduce the negative environmental effects of the more intensive
conventional (CONV) agriculture, such as soil erosion (Ordóñez
et al., 2007; Verhulst et al., 2010), nutrient losses by leaching
or run-off (Riley et al., 2001), greenhouse emissions (Bos et al.,
2014), as well as to prevent soil acidification (Otero et al., 2008).

In Spain, the cultivation of the most commercialized cultivar
(Hayward) of the green-fleshed kiwifruit (Actinidia chinensis var.
deliciosa) is concentrated in the Galician region (NW Spain)
by accounting for almost 60% of the total national production
(MAPA, 2019) and thus, representing an important income for
rural communities. In this region, kiwifruit is mainly produced
using conventional agriculture (CONV) that is characterized
by the extensive use of agrochemicals, including pesticides,
herbicides, plant growth regulators and mineral fertilizers.
Although the number of ORG orchards have increased in the
region in recent years, farmers are not fully embracing these
sustainable practices due to their lower profitability in terms of
crop yields (Seufert et al., 2012). However, controversy remains
on the yield gap between ORG and CONV crops (Zuoping et al.,
2017; Schrama et al., 2018; Smith et al., 2019), and some of these
studies indicate that, after 10–13 years, yields from ORG farming
could reach similar values to CONV ones through increased
spatial stability of soil abiotic and biotic properties (Schrama
et al., 2018). In addition, farming systems not only need to
produce more food in a more sustainable way, but also to increase
biodiversity and become carbon neutral (European Green Deal:
COM/2019/640 final).

A healthy soil hosts an enormous variety of organisms, far
exceeding those above ground (Orgiazzi et al., 2016). Among the
soil fauna, earthworms (macrofauna) have a positive influence on
soil fertility by improving soil physical and chemical properties
through the acceleration of organic matter decomposition
and nutrient cycling (Bossuyt et al., 2004, 2006; Srinithi and
Brian, 2010). These oligochaetes also indirectly induce the
production of phytohormones and other plant growth regulators
such as enzymes and humic substances (Krishnamoorthy
and Vajranabhaiah, 1986; Noguera et al., 2010). However, in
cultivated soils, earthworm populations are usually less numerous
compared to low disturbed systems, as a result of the negative
effects of agricultural practices on their survival (Curry et al.,
2002; Postma-Blaauw et al., 2010; Nemecek et al., 2011; Lago
et al., 2019). This strong sensitivity to agricultural practices makes
this group of invertebrates a reliable indicator of anthropogenic
perturbations (Pérès et al., 2008; van Eekeren et al., 2008; Postma-
Blaauw et al., 2010). Importantly, intensive agriculture can also
alter the structure of their communities, and those species feeding

at the soil surface, such as epigeic (which build their galleries in
the litter) and anecic earthworms (which live in vertical galleries
and ascend to the surface to feed, defecate and mate), are the
most severely affected (Briones and Schmidt, 2017; Lago et al.,
2019). The loss of these functional groups could have important
consequences for soil organic matter transformations, and hence,
the balance between C mineralization and C stabilization.

Microorganisms also play an important role in C
transformations in agricultural soils (Gougoulias et al., 2014).
Microbial biomass carbon (Cmic) is among the most labile
pools of organic matter and an important reservoir of plant
nutrients (Marumoto et al., 1982) that is also more susceptible
to management practices than the bulk organic matter (Janzen,
1987), and hence, a sensitive indicator of changes resulting from
agronomic practices (García-Orenes et al., 2013). Consequently,
since microbial biomass generally represents 1–4% of total
organic carbon (Corg), both Cmic and the Cmic/Corg, ratio
are considered to be useful parameters to monitor soil organic
matter changes in response to agricultural conversions than
Corg measured alone (Sparling, 1992; Emmerling et al., 2001).
From this, most studies indicate that ORG systems have higher
microbial biomass than CONV ones (Fließbach and Mäder,
2000; Bünemann et al., 2006; Araújo et al., 2009; Hartmann
et al., 2015; Lori et al., 2017), which is largely associated to the
application of organic forms of N instead of mineral fertilizers
(Geisseler and Scow, 2014).

Although it is well accepted that agricultural intensification
will reduce both macro- and micro-biota, larger animals are
more susceptible to be negatively affected (Tsiafouli et al., 2015).
Consequently, CONV practices will not only alter the structure
of the soil food web (Lago et al., 2019), but also their biotic
interactions, which are crucial in regulating C cycling and storage
(Edwards and Fletcher, 1988; Bernard et al., 2012; Medina-Sauza
et al., 2019). Microbe-driven turnover is predicted to allow for
greater decomposition rates and less soil retention of organic C
(Tardy et al., 2015). However, in the case of earthworms, whether
they will increase the amounts of CO2 emitted from these soils
(as suggested by a meta-analysis study by Lubbers et al., 2013)
or result in less CO2 being released to the atmosphere (Zhang
et al., 2013), might depend on other factors, such as the soil
physicochemical properties and the earthworm feeding strategies
(Singh and Singh, 2019).

Therefore, in this study, we investigated the combined effects
of agricultural management practices (here the most commonly
used to produce kiwifruits in Galicia: CONV, INT, and ORG)
and earthworm additions (two species with different feeding
behavior: epigeic and anecic) on soil carbon transformations [i.e.,
C assimilated as microbial biomass (Cmic and Cmic/Corg ratio),
stored as easily oxidizable carbon (i.e., salt extractable organic
carbon (SEOC)), and released as CO2 and dissolved organic
carbon (DOC)] in a mesocosm experiment. We hypothesized
that the less intensive managed soils (INT and ORG) will sustain
larger earthworm populations than the CONV ones, in particular
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those belonging to the anecic group (Lago et al., 2019) that play a
more important role in the translocation of the organic residues
down the soil profile and have shown to increase soil C stocks in
their galleries (Don et al., 2008). In contrast, fewer and less diverse
earthworm communities in the most intensive agroecosystem
will lead to a dominance of microbial-driven processes in the
CONV soils leading to faster mineralization processes and greater
C losses (Zhang et al., 2013).

MATERIALS AND METHODS

Kiwifruit Orchards
The three selected kiwifruit orchards [A. chinensis var. deliciosa
(A. Chev.) A. Chev. cv. Hayward] were located in Tomiño
(Galicia, NW Spain; 41◦ 58′ 20′′ N, 8◦ 46′ 34′′W). The soils in the
area can be classified as Dystric or Gleyic cambisols (Merino et al.,
2006) and the climate is oceanic, with a mean annual temperature
14.7◦C and 1283 mm rainfall fall, on average, every year1.

The most intensively managed conventional (CONV) system
involves annual applications of high doses of agrochemicals
(mineral N fertilizers and herbicides) and the removal of all thick
tree pruning residues from the soil surface in order to prevent
fungal infections. The integrated (INT) management also entails
annual additions of herbicides and mineral fertilizers, and the
removal of all the coarse plant residues, although the thinnest
ones are grounded and deposited onto the soil surface. Finally,
the organic (ORG) treatment does not apply herbicides but
certified organic fertilizers, together with a homemade compost
made of pruning residues, poultry slurry and pine needles that
provides an input of organic nitrogen to the soil. Land history
of the orchards and soil characteristics are shown in Table 1 (for
more details about soil physical properties see Lago et al., 2019).

Sampling and Experimental Design
Intact soil cores were collected in December 2009, coinciding
with the dormancy phase of A. chinensis life cycle in the northern
hemisphere. This was done to ensure low biological activities

1www.meteogalicia.gal

TABLE 1 | Agricultural management history, soil texture and chemical inputs at the
conventional (CONV), integrated (INT), and organic (ORG) kiwifruit
orchards in 2009.

CONV INT ORG

Cultivated area (ha) 20.9 11.8 0.5

Vines plantation (year) 1987 1986 1998

Previous use Tree
plantation

Tree
plantation

Nursery, greenhouse
crops and fodder
production

Soil texture Sandy-loam Sandy-loam Sandy-loam

Inorganic N inputs
(kg ha−1)

100 75 No applied

Organic N inputs
(kg ha−1)

No applied No applied 170

P inputs (kg ha−1) 54 20 43

at the start of the experiment and hence, a minimal influence
of plant-soil biota interactions. Forty intact soil cores were
randomly taken at each CONV, INT, and ORG orchard using
PVC tubes (11 cm diameter × 20 cm deep) from three different
areas (sectors) to account for local spatial heterogeneity. Each
individual core was introduced in a sealed labeled plastic bag
for their transport back to the laboratory, and stored in a cold
room at 4◦C.

Next, earthworms were added to half of the cores [60
experimental units (+EW), 20 for each management treatment],
while the other half acted as controls (60 experimental units,
20 for each management treatment). The two most abundant
Lumbricus species present at the investigated area (Lago, 2015)
were selected for the +EW treatment. This was to include
two different earthworm ecological categories based on their
feeding and burrowing behavior (epigeic: Lumbricus rubellus
and anecic: Lumbricus friendi), and which are known to be
the most sensitive groups to agricultural practices (Briones
and Schmidt, 2017). A total number of 236 earthworms were
selected for the experiment, and these earthworms (fresh weight
2.43 ± 0.05 g/earthworm or 3.93 ± 0.15 individuals) were
added to each +EW core. Two nylon meshes (1 mm mesh
size) were fitted at both ends of each PVC cylinder to prevent
earthworms from escaping.

The experimental design was a balanced complete factorial
design, with two fixed factors (agricultural management and
earthworm addition) and 20 replicates. The 120 experimental
units were incubated in an environmentally controlled chamber
(“walk-in” type) by randomly assigning two replicates of each
treatment to 10 blocks (3 agricultural managements × 2
earthworm treatments × 2 replicates = 12 units per block).
The chamber was set at a temperature of 9.0◦C to mimic the
climatic conditions in the field [according to the meteorological
data provided from the nearest meteorological station (Areas:
42◦ 1′ 54′′ N, 8◦ 40′ 2′′ W), during the winter of 2008–2009 the
mean air temperature was 9.1◦C; see “footnote 1”]. In addition,
the photoperiod cycle was also programmed according to the
typical winter conditions measured at the studied area (10:14 h
day:night; Rede de Avisos Agrícolas, 2009). Relative humidity
and light intensity inside the chamber were also continuously
monitored by means of temperature and humidity data-loggers
(H08-001-02, HOBO R©) and a digital lux meter (LX-101, Lutron),
respectively. Throughout the whole incubation period, relative
humidity was on average 63.6% and light intensity 20 µmol
m−2 s−1 (≈1050 lux). Soil moisture was kept constant (at field
capacity) by regular weighing and adding distilled water to
compensate for any weight losses. Emerging grasses were also
regularly eliminated by hand.

The total duration of the experiment was 105 days (15 weeks)
with five destructive samplings every 21 days (3 weeks) of four
replicates from each treatment (3 agricultural managements × 2
earthworm treatments × 4 replicates = 24 experimental units)
randomly selected from the 10 blocks.

Sample Analyses
Soil respiration from each experimental unit was measured after
21, 42, 63, 84, and 105 days of incubation using an infrared
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gas analyzer (MGA ADC-3000). On each sampling occasion
and under dark conditions, each soil core was placed into an
air-tight glass jar (1250 mL) which was fluxed with CO2-free
air for 120 s followed by immediate measurements of CO2
production (t0) and after 30 min incubation (t30) to enable the
calculation of the soil respiration rate from each experimental
unit. Respiration data were expressed as µg CO2–C g dw
soil−1 day−1.

After CO2 measurements, cores were leached with 250 mL
of distilled water that was added to the soil surface, left it
drain under gravity and reapplication of the leachate to the
surface of the soil twice to ensure a thorough equilibration
the mineralized nutrients between the soil and the leachates
(Anderson and Ineson, 1982). Collected leachates were filtered
(FilterLab R©, Ref 1252) and a subsample of 50 mL was
used for chemical analyses: (i) DOC using a continuous
flow autoanalyzer (Sievers Innovox TOC Analyzer); (ii) total
dissolved N (TDN); (iii) dissolved inorganic N (DIN) by
colorimetry using a Bran C Luebbe-AA3 continuous flow
autoanalyzer (Bran C Luebbe, Norderstedt, Germany). DON
concentrations in the soil solution were calculated as the
difference between TDN and DIN. Results were expressed as
mg kg−1 soil dw.

Following these procedures, the 24 experimental units were
dismantled and the earthworms hand-sorted and counted (those
from the +EW treatments also weighed to obtain their total
fresh biomass) and three soil samples from each core were taken
for estimation of microbial biomass C (Cmic), SEOC, and total
content of C and N.

Soil microbial carbon was determined by the fumigation–
extraction method (Vance et al., 1987), which involves the
fumigation of one sample with ethanol-free chloroform followed
by extraction of the organic carbon from the fumigated and non-
fumigated samples with 100 mL of 0.5 M K2SO4. The organic
C content from all samples (non-fumigated and fumigated)
was quantified using the continuous flow autoanalyzer (Innovox
TOC Analyzer, Sievers), with the results from the non-fumigated
sample representing the salt-extractable organic C (Makarov
et al., 2015). Microbial biomass C was calculated according to the
following formula:

Cmic =
Ec
Kc

where EC is the difference between the organic C extracted from
fumigated soils and the organic C extracted from non-fumigated
soils and Kc is the fraction of mineralized C (with takes the
value of 0.45 in mineral soils; Wu et al., 1990). Final results were
expressed in mg C g−1 soil dw.

The third soil sample taken from each dismantled
experimental unit was air dried and then sieved (<2 mm)
to measure the total soil carbon (C) and nitrogen (N) contents.
This was achieved after combustion using an elemental analyzer
(CN-2000, LECO Corp., St Joseph, MI, United States) with the
results being expressed as percentage. Finally, the C/N, microbial
carbon to organic carbon (Cmic/Corg) and DOC/DON ratios
were also calculated.

Statistical Analyses
All investigated variables were tested for normality and
homoscedasticity using the Kolmogorov–Smirnov and Levene
tests, respectively. Accordingly, earthworm numbers and
biomass, CO2 emissions, SEOC, and the C/N, Cmic/Corg
and DOC/DON ratios failed to meet these two criteria and
they were log transformed [log(x + 1)] before performing the
parametric analyses. Two-way analysis of variance (ANOVA)
was carried out to test the effects of the experimental treatments
(earthworm additions and agricultural management practices)
on averaged values of all variables investigated. Since earthworm
additions did not have a significant effect on the studied variables,
repeated measures of ANOVA was then used to test the effects of
incubation time and its interaction with treatment (agricultural
management combined with earthworm additions as a fixed
factor) to test for differences between sampling times and
between treatments per sampling time. Separation of means
was determined using Tukey’s Studentized range (HSD) test
(α = 0.05). All statistical analyses were performed using SAS
(version 9.3) (Sas Institute Inc, 2011).

RESULTS

Earthworm Populations
Earthworms added to the +EW experimental units significantly
increased the population sizes naturally present in these soils
(p < 0.0001), resulting in the +EW treatments having 3.9± 0.25
individuals on average, when compared to those recorded in
the control ones (0.87 ± 0.20 individuals) and this difference
was observed in all three management treatments throughout
the whole duration of the incubation period (Figure 1). In
addition, although more earthworms were found in the ORG
treatments (on average) when compared to those in the INT
and CONV ones (Figure 1), the differences were not significant
(p= 0.1507 for the interaction between earthworm additions and
agricultural management). Interestingly, the observed temporal
changes in the earthworm numbers and biomass in the +EW
treatments showed that the populations of the CONV treatment
consisted of fewer but bigger specimens than in the other two
treatments where the two curves showed similar changes over
time (Figure 2).

Effects of Agricultural Practices and
Earthworm Additions on C
Transformations
Agricultural management practices had a significant effect on
all variables investigated with the exception of Cmic, SEOC and
the DOC/DON ratio (ANOVA, p < 0.05; Table 2). Accordingly,
the CONV and INT systems had the highest C/N (≈14) and
Cmic/Corg ratios (20–24%) compared to the ORG one, but the
most intensive management released, on average, significantly
more CO2 (37 and 60% more than the INT and ORG treatments,
respectively) and DOC (60 and 53% more than the INT and
ORG treatments, respectively) (Table 2). These findings were a
consequence of the significant positive relationship between the
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FIGURE 1 | Number of earthworms collected in the soil cores (mean ± S.E.) from each agroecosystem (CONV, INT, and ORG) and incubated during 105 days.
Different letters represent significant differences between earthworm treatments per agricultural management treatment (p < 0.05).

ratio of microbial biomass carbon to soil organic carbon and C
release (CO2: r = 0.4319 and p < 0.0001 and DOC: r = 0.2747
and p = 0.0032). However, in contrast to our hypothesis, neither
earthworm additions nor their interaction with agricultural
management had a significant effect on the overall averaged
values of these variables. However, it is noteworthy that, in
the control treatments, DOC production was not linked to
any microbial indicator whereas soil respiration was accelerated
by higher values of these two microbial parameters (Cmic:
r = 0.3106 and p = 0.0187; Cmic/Corg: r = 0.45458 and
p= 0.0003).

The results from the repeated measures of ANOVA indicated
that the incubation time had a significant effect on both
oxidizable and microbial carbon but not on the C/N ratio
(Table 3 and Figure 3A). Accordingly, SEOC showed significant
temporal variations, but with all treatments showing similar
increases and decreases (Figure 3B). Similarly, the average values
of both Cmic and Cmic/Corg ratio did not differ between
treatments during the first 84 days of incubation, although with
higher values being measured in the two CONV treatments
(Figures 3C,D). However, at the end of the experimental
period, significant increases in the mean values of these two
microbial indicators were observed, but not treatment effects
(Figures 3C,D).

Significant temporal changes were also observed for soil
respiration rates and the DOC/DON ratio but not for DOC
release (Table 3 and Figure 4), and while CO2 emissions
increased over time, the DOC/DON ratio decreased over the
same time period (Figures 4A,C). Furthermore, the interaction
between time and experimental treatment had a significant effect
on DOC release and the DOC/DON ratio (Table 3). Accordingly,
the soils under CONV management released more DOC during
the whole investigated period, more so in response to earthworm
additions (Figure 4B). Thus, after 105 days of incubation, the
CONV + EW treatment released 1.5 times more DOC than the
controls (Figure 4B). In contrast, the DOC/DON ratio showed

more variability over time and by the end of the experimental
period, the two ORG treatments showed the highest values
compared to the two INT and CONV ones (p< 0.05; Figure 4C).

Cumulative values over the course of the entire experimental
period (Figure 4 insets) indicated that, under intensive
agricultural management practices, soils lost a total amount of
88.4 µg C g−1 soil dw d−1 to the atmosphere and 18.8 mg C kg−1

soil dw into the soil solution, and thus doubled those measured
in the ORG soils (36.4 µg C g−1 soil dw d−1 and 9.9 mg C kg−1

soil dw, respectively). The INT system occupied an intermediate
position in relation to CO2 emissions but lost similar amounts of
DOC to ORG soils (Figures 4A,B insets).

DISCUSSION

In agreement with previous studies, more environmentally
friendly ORG practices favored earthworm populations, both in
terms of numbers and biomass, when compared with those soils
that have been subjected to more intensive agricultural practices
(e.g., Benge et al., 2007; Carey et al., 2009; Henneron et al.,
2015; Briones and Schmidt, 2017; Lago et al., 2019). This is
a consequence of the detrimental effects of CONV agriculture
on their survival (Curry et al., 2002; van Eekeren et al., 2008;
Postma-Blaauw et al., 2010; Nemecek et al., 2011), and more
specifically, in this study, the use of mineral fertilizers and
herbicides in the INT and CONV treatments. The fact that
this management effect remained for the whole duration of
the incubation experiment (i.e., more than 3 months) suggests
that the legacy effects of agricultural management practices can
override the influence of the abiotic (here, constant temperature
and moisture levels during the incubation) and biotic factors
(here, earthworm additions). Similar legacy effects of previous
land uses on soil biota have been previously reported (Crotty
et al., 2016; Jernigan et al., 2020), and Briones and Schmidt
(2017) found that the positive effects of the conversion to
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FIGURE 2 | Changes in the average values of earthworm numbers and fresh biomass at each agricultural management treatment with earthworm additions
[(A) CONV + EW, (B) INT + EW, and (C) ORG + EW] during the incubation period. Upper dashed line indicates initial biomass and bottom dotted line initial number of
individuals inoculated in the experimental units.
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TABLE 2 | Average values (±standard error) of the variables investigated: C/N ratio, SEOC (mg C kg−1 soil dw), Cmic (mg C g−1 soil dw), Cmic/Corg ratio, CO2 (µg C
g−1 soil dw d−1), DOC (mg kg−1 soil dw), and the DOC/DON ratio measured at the three kiwifruit orchards under different management practices.

C/N SEOC Cmic Cmic/C CO2 DOC DOC/DON

CONV 14.33 a 73.33 a 0.44 a 0.25 a 18.03 a 4.24 a 1.41 a

(0.19) (2.02) (0.03) (0.03) (0.81) (0.38) (0.23)

INT 13.91 a 71.75 a 0.38 a 0.20 a 11.36 b 1.70 b 1.39 a

(0.26) (1.32) (0.04) (0.02) (0.59) (0.09) (0.29)

ORG 11.01 b 77.15 a 0.34 a 0.11 b 7.28 c 1.98 b 1.30 a

(0.11) (1.67) (0.04) (0.02) (0.40) (0.09) (0.15)

Different letters represent significant differences between managements (Tukey’s Studentized range (HSD) test, p < 0.05).

TABLE 3 | Results from repeated measures of ANOVA for the time and
time × treatment (agricultural management and earthworm additions combined)
effects on the variables investigated: C/N ratio, SEOC (mg C kg−1 soil dw), Cmic
(mg C g−1 soil dw), Cmic/Corg ratio, soil respiration (µg C g−1 soil dw d−1), DOC
(mg kg−1 soil dw) and the DOC/DON ratio.

Time Time × Treatment

F value p F value p

C/N ratio 2.83 0.0654 1.18 0.3095

SEOC 11.29 0.0015 0.66 0.8102

Cmic 147.95 <0.0001 1.22 0.2886

Cmic/Corg ratio 29.23 <0.0001 0.96 0.5225

Soil respiration 11.78 0.0003 0.76 0.7415

DOC 2.36 0.1125 1.91 0.0400

DOC/DON ratio 14.93 0.0003 3.17 0.0015

Significance multivariate test on each variable is Wilks’ lambda test.

more sustainable practices on earthworms was only visible after
more than 10 years.

Unlike earthworms, soil microorganisms appeared to be
less sensitive to intensive agricultural management, and the
soils under CONV practices had the highest microbial biomass
(44%) and Cmic/Corg ratio (24%) when compared to the
INT (38 and 20%, respectively) and ORG treatments (33
and 11%, respectively). These findings contradict previous
reports indicating that these two microbial indicators are very
sensitive to intensive management practices and hence, their
values tend to increase after conversions to ORG farming
associated to the positive effect of organic amendments on
microbial growth (Carey et al., 2009; Kong et al., 2011; Ponge
et al., 2013; Anderson and Paulsen, 2016). However, our
CONV soils contained more carbon and nutrients available for
microbial assimilation (as reflected in the values of microbial
quotient Cmic-to-Corg), which is probably related to their
previous use as a forest plantation. Furthermore, the results
from a European study indicated that intensive agriculture
affects more dramatically bigger sized soil organisms (Tsiafouli
et al., 2015) and consequently, with less earthworms, less
microbial grazing, and their soil communities became dominated
by microorganisms.

Higher microbial biomass has also been linked to increased
enzymatic activities, resulting in a greater mineralization of C
and N labile fractions (Lago et al., 2019). Accordingly, in this

study, more CO2 and DOC were lost from the CONV managed
soils with the highest values of microbial biomass. Because
microorganisms use DOC to produce their microbial biomass
(Guo et al., 2019), a gradual decrease of the DOC/DON ratio
was observed over time. This implies that CONV agricultural
practices would not only contribute to increased soil respiration
rates, but they could also lead to soil organic C depletion in the
long term. In support of this, it has been estimated that 8% of total
global soil C stocks may have been lost from the top two meters
of the world’s soil since the dawn of agriculture (Sanderman et al.,
2017). From this, it can be anticipated that unless soil carbon is
managed in a way that the carbon lost is re-absorbed, the negative
emission targets will not be met and productivity will be further
compromised by the continuous loss of soil fertility.

In contrast, ORG soils had the lowest rates of C losses (as
CO2 and DOC), which could be explained as a result of higher
humification rates of soil organic matter (i.e., lower C/N ratio)
and in turn, less nutrients being available to microorganisms
(i.e., the lowest values of the microbial quotient Cmic:Corg).
Therefore, microorganisms might have competed for the labile
forms present in the soil solution (DOC and DON) leading to the
gradual decreases in the DOC to DON ratio with time. The higher
values of this ratio measured at the end of the incubation period
indicated that these opposite effects between microbial biomass
and the leaching of soluble C and N fractions weakened over time
in the ORG treatments, more so in the presence of earthworms.
In the absence of new residue additions, earthworms would have
had to consume the organic C stored in the soil, leading microbial
biomass to decrease and DOC to increase later in time (Lubbers
et al., 2017; Guo et al., 2019).

C release from the INT soils was intermediate between that
measured from the CONV and ORG treatments, which fits well
with its consideration as a “middle course for agriculture between
conventional and organic farming” (Morris and Winter, 1999).
In this study, cumulative soil respiration in the INT treatment
was 1.5 times lower than that in the CONV treatment but 1.5
times higher than in the ORG one, whereas the C lost into
the soil solution were similar to the organically managed soils.
The advantages and disadvantages of the INT farming system
versus ORG or CONV ones are still under debate (Glover et al.,
2000; Jonssson et al., 2010) in terms of C sequestration and crop
yields. These discrepancies are probably the result of its exact
meaning varying across studies and thus, the “integrated” term
could refer to any farming system that relies on the use synthetic
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FIGURE 3 | Changes in the average values of C/N ratio (A), SEOC (mg C kg−1 soil dw) (B), Cmic (mg C g−1 soil dw) (C) and Cmic/Corg ratio (D) measured at each
treatment (agricultural management and earthworm conditions combined) during the incubation period together with the averaged values per sampling time
(horizontal lines). Different letters represent significant differences (repeated measures ANOVA) between treatments per sampling date (lower case) and between
successive sampling times (upper case).
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FIGURE 4 | Changes in the average values of soil respiration (µg C g−1 soil dw d−1) (A), DOC (mg kg−1 soil dw) (B), and DOC/DON ratio (C) measured at each
treatment (agricultural management and earthworm conditions combined) during the incubation period together with the averaged values per sampling time
(horizontal lines) and the accumulated values (inset). Different letters represent significant differences (repeated measures ANOVA) between treatments per sampling
date (lower case) and between successive sampling times (upper case) and between treatments (ANOVA; insets).
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nitrogen fertilizers (e.g., see review by Gattinger et al., 2012),
organic amendments or both (e.g., Kizos et al., 2011) and it has
been suggested that reported advantages of ORG agriculture for
organic C retention are largely determined by the massive use of
organic fertilizers (Leifeld and Fuhrer, 2010).

Finally, despite the number of studies reporting enhanced
CO2 emissions due to earthworm burrowing activities and
their positive interactions with microorganisms (Hodge et al.,
2000; McInerney and Bolger, 2000; Speratti and Whalen, 2008;
Giannopoulos et al., 2010; Simek and Pižl, 2010; Lubbers
et al., 2013, 2015, 2017), we found the opposite effect. Not
only earthworm additions did not promote CO2 release in
any of the experimental treatments, but also the cumulative
values of CO2 production showed a significant decrease under
those managements that contained more earthworms and less
microbial biomass. Other studies have indicated that earthworms
can facilitate C sequestration through an unequal amplification
of C stabilization compared with C mineralization (the so-called
“earthworm-mediated carbon trap”), whereas in the absence
of earthworms, microbial effects lead to an equal unamplified
processes in which each unit of C mineralized goes along with
proportionally less C being stabilized (Zhang et al., 2013).

CONCLUSION

Although our approach to amending earthworm populations did
not allow for a true control treatment without earthworms, our
incubation study showed that agricultural management practices
had an overruling control on C transformations mediated by
decomposers. The lack of a significant “earthworm effect” could
be due to the fact that our mesocosm experiment did not include
the return of aboveground plant residues, which was the usual
practice in the INT and ORG systems. Both epigeic and anecic
earthworms prefer to consume the surface plant remains instead
of the C stored in the soil, and by incorporating this new C
down the profile and casting, they significantly enhance soil C
stabilization (Zhang et al., 2013; Guo et al., 2019). Despite these
limitations, our study showed that intensive managements not
only had detrimental effects on the composition and structure
of soil detrital food webs by favoring smaller sized organisms
against macrofauna in agreement with previous studies (Tsiafouli
et al., 2015; Lago et al., 2019), but also led to significantly greater
amounts of C being lost from these soils. As hypothesized, the
smaller relative microbial effect under ORG agricultural practices

amplified C stabilization processes leading to less CO2 being
emitted from these soils, and contrasted with the microbial-
dominated processes operating in the CONV system. These
findings suggest that more sustainable farming practices (even a
farm level) could represent a promising strategy to increase soil
C sequestration and highlight the importance of other ecosystem
services provided by agroecosystems beyond those derived from
productivity and market values.

Further work including the effects of other influential
factors, such as the soil physicochemical properties (e.g., soil
texture, pH, CEC), the presence/absence of crop residues,
and the feeding strategy of other earthworm species/ecological
groups would allow for a better quantification of the overall
effects of biotic interactions on the C balance under different
agricultural managements.
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