AUTHOR=Casas-Mulet Roser , Pander Joachim , Ryu Dongryeol , Stewardson Michael J. , Geist Juergen TITLE=Unmanned Aerial Vehicle (UAV)-Based Thermal Infra-Red (TIR) and Optical Imagery Reveals Multi-Spatial Scale Controls of Cold-Water Areas Over a Groundwater-Dominated Riverscape JOURNAL=Frontiers in Environmental Science VOLUME=8 YEAR=2020 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2020.00064 DOI=10.3389/fenvs.2020.00064 ISSN=2296-665X ABSTRACT=

The forecast of warmer weather, and reduced precipitation and streamflow under climate change makes freshwater biota particularly vulnerable to being exposed to temperature extremes. Given the importance of temperature to regulate vital physiological processes, the availability of discrete cold-water patches (CWPs) in rivers to act as potential thermal refugia is critical to support freshwater ecosystem function. Being able to predict their spatial distribution at riverscape scales is the first step to understanding the capacity to maintain thermal refuges and to inform future river management strategies. Novel Unmanned Aerial Vehicle (UAV)-based Thermal Infra-Red (TIR) imagery technologies provide an opportunity to assess riverscape stream temperature. On the example of a 50 km linear length of the groundwater-dominated Upper Ovens River (Australia), this study presents a methodology addressing critical challenges in UAV-based TIR and optical data acquisition, processing, and interpretation. Our methodological approach generated 49 georeferenced high-resolution TIR and optical orthomosaicked imagery sets. The imagery sets allowed us to identify river-length longitudinal patterns of temperature and to detect, characterize, and classify 260 CWPs. Both stream and CWPs temperatures increased but presented considerable variability with downstream distance. CWPs were non-uniformly distributed along the riverscape, with emergent hyporheic water types dominating, followed by deep pools, shading, side channels, and tributaries. We found associations between CWPs and key physical controls including land use, riparian vegetation, longitudinal and lateral CWP location, and CWP area size, illustrating processes acting at multiple spatial scales. This study provides a basis for future works on the thermal associations with physical controls over a riverscape, and it highlights the major challenges and limitations of the use of UAV-based TIR and optical imagery to be used in future applications. In conjunction with studies of thermally linked ecological processes, the predictions of CWPs can help prioritize river restoration measures as effective climate adaptation tools.