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Characterizing the impact of nanoplastics to organism health is important to understand
the consequences of the environmental plastic waste problem. This article examines the
impact of nano-polystyrene (nano-PS; 159 ± 0.9 nm diameter) to ecologically relevant
bacteria Shewanella oneidensis. Bacterial viability was evaluated using a growth-based
assay. Riboflavin secretion is a critical cell function of S. oneidensis, serving as an
electron mediator in anaerobic respiration and/or as a signaling molecule when the
bacteria are under stress. Thus, changes in cellular function were monitored through
riboflavin secretion in order to evaluate toxic responses that may not result in cell death.
Under aerobic and anaerobic exposures (4, 8, or 12 h), the viability of the S. oneidensis
was minimally changed as compared to the control, while the concentration of riboflavin
secreted varied with exposure dose. In order to determine if this was a specific response
to nanoplastic particles, opposed to a response to either particles or plastic more
generally, we exposed the system to colloidal TiO2 nanoparticles and polystyrene and
polyethylene thin films. We confirmed that riboflavin secretion trends were specific to
nano-PS and not to these other materials, which showed no significant changes. We
investigated the association of the nano-PS with ICP-MS using Pd that was chemically
incorporated into the model nanoplastics. While 59.2% of the nano-PS were found in
the non-cellular culture media, 7.0 and 6.6% was found associated with the loosely
and tightly bound extracellular polymeric substance, respectively. There was significantly
more nano-PS (10.9%) strongly associated with the cells. Taken together, we found
that nano-PS had minimal impacts to viability but caused a significant change in the
function of S. oneidensis that can be related to the nano-PS attached or in proximity
to the bacterium. These trends are consistent between aerobic and anaerobic cultures,
signifying that the stress response of S. oneidensis can be generalized between different
environmental compartments. This work highlights that the association of nanoplastic
materials with microorganisms may modify the cellular function that could ultimately be
an impact to ecosystem health.
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INTRODUCTION

Plastic-particle distributions in marine and freshwater systems
are an active area of research, with most current work centered
on the size distribution, polymer type, and number of particles
above 1 micron (Wagner et al., 2014; Zbyszewski et al., 2014;
Driedger et al., 2015; Hendrickson et al., 2018; Allen et al.,
2019), and estimates suggest there could be up to 125 trillion
microplastics in ocean water (Lindeque et al., 2020). Particulate
plastics (nano- and microplastic particles, fragments and fibers)
pose a concern for organisms in our environment because they
can cause a myriad of health outcomes, such as impacting
the gill cavity of crab Carcinus maenas causing altered O2
consumption (Watts et al., 2016) or causing inflammation of the
liver tissue of zebrafish (Lu et al., 2016). Exposure to microplastics
is often through the ingestion pathway because the size range
overlaps with that of phytoplankton in both fresh and salt waters,
which has resulted in the ingestion of microplastic particles by
invertebrates and fish (Imhof et al., 2016). Ingestion is thought
to pose challenges to various organisms such as false satiation,
leading to nutritional deficits, (Welden and Cowie, 2016; Yin
et al., 2018) tissue inflammation (Lu et al., 2016) or toxicity
of additives leaching from plastic into tissue (Rochman et al.,
2012; Tanaka et al., 2015). While environmental microplastic
hazards are concerning, there is growing worry for the impact
of nanoplastics in the environment as laboratory studies have
shown that they are likely prevalent within these natural systems
(Koelmans et al., 2015; Gangadoo et al., 2020; Hebner and
Maurer-Jones, 2020). Nanoplastics are particularly concerning
with regard to ecosystem health because they have the potential
to permeate cell membranes and disrupt cellular behavior (Rossi
et al., 2014) while also having a larger surface area-to-volume
ratio, increasing the additive leaching potential (Bouwmeester
et al., 2015; Hermabessiere et al., 2017).

Nanoparticle toxicity, largely focused on engineered inorganic
materials, has been widely studied with the growing demand
of novel nanomaterials along with their incorporation into
commercially available products. Efforts in this arena have
established the framework for studying the interaction between
nanoparticles and organisms at various trophic levels (Maurer-
Jones et al., 2013b; Zhang et al., 2018) and there are substantial
efforts to have the toxicity response to inorganic nanomaterials
inform nanoparticle design (Buchman et al., 2019a). Yet, there
is much less understood about the toxicity of nanoplastics. The
most studied nanoplastic in terms of toxicity is nanoparticle
polystyrene (nano-PS) because of its commercial availability with
a variety of controlled size ranges and surface chemistries. Many
nano-PS toxicity studies have focused on a range of ecologically
relevant, multi-cellular model organisms (Besseling et al., 2014;
Della Torre et al., 2014; Greven et al., 2016; Chen et al., 2017;
Pitt et al., 2018) but there is a gap in knowledge in the toxicity
of nano-PS to single-celled organisms.

Toxicity evaluation of single-celled microorganisms is critical
because these organisms provide a bedrock of the ecosystems.
To date, studies of nano-PS toxicity has primarily focused
on algal species. For example, algae exposed to nano-PS have
demonstrated a decrease in photosynthetic activity due to their

adsorption onto the surface of the algae, and thus screening
sunlight (Bhattacharya et al., 2010). Beyond the toxic implications
for the algae itself, sorption to the surface can also be the first
step within the food web for bioaccumulation of nanoplastic,
moving from algae to water fleas to carp (Cedervall et al., 2012).
These studies of photosynthetic activity changes and trophic
transfer highlight the important role that microorganisms play
within the context of nanoplastic hazards to larger organisms.
It is expected, due to the close algal-bacterial relationship
(Ramanan et al., 2016), that the influence of nano-PS to
bacteria systems could be similar, including changes to the
primary productivity from these organisms, the transfer of
nano-PS to larger organisms through ingestion, or changes in
health to other organisms that rely on the cellular function
of the microorganisms (Azam and Malfatti, 2007). Yet, there
is not a wide understanding of the impact of nano-PS to
ecologically relevant bacteria. In bacteria models, Fu et al. (2018)
showed nano-PS causes a decrease in growth and metabolism of
Acetobacteroides hydrogenigenes, a species relevant to anaerobic
digestion. Qu and coworkers studied the impact of micro- and
nano-PS to marine bacteria Halomonas alkaliphilia and showed
both sizes of particles inhibited growth at high concentrations but
that nano-PS also negatively impacted the ammonia conversion
efficiencies of the bacteria (Sun et al., 2018). There is still a
lot to be understood about the impact of nano-PS to other
ecologically relevant bacteria, including where the nanoplastics
are in relationship to the bacteria (i.e., associated to or localized
within the bacteria) and/or the response to nano-PS from a
bacterial species in a range of growing conditions such as aerobic
and anaerobic settings.

Shewanella oneidensis is an ideal model bacterium for
nanoplastic studies because they are a facultative anaerobe
(i.e., they can switch between anaerobic and aerobic
respiration), are distributed worldwide and live in varied
environmental conditions (e.g., variable salt concentrations
and/or temperatures) (Hau and Gralnick, 2007). The fact
that these bacteria live in such diverse conditions means it is
likely that the organism will encounter nano-PS in a natural
system. Additionally, their adaptability may aid in ecosystem
modeling as their response may inform our understanding of the
impact of nano-PS to similar organisms. In anaerobic conditions,
Shewanellae have a unique ability to respire on compounds found
in the environment, such as reducing iron to its bioavailable
state [Fe(III) to Fe(II)] (Valls and De Lorenzo, 2002; Hau and
Gralnick, 2007; Shi et al., 2007), which contribute to the process
of metal cycling that other organisms within the environment
rely on for their survival (Sheng and Fein, 2014; Wang et al.,
2016). The metal reduction function is facilitated through the
secretion of flavin mediators, including riboflavin and flavin
mononucleotide. Riboflavin secretion is a critical cell function of
S. oneidensis, serving as both an electron mediator in anaerobic
respiration and as a signaling molecule when the bacteria
are under stress in both aerobic and anaerobic environments
(Brutinel et al., 2013; Oram and Jeuken, 2019). Finally, this
model organism has been used in previous nanoparticle toxicity
assessments and thus provides precedent benchmarks for toxicity
responses that go beyond only live versus dead cell counts, with
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evaluation of how substances induce changes of cellular function
and gene expression (Maurer-Jones et al., 2013a,c; Zhi et al.,
2019; Buchman et al., 2020; Clement et al., 2020). Taken together,
these advantages provide an improved understanding as to what
cellular processes are most impacted and how this will in turn
influence the surrounding environment.

To address the gaps in knowledge of nanoplastic toxicity to
single-celled organisms, we evaluated the impacts of nano-PS on
the model bacteria S. oneidensis MR-1. The toxicity evaluation
included assessments of the viability and riboflavin secretion and
iron reduction upon exposure to varied concentrations of nano-
PS under both aerobic and anaerobic culture conditions. These
sublethal endpoints are critical to more completely evaluate
the environmental risk of nanoplastics. While previous work
discussed above had characterized inorganic nanoparticle toxicity
in aerobic conditions, this is the first study of toxicity to
S. oneidensis under anaerobic conditions. We hypothesized that
the markers of respiration (i.e., riboflavin secretion) would be
varied between the two culture conditions, thus suggesting that
nano-PS interrupts the signaling and iron reduction capabilities.
To better understand the changes observed in cellular function,
we evaluated the association of the nano-PS with the cells using
ICP-MS, taking advantage of a Pd-label incorporated into the
particle. While increasing understanding of nano-PS impacts to
bacteria, this work provides an example of toxicity evaluation that
considers diverse culture conditions (aerobic and anaerobic) that
could enable generalization of the nano-PS toxicity response.

MATERIALS AND METHODS

A suite of analyses was used to assess the impact of nano-PS to
S. oneidensis. The approach of our analyses is shown in Figure 1.

Exposure Materials
Nano-PS was synthesized and characterized as previously
described in Mitrano et al. (2019). Briefly, a polyacrylonitrile
material containing a chemically entrapped Pd-tracer was capped
with crosslinked polystyrene shell, ultimately resulting in a
core/shell nanoplastic, which was approximately 160 nm in
diameter. On average, the nano-PS contained 0.49% Pd, which
equated to 5.1 × 10−9 ng Pd per nano-PS particle. The
nanoplastic particle demonstrated a high stability, with no
leaching of the Pd tracer in complex matrices. Therefore,
we are confident the interaction of the bacteria is with the
polystyrene shell material and all impacts to bacterial cell
viability and function is due to the plastic, and not the metal
tracer. S. oneidensis were exposed to other materials including
TiO2 nanoparticles (25 nm, anatase; Aldrich, Burlington, MA,
United States) and polystyrene (30 µm thick) and polyethylene
(25 µm thick) thin films (Goodfellow, Huntington England).
Thin films were pre-processed by soaking in n-hexane, methanol,
and water, each for 24 h prior to bacteria experiments to remove
potential contaminants from the commercially acquired films
that could cause bacterial toxicity. A single 1 × 1 cm piece
(∼3 mg) of pre-soaked and dried film was placed directly into
the bacterial culture.

Bacterial Cell Culture
S. oneidensis MR-1(ATCC BAA-1096, Manassas VA,
United States) was inoculated in Luria-Burtani (LB, Fisher
Scientific) growth media overnight at 30◦C with shaking at
200 rpm under aerobic conditions. After inoculation, cells were
washed in triplicate with M4 growth media via centrifugation at
1500 rpm for 15 min followed by resuspension in fresh media.
After washing, cells were diluted with M4 to a specific optical
density by monitoring the absorbance at 600 nm (OD600). M4
broth is a media with little bioavailable carbon and is optimized
to sustain bacteria, though does not encourage growth (detailed
preparation of M4 in Supplementary Information). M4 was
chosen to prevent artificially nutrient rich conditions of the
LB and also encourage an interaction of S. oneidensis with the
nano-PS because there it has minimal bioavailable carbon.

Growth Based Viability Assay
Using an adapted growth-based viability assay developed by
Qiu et al. (2017) the viability of S. oneidensis was quantified
after exposure to nano-PS. Briefly, the assay relates the onset
of exponential growth of S. oneidensis to calibrate viability,
using a mathematical model to fit the exponential growth
phase. Bacteria exposure was performed under aerobic and
anaerobic environments with nano-PS suspended in MQ water
at concentrations ranging from 18.75 to 300 mg/L for periods
of 4, 8, or 12 h. These dosages were chosen as they cover the
exposure ranges previously studied in other nanoplastic toxicity
evaluations (Sun et al., 2018; Shen et al., 2019). The exposure
times were chosen because the bacteria were able to be sustained
for this period of time in the M4 broth without displaying stress
caused from lack of bioavailable carbon. For aerobic growth
studies, cells were diluted to an OD600 of 0.5 in M4 broth, which
corresponds to approximately 5 × 108 cells/mL. For anaerobic
growth, where the doubling rate of S. oneidensis is significantly
slowed, the M4 media was supplemented with 15 mM lactate
to allow for cell survival during the prolonged experiments,
while the LB was supplemented with 20 mM lactate and 20 mM
fumarate to allow for anaerobic growth. Anaerobic conditions
were achieved by purging samples with an N2/CO2/H2 [85:10:5]
gas mixture in an anaerobic chamber (Coy Lab Products, Grass
Lake MI, United States) and cells were equilibrated for 4 h prior
to exposure. Growth was monitored by optical density readings
at 600 nm. A Biotek Synergy two (Winooski, VT, United States)
plate reader was used to take optical density measurements every
20 min for 13 h under aerobic environments. Alternatively,
anaerobic growth measurements were observed approximately
every 3 h for 48 h with a SpectraMax Plus 384 Microplate Reader
(Molecular Devices, San Jose CA, United States). Anaerobic
measurements required the transfer of plates from the anaerobic
chamber to aerobic conditions and a subsequent transfer
back to the anaerobic chamber. Anaerobic conditions in the
96-well plates were maintained by sealing the plates with an
adhesive film cover.

Growth curves were modeled using R coding (RStudio,
Boston, MA, United States). Under aerobic conditions the
exponential growth phase of bacterial growth was modeled to
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FIGURE 1 | Schematic of experimental workflow, including the exposure materials studied in the various assays.

evaluate viability through the onset of exponential growth (Qiu
et al., 2017). Anaerobic growth lacked a noticeable lag phase,
requiring an alternative model. A Gompertz model was chosen
and viability was evaluated using the end of exponential growth
(Zwietering et al., 1990). A detailed data analysis code is provided
in the Supplementary Information along with example growth
curves for 12 h exposure conditions (Supplementary Figure S1).
Results of nano-PS exposure were compared to a negative
control where the nano-PS exposure volume was replaced by an
equivalent volume of MQ water without nano-PS, as the nano-
PS stock was suspended in MQ water. A serial dilution of the
negative control was performed after the exposure period for the
construction of a calibration curve.

Cellular Function
The impact of nano-PS to bacterial cell function was evaluated
by secretion of the external electron mediator, riboflavin.
Suspended cells were diluted to an OD600 of 0.1 in media
containing 1 mM iron hydroxide to a final volume of 3.2 mL.
Aerobic studies were performed with LB broth, while anaerobic
studies were performed with M4 broth supplement 9 mM
lactate. After a 5-day exposure to nano-PS with concentrations
ranging from 18.75 to 300 mg/L, riboflavin concentration in
the supernatant was determined by isolating the non-cellular
media by centrifugation for 5 min at 13000 rpm (Eppendorf
Minispin Microcentrifuge Z606235) and quantifying using a
Dionex UltiMate 3000 Series UHPLC (LPG-3400SD) with a
50 × 4.6 mm ID, Phenomenex Gemini C18 (3 µm particles)
column. The mobile phase consisted of 85% Milli-Q water/15%
acetonitrile v/v (Millipore Sigma; Sigma-Aldrich, Darmstadt
Germany) with a flow rate of 0.5 mL/min. Riboflavin eluted
after approximately 10 min and detected using fluorescence
with excitation and emission wavelengths of 450 and 525 nm,
respectively. A comparative analysis of riboflavin secretion
after exposure to the same mass-based concentrations (18.75–
300 mg/L) of TiO2 nanoparticles was performed under
aerobic conditions. The cell density of the bacteria after
exposure was measured through changes in the OD600 in

comparison to the control after exposure and used as an
estimation of viability.

Beyond quantification of the riboflavin, the anaerobic cultures
described above were also used to evaluate the reduction of
iron. That is, while 1 mL sample of each exposure was taken
for riboflavin and optical density analysis, the remainder of
the culture was used to evaluate the reduction of iron. Iron
reduction was halted before analysis by the addition of 0.56 mL
of 12 M HCl. Reduced iron concentrations in the supernatants
of lysed cells were quantified by the ferrozine (Sigma-Aldrich,
Darmstadt Germany) assay, which used UV–Visible spectroscopy
to selectively monitor the formation of a Fe(II)-ferrozine complex
at 562 nm (Lies et al., 2005).

Sample Preparation and Digestion for
ICP-MS Analysis
Various components of the cellular culture were evaluated for
the presence of nano-PS. Specifically, nano-PS was quantified
in the non-cellular portions of the growth media, lightly
bound extracellular polymeric substance (LB-EPS), tightly bound
extracellular polymeric substance (TB-EPS), and in the cell
biomass, using the Pd-label as means for detection of the nano-
PS with ICP-MS analysis. Collection of the ICP-MS samples
relied on the physical extraction of the TB-EPS maintained
intact cells, as opposed to chemical extractions that increase
the risk of lysing the cells. Initially, the non-cellular growth
broth solution was collected via centrifugation at 5000 × g for
10 min. The cell-containing pellet was then washed twice with
0.9% NaCl at 5000 × g for 10 min each, with the supernatant
of each NaCl wash being collected and analyzed as the LB-EPS.
The cell-containing pellet was resuspended in 0.9% NaCl and
incubated at 30◦C for 30 min to dislodge the TB-EPS from the
cells. Samples were centrifuged at 5000 × g for 10 min and
the supernatant containing the TB-EPS was collected while the
pellet was resuspended in M4 growth media and collected as
the cell biomass.

Upon collection of the culture components, the samples were
digested to dissolve and homogenize the bacteria and nano-PS.

Frontiers in Environmental Science | www.frontiersin.org 4 June 2020 | Volume 8 | Article 97

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/environmental-science#articles


fenvs-08-00097 June 29, 2020 Time: 18:49 # 5

Fringer et al. Nanopolystyrene Impacts on Shewanella oneidensis

Specifically, an acid digestion was performed where 8 mL of each
component of the cellular culture were mixed with 4.8 mL of a
1:10:1 (H2O2 (30%, Fisher): HNO3(69.2% Fischer): H2SO4(95%,
Arcos) acid mixture. Samples were added to a glass digestion tube
(N9308049, Perkin Elmer) with H2O2 and allowed to stand for
30 min to initiate the digestion of the organic matter. HNO3 was
then added, followed by a 30-min standing period to allow for
gas formation to slow. Finally, H2SO4 was added followed by a
final 30-min standing period. H2SO4 was added slowly as it reacts
with H2O2 to produce perania acid, which causes off-gassing and
bubbling. The samples were then covered with aluminum foil
and placed into the autoclave with the chamber temperature set
at 270◦C and a pressure of approximately 15 psi for 135 min.
During the heating phase, the temperature fluctuated around
250◦C. Two heating phases, which were deemed necessary upon
visual inspection of the samples for particle presence, were
performed on each sample.

A Shimadzu ICP-MS-2030 was used to detect the Pd label of
the nano-PS. Pd standards (Inorganic Ventrures, Christiansburg
VA, United States) were prepared at a range of 0.5–50 ppb from a
1000 ppb stock to a final volume of 10 mL. Culture components
were quantified as a percent recovery of Pd by normalizing
results to nano-PS control samples analyzed with ICP-MS that
were of the same nano-PS concentration as the exposure. For
some samples, a conversion factor of 5.1 × 10−9 ng Pd/nano-
PS particle was used to quantify the number of nano-PS particles
within each sample.

Statistical Analysis
Numerical representations of the data are presented as
mean ± standard error. Single factor ANOVA analyses
(alpha = 0.95) were used to determine the overall statistical
significance of the varied concentrations for the different
exposure conditions. ANOVA analyses that were statistically
different (i.e., p < 0.05) were subsequently evaluated with Tukey
posthoc to determine the pairwise p-values between the different
exposure levels.

RESULTS AND DISCUSSION

Viability of S. oneidensis
The impact to S. oneidensis viability was evaluated with a growth-
based viability assay (Qiu et al., 2017). The viability of the
suspended bacteria was determined by calibrating to a point
on the bacterial growth curve, either at the onset or at the
end of exponential phase for aerobic and anaerobic growth,
respectively. The viability of S. oneidensis exposed to increasing
doses of nano-PS for varying exposure times showed minimal
changes compared to the control (Figure 2), where values were
normalized to the calibration samples for the 100% viability. In
aerobic conditions (Figure 2A), there are slight, but significant
(p< 0.05), decreases in viability between control viability (dashed
line) and the viability of S. oneidensis aerobically exposed to
75, 150, and 300 mg/L nano-PS for 8 h. However, this decrease
in viability was not observed with the other aerobic exposure
times, so it was concluded the impact of nano-PS on aerobically

grown S. oneidensis is small. For anaerobic conditions, there
were no significant changes to the cell viability as compared to
the control (Figure 2B). There is larger error associated with
the viabilities determined under anaerobic conditions that could
be the result of small, but variable amounts of O2 entering the
sealed samples over the course of the experiment. Considering
both aerobic and anaerobic cultures, nano-PS caused minimal
changes to cell survival under either growth environment.
Previously, bacterial viability has shown a significant negative
correlation with the presence of nano-PS. Both marine bacterium
Halomonas alkaliphila, after 2 h of exposure (Sun et al., 2018), and
fermentation bacterium Acetobacteroides hydrogenigenes, after
over 3 days of exposure (Fu et al., 2018), experienced significant
decreases in growth or viability upon exposure to 55 nm nano-
PS. Our findings are not consistent with these observations
as there is not a significant decrease in the viability observed
consistently for the all exposure conditions. Due to the lack of
single-species literature studies, we cannot conclude if our results
vary from literature because of experimental parameters such as
nanoparticle size, exposure length, or species differences.

Riboflavin Secretion
While the viability of S. oneidensis was minimally affected by the
presence of nano-PS in our exposure conditions, we sought to
also evaluate changes in cellular function. The exuded riboflavin
concentration upon exposure to various concentrations of nano-
PS in aerobic and anaerobic growth conditions is shown in
Figure 3A. Aerobic exposure conditions (diagonal lines) showed
significant increases in riboflavin secretion of cells with doses
up to and including 150 mg/L nano-PS, but there was a
significant (p < 0.05) decrease at the highest (300 mg/L)
exposure concentration as compared to the control. It should
be noted that 300 mg/L would be an unexpectedly high dose
in ecologically relevant conditions. This increase in riboflavin
secretion with a decrease at 300 mg/L nano-PS exposure was
also observed in anaerobic conditions (solid gray bars), although
the effect size was much smaller overall when compared to
aerobic conditions. It is interesting to note that while the absolute
value of riboflavin per cell was different, secretion trends were
similar for aerobic and anaerobic conditions. S. oneidensis exudes
riboflavin and other flavin mediators for a number of bacterial
functions (Marsili et al., 2008; Mcanulty and Wood, 2014; Kim
et al., 2016). Primarily, these flavin mediators act as part of
the anaerobic respiratory pathway resulting in the reduction of
a variety of metals. However, upon quantifying the bacterially
reduced iron in anaerobic conditions, we observed no significant
change in iron reduction in the presence of the nano-PS
(Figure 3B). This signifies that there is not a correlation between
riboflavin secretion and iron reduction after exposure to nano-
PS. Therefore, we conclude that riboflavin is being secreted by
S. oneidensis for a purpose beyond acting as an electron mediator
itself. There is evidence that S. oneidensis also uses riboflavin
as a signaling molecule, where riboflavin activates the cells for
a number of different cellular behaviors, including repulsion of
foreign bodies (Moriyama et al., 2008; Brutinel et al., 2013) or
chemotaxis of other S. oneidensis bacteria (Li et al., 2012; Kim
et al., 2016; Oram and Jeuken, 2019). To elucidate the purpose of
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FIGURE 2 | Viability of S. oneidensis exposed to nano-PS as measured with a growth-based viability assay. Cells were exposed to varied concentrations of nano-PS
(18.75–300 mg mg/L) for varying exposure lengths (4, 8, 12 h) in (A) aerobic and (B) anaerobic conditions. Markers at each of the nano-PS exposure concentrations
are slightly staggered to highlight the viabilities for exposure length. The dashed line represents the control wells, which were normalized to the 100% viable
calibration wells (*p < 0.05). Biological triplicates were performed for each exposure condition, where one assay was considered a single biological replicate
containing four exposure wells for each nano-PS exposure concentration. Error bars represent the SEM of biological triplicates.

FIGURE 3 | (A) Riboflavin secreted per cell from S. oneidensis as a function of exposure concentration of nano-PS in aerobic (diagonal lines) and anaerobic (solid
gray) conditions. A significant increase (*p < 0.05) was observed as compared to the control (0 mg/L nano-PS) for aerobic 75, and 150 mg/L nano-PS and
anaerobic 150 mg/mL. However, 300 mg/mL was significantly decreased riboflavin secreted per cell as compared to the control. The highest exposure
concentration, 300 mg/L nano-PS, was significantly different (a or bp < 0.05) in secreted riboflavin compared to the other exposure concentration. The SEM among
triplicate trials is represented by the error bars. (B) Iron reduced by S. oneidensis under anaerobic conditions exposed to varying concentrations of nano-PS does
not show significant differences from the control (i.e., non-exposed) cells (single-factor ANOVA, p = 0.26). Error bars present the SEM of triplicate trials.

the flavin response, future transcriptomics work is being pursued.
In comparing aerobic and anaerobic exposures, we have shown
that the observed stress response to nano-PS is consistent, no
matter the culture conditions. Consequently, we hypothesize
that the interactions (e.g., association) of the nano-PS with
S. oneidensis would be similar between culture conditions.

To confirm that these cellular responses were the result of
the particulate polymer, and not simply a response to particulate
matter in solution more generally, aerobic riboflavin production
was quantified in the presence of TiO2 nanoparticles (Figure 4A).
The optical density of the bacteria was measured to roughly
estimate changes in viability at the end of exposure for all
exposure doses. Like the nano-PS, TiO2 did not induce a

change in optical density as compared to the control (see
Supplementary Figure S5), which is interpreted as minimal
changes in viability, but unlike nano-PS, there was no significant
difference in the secretion of riboflavin. The difference in
chemical makeup and size could potentially contribute to the
observed response, but previous work with nickel manganese
cobalt oxide(NMC) nanosheets (Mitchell et al., 2019) and iron
oxide nanoparticles (Buchman et al., 2019b) were similar, where
exposure did not result in a significant changes in the amount
of riboflavin secretion from S. oneidensis. Considering these
inorganic nanomaterials, with varied sizes and shapes, cause a
similar secretion behavior from S. oneidensis, our results of nano-
PS significantly changing the riboflavin secretion is unique. This
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FIGURE 4 | (A) Riboflavin secreted from S. oneidensis upon aerobic exposure to varying concentrations of 25 nm TiO2 nanoparticles were not statistically different
than control cultures (single-factor ANOVA, p = 0.69). (B) Riboflavin secreted by S. oneidensis after aerobic exposure to sheets of polystyrene (PS) and polyethylene
(PE) thin films. No statistical difference was observed (single-factor ANOVA, p = 0.58). Trials were performed in triplicate; error bars represent the SEM in triplicate
values. Note the different order of magnitudes on the riboflavin secretion for panels (A,B).

FIGURE 5 | The distribution of nano-PS in the four components of the exposed bacterial culture after exposure to 150 mg/L nano-PS, including the non-cellular
growth broth, which is significantly greater (p < 0.05) than lightly bound (LB)-EPS, tightly bound (TB)-EPS and association with cells. Inset shows statistical
comparison of the nano-PS in LB-EPS and TB-EPS to the cells (*p < 0.05). Error bars represent the SEM of triplicate biological replicates.

suggests that the nano-PS material itself, and not simply bacterial
interactions with particles, is important in inducing changes in
cellular behavior for S. oneidensis.

Beyond particulate matter, no significant differences in the
secretion of riboflavin was measured when bacteria were exposed
to polystyrene or polyethylene thin films, indicating that the
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material and/or size in which the bacteria are exposed to the
material impacts its response (Figure 4B). For context of the size
comparison, the surface area of the thin films is 2.0 × 1014 nm2

is very similar to the nano-PS exposure concentration of
75 mg/L that has a surface area of 2.2 × 1014 nm2. This
highlights the significance of the elevated riboflavin secretion
in the presence of nano-PS. While the thin film polystyrene
and polyethylene induced a similar result, it remains unclear
if nano-polyethylene would elicit the same size-dependent
response that was observed with nano-PS. Polystyrene and
polyethylene are both considered to have fairly recalcitrant
backbones and would be harder for microorganisms to degrade
compared to polymers such as polylactic acid (Amaral-Zettler
et al., 2020). Based on this similarity, we would predict that
nano-polyethylene may similarly increase riboflavin secretion,
although studies of natural microbial communities show that
microbes respond differently to these polymers (Zettler et al.,
2013; Debroas et al., 2017).

Characterizing Association of Nano-PS
With S. oneidensis
To understand the association of nano-PS with respect to
the bacteria in an effort to interpret the observed changes in
functionality, we analyzed various components of the bacterial
culture and organisms by ICP-MS. After exposure, the majority
of the nano-PS remained in the non-cellular culture media
under all experimental conditions (averaging 59.2 ± 15.7%
of the recovered nano-PS), which was significantly greater
(p < 0.05) than all the other culture components (Figure 5).
The remaining fractions of nano-PS were found in the LB-EPS
(7.0 ± 0.6%), TB-EPS (6.6 ± 0.6%), and directly associated
with the cellular biomass (10.9 ± 1.1%) (Figure 5, inset). The
mass balance for nano-PS was ranged between 66 and 106%
of the total nano-PS in the exposure, which was the result of
efforts to separate the aggregated nano-PS from the pelleted
bacteria cell (see Supplementary Figure S6). Collectively, our
results suggest that nano-PS interact both indirectly with the
bacteria through entrapment in the EPS and directly with
the bacterial membranes. Particles which were associated with
the membrane were presumed to be strongly bound because
the associated nano-PS remained attached after a series of
cell washing steps. Bacteria exude EPS as a mechanism for
improved chemical reactions, nutrient capture, and protection
(Costa et al., 2018). This work supports previous nanoparticle
toxicity studies, where nanoparticles are shown associated with
the EPS, likely a protective response by the bacteria (Kang et al.,
2014; Nomura et al., 2016). Interestingly, though, there is a
significant increase (p < 0.05) of nano-PS associated with the
bacterial biomass as was as compared to the LB-EPS or TB-
EPS samples. While it would be unusual for a particle with a
diameter of 160 nm to cross the bacterial membranes (Neal,
2008; Ivask et al., 2014), an association with the membrane is
supported by previous work with a variety of materials and
bacterial organisms (Ivask et al., 2012, 2014; Zhao et al., 2013).
Specifically, for S. oneidensis, Jacobson et al. (2015) has shown
that Au nanoparticles (12.8 nm) associate with the bacteria as

a function of the lipopolysaccharide (LPS) within the outer
cell membrane, we would hypothesize S. oneidensis would have
a similar mechanism for our nano-PS results. The exposure
times did not influence the percent of associated nano-PS,
suggesting that the interaction with the EPS and membranes
occurs within the first 4 h of exposure. Other nanoparticle
association studies have suggested that this association could be
even faster, within the first 60 min of exposure (Butler et al., 2014;
Moore et al., 2017).

The presence of nano-PS associated to the cell biomass
indicates that a direct interaction occurs between the nano-
PS and the bacteria. To determine if there is a correlation
between the amount of nano-PS particles associated with the
cell and the changes in riboflavin secretion, we quantified
the amount of nano-PS in the cell biomass upon increased
exposure doses (Figure 6). An increase in the number of
nano-PS associated with the cell was observed with increased
exposure concentrations. There was a significant increase in the
nanoparticles per cell at 300 mg/L in comparison to the 75
and 150 mg/L exposure results, although we did not observe a
doubling in membrane nano-PS concentration with a doubled
exposure concentration. The 300 mg/L exposure concentration
correlates with the nano-PS exposure concentration in which
the riboflavin secretion had significant decreases in comparison
to the control. Based on the determined low number of nano-
PS/cell (12–15 nano-PS particles/cell), we do not anticipate
nano-PS aggregates on the cell surface but that the particles
would be individually bound onto the cell membrane. This
association behavior has been observed by Jahnke et al.
(2016) in which S. oneidensis was exposed to 50 and
100 nm gold nanoparticle at similar nanoparticles/cell dosages.
The corresponding surface area coverage between the cells
exposed to 150 mg/L and 300 mg/L nano-PS was 13.4 and

FIGURE 6 | Comparison of the number of nano-PS normalized to the number
of cells for samples exposed to 75, 150, and 300 mg/L nano-PS in anaerobic
conditions for 12 h. A significant increase (∗p < 0.05) in the number of
nano-PS particles/cell for samples exposed to 300 mg/L nano-PS was
observed in comparison to bacteria exposed to 75 and 150 mg/L nano-PS.
Error bars represent SEM of biological triplicates.
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15.2%, respectively. The significant increase in the nano-PS
coverage of membrane surface area paired with the observed
significant decrease of riboflavin secretion, suggests that there
is a concentration at which the association of nano-PS with
the bacterial membrane results in alterations of the bacteria’s
riboflavin secretion ability. Nanoparticles have been shown to
perturb the structural integrity of the cell membranes, resulting
in changes within the local lipid environment (Rossi et al., 2014;
Contini et al., 2018). Membrane proteins are often sensitive
to protein-lipid interactions that may be altered by changes
in the morphology of the membrane caused by nanoparticle
presence (Lee, 2004; Dowhan and Bogdanov, 2011; Battle et al.,
2015; Muller et al., 2019). While the experimental dosages are
higher than what would be expected in natural systems, the
increase in the number of nano-PS particles associated with
cells at higher concentrations may result in the disruption of
the membrane shape impacting protein function responsible for
riboflavin secretion.

CONCLUSION

Overall, exposing S. oneidensis to nano-PS causes a stress
response that is not related to viability. Specifically, riboflavin
secretion, a critical cell function, is altered in the presence of
nano-PS. This work highlights the importance of this riboflavin
stress response because it is observed in both anaerobic and
aerobic conditions, indicating that the secretion behavior is
not a result of its metal reducing function. The observed
similar aerobic and anaerobic response is interesting as it
indicates that the interaction with nano-PS will be consistent
in many different environmental compartments. Furthermore,
we reveal that nano-PS associates indirectly with the EPS and
directly with the bacteria membranes. This is the first study to
characterize S. oneidensis nanoplastic or nanoparticle response
in both aerobic and anaerobic cultures. By understanding
the response of this adaptable single-celled organism under
varied conditions, this work has contributed to a better
understanding of the impact of plastic waste to the bedrock
of our ecosystems.
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