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Savanna woody plants can store significant amounts of carbon while also providing
numerous other ecological and socio-economic benefits. However, they are significantly
under-represented in widely used tree cover datasets, due to mapping challenges
presented by their complex landscapes, and the underestimation of woody plants by
methods that exclude short stature trees and shrubs. In this study, we describe a Google
Earth Engine (GEE) application and present test case results for mapping percent
woody canopy cover (%WCC) over a large savanna area. Relevant predictors of %WCC
include information derived from radar backscatter (Sentinel-1) and optical reflectance
(Sentinel-2), which are used in conjunction with plot level %WCC measurements to train
and evaluate random forest models. We can predict %WCC at 40 m pixel resolution
for the full extent of Senegal with a root mean square error of ∼8% (based on
independent sample evaluation). Further examination of model results provides insights
into method stability and potential generalizability. Annual median radar backscatter
intensity is determined to be the most important satellite-based predictor of %WCC in
savannas, likely due to its relatively strong response to non-leaf structural components
of small woody plants which remain mostly constant across the wet and dry season.
However, the best performing model combines radar backscatter metrics with optical
reflectance indices that serve as proxies for greenness, dry biomass, burn incidence,
plant water content, chlorophyll content, and seasonality. The primary use of GEE in the
methodology makes it scalable and replicable by end-users with limited infrastructure
for processing large remote sensing data.

Keywords: earth observation, vegetation structure, Copernicus Sentinel data, cloud-computing, machine
learning

INTRODUCTION

The Ecological and Socio-Economic Importance of Woody
Vegetation in Savannas
Woody plants are an important component of terrestrial ecosystems; they play a
major role in carbon, nutrient and hydrological cycles (Vitousek, 1982; Jackson et al.,
2002; Huxman et al., 2005) and provide habitat for other species (Ratter et al., 1997).
Savannas occur across tropical, sub-tropical and temperate latitudes, and feature the
co-dominance of woody and herbaceous plant forms (Werner, 2009). While they may exhibit
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on average lower woody densities relative to closed canopy
forests, their vast spatial extent (up to 40% of the Earth’s
terrestrial surface, depending on definition; see Scholes and
Archer, 1997; Bond and Midgley, 2000; Sankaran et al., 2005;
Ratnam et al., 2011, and references therein) indicates an
important role in global and regional carbon storage. As
such, a lack of detailed information on woody vegetation
cover in savannas contributes uncertainties in current carbon
stock estimates and constrains scientific understanding of
the role they may play in long-term climate change. In
socio-economic terms, trees and shrubs are key to the basic
livelihoods of millions living in regions such as the West
African Sahel. The predominantly agro-pastoralist societies
rely on woody biomass for energy (fuelwood and charcoal)
and food (including livestock browse) (Wessels et al., 2013;
Hanan, 2018). An accurate quantitative and spatially explicit
assessment of woody vegetation cover in such regions is
thus crucial to local, regional and global efforts aimed at
understanding and combating the effects of climate change
through carbon sequestration, reducing food insecurity
through extensive livestock systems, and promoting sustainable
land use practices.

Challenges to Large Area Mapping of
Woody Vegetation in Savannas
Savannas have complex landscapes; a picture of individual shrubs
and trees or discontinuous tree canopies against a background
of grassland and/or cultivated surfaces comes to mind. This
picture is often the result of millennia of climate and human
induced changes that continuously alter landscapes on short-
and long-term basis (Behling and Hooghiemstra, 1999; Werner,
2009). Medium and coarse resolution land cover maps that
categorize individual pixels into unique land cover/land use
types cannot adequately separate different vegetation types in
such areas. At the same time, using commercial very high
resolution (VHR) imagery (e.g., <1 m) for detailed mapping
remains impractical beyond the local scale, due to the insufficient
coverage of currently archived data, high cost of new large area
acquisitions, and steep computation and storage requirements
for processing.

In lieu of categorical land cover maps, Vegetation Continuous
Fields (VCF) land cover products have been developed to fill
the need for more detailed vegetation mapping over large
areas; by providing sub-pixel/fractional estimates of specific
canopy properties (e.g., percent tree cover) (Defries et al.,
2000b; Hansen et al., 2002). VCF methodology generally
involves using satellite-derived metrics as discriminants
in an empirical model that is calibrated with continuous-
scale measurements obtained from the field (or from higher
resolution imagery) (Foody and Cox, 1994; Hansen et al.,
1996; Defries et al., 2000a; Gessner et al., 2013; Baumann
et al., 2018). Existing global VCF products are however
not ideal for estimating canopy properties in drylands and
savannas. For example, the annual MODerate Resolution
Imaging Spectrometer (MODIS) VCF product (MOD44B)
(Hansen et al., 2002), and the Landsat equivalent (Sexton
et al., 2013), are designed to only represent tree canopies

with certain characteristics based on the definition of forests
provided by the Food and Agricultural Organization (e.g.,
canopy height > 5 m) (FAO, 2000). Consequently, these
datasets are known to significantly underestimate woody plant
cover in dry savannas, where trees and shrubs tend to be of
considerably lower stature (Figure 1, as well as Gessner et al.,
2013; Brandt et al., 2016a).

The Use of Satellite Remote Sensing in
Mapping Woody Cover in Savannas
Satellite-obtained optical reflectance data have been used for
decades to map and monitor vegetated surfaces over large extents
(Matthews, 1983; DeFries et al., 1995; Hansen et al., 2002). This is
largely due to their ability to provide scalable spectral information
relevant to plant canopies such as greenness, leaf area index and
phenology (Zhang et al., 2003; Xie et al., 2008). The extensive
spatiotemporal coverage and free availability of data from sensors
such as MODIS and Landsat, and more recently Copernicus
Sentinel instruments, has also contributed to making remote
sensing data a far less costly and laborious option to derive global
and regional vegetation maps. However, particularly in tropical
and subtropical regions, these benefits are counteracted by
problems associated with cloud coverage, atmospheric scattering,
background reflectance, and saturation of optical indices in more
densely vegetated landscapes (Huete et al., 1997).

In the context of open savannas and woodlands, phenology
and seasonality metrics derived from optical reflectance data
have been used to discriminate woody and non-woody plant
forms. Brandt et al. (2016a) demonstrated this using dry-
season integrated Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR), derived from MODIS and SPOT-
VEGETATION (SPOT-VGT), to estimate woody plant cover
at 1km resolution scale for the West African Sahel. In this
region, annual vegetation productivity is strongly controlled
by precipitation which typically falls within a short window
(3–5 months) (Nicholson and Webster, 2007). Herbaceous
vegetation would typically green-up and senesce during this brief
period, while trees and shrubs can flush leaves before the rains
and often retain leaves for some months into the dry season
(Hiernaux et al., 1994). In theory, this means woody vegetation
may be distinguished from herbaceous vegetation using time
series optical reflectance data to detect differences in phenophases
between woody and non-woody plants. However, such precise
phenology information is harder to obtain using remote sensing
data at finer (sub-100 m) scales, where operational instruments
have lower revisit times; and also, where the differences in
phenophases among woody species (see Brandt et al., 2016a,b)
becomes more visible, making it harder to collectively separate
them from herbaceous vegetation.

Unlike optical reflectance, microwave (radar) backscatter
is largely insensitive to atmospheric/cloud conditions and,
depending on wavelength, can be sensitive to the seasonally
invariant structural components of trees and shrubs. For
example, the leaves of small trees and shrubs would be largely
transparent to Sentinel-1 C-band radar backscatter (∼5 cm
wavelength) but these wavelengths are sensitive to the stems
and branches (Flores-Anderson et al., 2019). Thus, the addition
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FIGURE 1 | An illustration of how the MODIS Vegetation Continuous Fields Tree Cover data (MOD44B) effectively excludes global dryland regions (yellow and
orange) where VCF generally indicates canopy cover is 0–5%. Closer examination (inset images A, B, and C) suggests these areas can contain significant amounts
of woody cover in the form of (smaller) trees and shrubs. Imagery Source: ESRI Basemaps, DigitalGlobe.

of radar backscatter should improve our ability to discriminate
woody vegetation in savannas with or without the benefit
of knowledge on tree-grass phenological differences. This was
demonstrated in a recent study that used ALOS PALSAR
L-band backscatter to map woody vegetation in a Southern
African savanna (Urbazaev et al., 2015), and another study that
showed that fusion of Sentinel-1 (C-band) radar backscatter with
Landsat 8 optical reflectance data significantly improved the
accuracy of mapping tree and shrub cover in South America
(Baumann et al., 2018).

Objectives
Against this background, our main objective is to describe the
methodology and present prototype results for mapping %WCC
over a large, predominantly savanna region in West Africa. Our
approach combines relevant metrics, derived from both radar
backscatter and optical reflectance data, as empirical correlates
of %WCC at medium resolution (40 m) in an ensemble decision
tree (random forest) model. Furthermore, we interpret our test

case results to answer the following questions: (1) Which earth
observation metrics contribute most to accurate predictions of
%WCC in tropical savannas? (2) Given the ‘black box’ nature
of machine learning models used for prediction, can we discern
meaningful (statistical or mechanistic) relationships between
important predictors and %WCC? (3) How does our derived
%WCC compare with other similarly published datasets for the
region? Answers to these questions should indicate how our
approach contributes a new and useful tool for reliably mapping
savanna tree and shrub cover at relatively fine scales using remote
sensing data, and its transferability to other regions.

Local, national and regional institutions in developing
regions such as West Africa face tremendous difficulties in the
operational use of remote sensing data for environmental and
natural resource monitoring. These difficulties mostly arise from
the technical requirements (e.g., internet bandwidth, computer
processing power, and storage capacity) required for handling
large volumes of satellite data. In anticipation of these difficulties,
and to make our approach accessible for implementation in
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other regions, our methodology relies on the use of geospatial
cloud computing resources provided by Google Earth Engine
(GEE; Gorelick et al., 2017), with automated and documented
workflows that facilitate local adaptation by relevant stakeholder
communities. This framework is scalable and repeatable and aims
to support mapping in arid and semiarid regions around the
world with woody plant canopy/height varying from open/short
(<5 m) to closed/tall (>5 m).

MATERIALS AND METHODS

Study Area
Our study area is the full geographic extent of Senegal in West
Africa (Figure 2). Senegal has a bio-climatic gradient ranging
from the arid Sahel in the north (mean annual precipitation
or MAP < 300 mm, with low %WCC and shrubs and trees
generally 1–2 m tall), through the semi-arid Sudano-Sahelian
zone (300 mm < MAP < 900 m, a blend of woodland and
grassland savannas, with shrubs and trees 2–6 m tall), to the
humid Guinean savanna/forest mosaic south of The Gambia
(MAP > 900 mm, trees up to ∼10 m tall) (Kumar et al.,
2019). Geomorphologically, Senegal is a mostly flat country
with a maximum elevation less than 200 m above sea-level
(Diouf et al., 2015; Anchang et al., 2019). The northern,
central and eastern parts of Senegal are the main zones
of pastoral activity and have been divided into 4 ecological
zones reflecting soil and land use characteristics: Sandy Ferlo
(north), Ferruginous Ferlo (north east), mixed agro-pastoral
zone (central) and savanna-woodland transition zone (East)
(see Figure 2, as well as Diouf et al., 2015). Senegal has an
estimated population of 16 million people, with a rural populace
that is principally engaged in rain-fed agriculture and pastoral
(livestock grazing) activities, both of which directly impact woody
resource availability and sustainability. Urban populations also
exert notable influence on woody resources through a high
household demand for fuelwood and charcoal (2002 Census data
from Minnesota Population Center, 2018).

Software Tools
The methodology described in this paper was designed
and implemented mostly using Google Earth Engine (GEE;
Gorelick et al., 2017), a cloud-based computing platform that
allows for planetary scale geospatial data retrieval, processing
and analyses. It can be accessed programmatically using a
Java code editor browser interface or a Python application
programing interface. GEE significantly lowers the technical
and infrastructural requirements for geospatial analysis of
large areas, as the ‘heavy lifting’ is carried out by server-side
functions. It currently boasts an impressive and constantly
improving library of free earth observation/geospatial datasets
and open source analytic tools. We used GEE for all satellite
data retrieval and preprocessing, model training and validation,
and deriving final %WCC maps (see Supplementary Material
for details on how to access project code materials and
an online demo).

Collect Earth Online (CEO)1 is another free online tool
featured in our methods. It is a browser-based adaptation of
the Collect Earth desktop tool (Bey et al., 2016). CEO allows
for augmented visual analysis of VHR imagery to derive land
cover data at the field/plot scale. We used CEO to acquire
supplementary measurements for model training and validation.

The use of offline (i.e., desktop) tools was intentionally limited.
ArcGIS Pro (ESRI, 2017) was used to prepare GIS point shapefiles
of field/CEO data for upload to GEE environment (any open
source GIS software, e.g., QGIS, could also be used for this).
Python machine learning libraries were also used to reproduce
model results on the desktop environment and to access advanced
model utilities not currently available in GEE.

Methodology
Workflow Description
Figure 3 illustrates the steps (preprocessing, compositing, and
modeling) employed in mapping %WCC from combined optical-
radar remote sensing data.

Data Preparation
Plot level woody canopy cover
We combined plot level measurements obtained from the
field and from VHR imagery to train and validate empirical
models for predicting %WCC. Field data were collected in
2015 from 24 field sites located in relatively homogenous
landscapes in the Northern, Central and Eastern regions of
Senegal (Figure 2; green dots). These sites are part of a
long-term in situ biomass monitoring effort by the Ecological
Monitoring Center (Centre de Suivi Ecologique or CSE) located
in Dakar, Senegal. Each site is a 1km transect along which
four (4) circular plots with radius varying from ∼19 m
(totaling 0.5 hectare per site) to ∼28 m (totaling 1 hectare
per site) are placed at regular intervals (200, 400, 600, and
800 m), giving a total of 96 plots with data available for our
analysis. %WCC is assessed within each plot at the end of
the growing season (i.e., peak canopy greenness) every 2 years,
through an exhaustive inventory process that includes, amongst
other things, measuring the diameter along two axes of the
visible crown surface area of every woody plant (Diouf and
Lambin, 2001). Normally, the plot data are aggregated for
each site to provide estimates of %WCC at the hectare (ha)
scale. For our purposes, however, the circular plots are at a
scale well-matched to that of medium resolution (<100 m)
remote sensing data. Thus, for this study we utilized the non-
aggregated (i.e., plot level) measurements obtained during the
2015 field campaign.

Given that the field sites are largely restricted to the drier parts
of Senegal (the Ferlo regions, Figure 2), field measured %WCC
was mostly in the 0 – 60% range. We thus additionally sampled
the southern more humid/forested portion of the country (i.e.,
southeast Senegal and the Casamance region located south of
The Gambia). This was done to acquire additional %WCC
measurements at the field plot scale, using VHR image data,
for reliable predictions in the 60 – 100% range (Figure 2; blue

1https://collect.earth/
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FIGURE 2 | Map of Study Area (Senegal). Centre de Suivi Ecologique (CSE) field sites indicated in green. Locations of plots analyzed using very high resolution (VHR)
imagery within Collect Earth Online (CEO) indicated in blue. Isohyets (mean annual precipitation in mm for the years 1981–2018) were derived using Climate Hazards
Infra-Red Precipitation with Stations (CHIRPS) rainfall data (Funk et al., 2015).

dots). In total 200 random locations were chosen within this
region to be assessed using the CEO tool. To be consistent as
possible with both the CSE field data and satellite data (described
hereafter), we set up a 40 by 40-m rectangular plot at each
random point location and filtered the DigitalGlobe imagery
to the years 2015–2017. Each plot was populated with gridded
sample points spaced 5 m apart inclusive of plot edges (i.e.,
9 × 9 = 81 sample points per plot) (Figure 4). The %WCC
fraction within a plot was determined by labeling each sample
point as either covered by a tree/shrub or not and obtaining
a tally for the entire plot (1 labeled point = 1/81 or ∼1.23%
of cover). To ensure accurate results in the CEO analysis,
we only assessed plots with the highest visual quality in the
DigitalGlobe imagery available for the given years, leading to a
very low retention rate (47/200 or ∼25% of plot data retained).
Added to the 96 CSE field plots, this gave us a total of 143
plot level measurements to be used in calibrating our %WCC
prediction models.

Satellite data
Using the code editor (Java) interface of GEE, we retrieved
all Sentinel-1 (C-band synthetic aperture radar) and
Sentinel-2 (optical reflectance) data, acquired at 12- and
5-day intervals respectively within a 3-year period (01
January 2015 – 31 December 2017), and covering the
entirety of Senegal (Copernicus Sentinel Data, 2015).
We used these data to create gap-free annual composite
metrics, aggregated to 40 m spatial scale, that would
serve as empirical correlates of per-pixel %WCC. Tree
cover mapping studies have shown that using multi-year
imagery leads to more accurate and stable predictions
than using single date imagery (Karlson et al., 2015;
Urbazaev et al., 2015; Brandt et al., 2016a). Longer-term
composites are less susceptible to variations in image
acquisition conditions that would otherwise influence
backscatter/reflectance from single-date imagery or very
short-term composites.
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FIGURE 3 | Methodology used to model woody canopy cover (%WCC) from remote sensing data. CEO, Collect Earth Online; VV, vertical-vertical polarization; VH,
vertical-horizontal polarization.

FIGURE 4 | Example of plot level assessment of %WCC using Collect Earth Online (https://collect.earth/). Plot dimensions are 40 m by 40 m with 9 × 9 (81) sample
points spaced 5 m apart. In this illustration, the proportion of ‘green’ dots provides an estimate of percent %WCC within the plot. Base VHR image shown is a 2017
acquisition (Courtesy of DigitalGlobe).

For Sentinel-1 (S1), we specifically used the Interferometric
Wide (IW) Ground Ranged Detected (GRD) high resolution
(10m) product, with both vertical-vertical (VV) and vertical-
horizontal (VH) polarization, acquired in the ascending orbit.
S1-GRD data in GEE is already pre-processed as follows: orbital
file application, thermal noise removal, radiometric calibration,
and terrain correction. Our workflows additionally applied a
spectral noise filtering function using the Enhanced Lee Speckle

Filter (Lopes et al., 1990) and an incidence angle correction
function to minimize inter-scene variation.

For Sentinel-2 (S2), we used the Level 1C (non-
atmospherically corrected) product, retrieving spectral bands
in the visible (10 m), near infra-red (NIR) (10 m), red-
edge (RE) (20 m), and short-wave infrared (SWIR) (20 m)
electromagnetic region. We note that GEE has already ingesting
atmospherically corrected (Level 2A) S2 products as of early
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2019. However, these do not yet offer enough temporal
coverage for our current analysis and are reserved for future
iterations. For the present analysis, however, we performed
the following steps to minimize atmospheric effects and
improve the overall quality of composite metrics: (i) cloud
and cloud shadow masking, (ii) bi-directional reflectance
distribution function (BRDF) correction (Roy et al., 2017a,b),
(iii) geometric and topographic correction, (iv) monthly
‘greenest’ (i.e., maximum NDVI) compositing, (v) use of
‘median’ instead of ‘mean’ when averaging to minimize effects of
temporal outliers.

Satellite-Derived Metrics as Empirical Determinants
of %WCC
A total of 16 remote sensing metrics were generated as a single
multiband composite image, at a 40 m resolution scale, and used
to provide independent variables for predicting %WCC. These
metrics were chosen to be relevant in sensing diverse vegetation
properties, including those that are useful in discriminating
woody from non-woody plants (Table 1). Most importantly, they
could be derived directly from S1 and S2 data. The pixel values
of each band were then extracted for the 143 plot locations to
produce a single data table for modeling.

TABLE 1 | Satellite-derived metrics evaluated for predicting %WCC.

Variable Description Units Relevance References

med_vv Median radar backscatter (VV) Decibels (dB) Detection of canopy structural and
water content properties.

Urbazaev et al., 2015; Baumann et al.,
2018; Flores-Anderson et al., 2019

med_vh Median radar backscatter (VH)

std_vv Standard deviation of radar
backscatter (VV)

Standard deviation values could
capture seasonality to help discriminate
woody-herbaceous signals.

std_vh Standard deviation of radar
backscatter (VH)

med_nd Median of normalized difference
vegetation index (NDVI)

Unitless Detection of green vegetation material Tucker, 1979; Karlson et al., 2015

(NDVI = ρNIR-ρRED/ρNIR + ρRED)

med_ndw Median of normalized difference
water index (NDWI)

Unitless Detection of plant water content and
stress

Gao, 1996

(NDWI = ρNIR-
ρSWIR1/ρNIR + ρSWIR1)

med_ndre Median of Red-Edge normalized
difference Index

Unitless Detection of leaf chlorophyll content Sims and Gamon, 2002

(RE-NDVI = ρRE2-
ρRE1/ρRE2 + ρRE1)

med_swir21 Median of ratio of shortwave
infra-red bands

Unitless Empirical surrogate for cellulose
absorption index used to detect
senescent biomass high in cellulose
content

Key and Benson, 2005; Guerschman
et al., 2009; Hill et al., 2016

(SWIR21 = ρSWIR2/ρSWIR1) Also potentially correlates to burn
activity

max_nd Maximum of NDVI Unitless Intra annual/seasonal leaf phenology to
help discriminate woody-herbaceous
signal

DeFries et al., 1995; Gessner et al.,
2013; Karlson et al., 2015; Brandt
et al., 2016a

Min_nd Minimum of NDVI

rge_nd Range of NDVI

dry_nd Dry season NDVI (Median NDVI of
driest 3 months)

wet_nd Wet season NDVI (Median NDVI of
greenest 3 months)

wet_minus_
dry_nd

Difference in wet and dry NDVI

med_red Median of red band reflectance Brightness indices (Baumann et al., 2018)

med_nir Median of near infra band related to albedo change with
vegetation cover

VV, vertical-vertical polarization; VH, vertical-horizontal polarization; NIR, near infra-red; RE1, Sentinel-2 red edge band 1 (∼704 nm); RE2, Sentinel-2 red edge band 2
(∼740 nm); SWIR1, Sentinel-2 short wave infra-red 1 (∼1610 nm); SWIR2, Sentinel-2 short wave infra-red 2 (∼2200 nm); ρ, reflectance. Although potentially relevant to
tree canopy albedo, metrics derived from blue and green S-2 bands were excluded to minimize effect of atmospheric noise in model input reflectance data.
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Random Forest Model Training and Validation
We used random forest regression (Breiman, 2001) within GEE
to predict percent %WCC (response variable) from our selected
satellite-derived metrics (independent variables, Table 1). The
random forest technique belongs to the family of ensemble
decision tree models where final predictions are obtained by
averaging the predictions of multiple individual regression
trees. Generalization error in random forests is minimized by
increasing diversity among the tree population through the
random subsampling of observations and variables (features).
Current implementation of the machine learning algorithms in
GEE is relatively ‘barebones,’ with missing utilities such as the
ability to visualize variable importance and partial dependence
on the fly. As such we also replicated the modeling exercise in a
desktop environment using the random forest regressor function
provided in the Python machine learning library (Scikit-learn)
(Pedregosa et al., 2011). To allow use of python tools to evaluate
and fine-tune GEE based models, we established reproducibility
of results between GEE and Python for the same data and basic
model parameters.

A 70%/30% random split was used to create independent
training and test samples, respectively, for the random forest

model. Hyper-parameter tuning of the model was done by
trial and error: sequentially altering individual parameters (e.g.,
number of trees) and observing the effect on training root
mean square error. We eventually settled on the following
model settings for our case of Senegal: 150 trees, minimum
leaf prediction size of 4, 1/3 of variables randomly selected per
tree, and a bag fraction of 0.9 (i.e., fraction of training sample
randomly chosen with replacement for each tree model). The
choice of a high bag fraction was necessary due to the relatively
small size of our training sample (i.e., 70% of only 143 plot level
measurements) ensuring enough data for model learning while
allowing for some cross validation within the model. Eventually,
independent model validation was done by calculating the root
mean square error (RMSE) of predictions on the test sample (plot
observations not exposed to model fitting and tuning).

Model Interpretation
In addition to our main objective of accurate %WCC mapping,
we also sought to identify the most important satellite-derived
determinants of savanna %WCC and the possible causal
(statistical or mechanistic) relationships driving the model. We
used two model-agnostic interpretation tools (i.e., tools that are

FIGURE 5 | Map of percent %WCC in Senegal, predicted from combined radar and optical remote sensing metrics using a random forest model trained and
evaluated using field and VHR imagery data (Figure 1).
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not specific to any given model), namely variable permutation
importance (Breiman, 2001) and the Accumulated Local Effects
(ALE) (Apley, 2016; Molnar, 2019). Permutation importance
measures the mean decrease in model accuracy (mean increase
in prediction error) when a specific variable is excluded, by
shuffling its original values to create noise drawn from the
same distribution (Breiman, 2001). We calculated permutation
importance using only the test sample data, in order to place it in
the context of model generalization (Molnar, 2019). By contrast,
the ALE plot shows the locally averaged marginal effect of a
specific independent variable on predictions of the dependent
variable and is an improvement over the more commonly used
partial dependence plot (Friedman, 2001). For each observation
of a specific predictor (i.e., x-value), the ALE plot calculates
the average change in the target prediction within a local
multidimensional window around x-value. This alleviates the
requirement for model covariates to be uncorrelated and provides
an unbiased visualization of the shape (e.g., linear, monotonic)
of the individual predictor-response space. We used ALE plots
to infer underlying statistical and/or biophysical drivers of the
model, using our knowledge of savannas and radar/optical
remote sensing principles.

Finally, we used several sub-models to examine the value of
the optical-radar data fusion approach. A separate model was
developed for each of the following sets of independent variables:
(1) only radar-based metrics, (2) only optical-based metrics,
(3) only radar-based median metrics, (4) only optical-based
median metrics, (5) only radar-based inter-annual variability
metrics, (6) only NDVI seasonality metrics. We compared the
performance (RMSE) between sub-models and with the full
model to determine which combinations of metrics were most
optimal for accurately predicting %WCC.

RESULTS AND DISCUSSION

%WCC in Senegal
Using all available predictor variables, our random forest model
was able to predict %WCC for Senegal at 40 m spatial resolution
(Figure 5) with a high degree of accuracy (training sample RMSE
of ∼5%, independent test sample RMSE of ∼8%, Figure 6).
A visual examination of the final map showed the distribution of
predicted %WCC in Senegal to be consistent with what we expect
of woody resource distributions across climatic, biogeographic
and anthropogenic gradients in Senegal. With the exception of
riparian vegetation and irrigated agriculture along the Senegal
River in the northern border with Mauritania, predicted %WCC
in Senegal generally followed a latitudinal (southward increasing)
gradient, supporting the ecological postulation that maximum
%WCC in African savannas is constrained by precipitation levels
(Sankaran et al., 2005).

In northern Senegal (the region known as the Sandy Ferlo),
low %WCC cover was predicted by our model (mostly < 10%,
Figure 5), consistent with the expectation that low rainfall (MAP
∼300 mm or less) limits the establishment and maintenance of
woodland systems. However, despite the low cover, other time-
series studies have inferred long-term gains in woody vegetation

FIGURE 6 | Random forest model training (N = 104) and validation (N = 39)
accuracy for %WCC estimates in Senegal.

in this area, mostly as recovery from 1970s/80s drought events
(Kaptué et al., 2015; Anchang et al., 2019), but also due to
relatively low human influence in areas that are largely not
suitable for agriculture (Brandt et al., 2017). Our ability to detect
low cover of trees and shrubs in this region can play a key role in
supporting such conclusions in future studies.

In the Sudano-Sahel savanna ecoregion, predicted %WCC was
noticeably lower on the western side (mostly < 30%, Figure 5),
a likely result of the greater population density and prevalence
of agricultural activities in this area. Western Senegal is home
to large urban population centers like Dakar and Touba, as well
numerous other built-up settlements (Figure 4, gray colored
areas) which exert more pressure on local woody resources due
to the greater demand for wood products such as fuelwood
and charcoal. By contrast, in the eastern Ferruginous Ferlo and
savanna-woodland transition zones (Figure 5), predicted %WCC
increased to intermediate levels (30 – 60%). In this area, where
the urban footprint is considerably less, %WCC is more strongly
influenced by herbivory (grazing) and fire activity (Kahiu and
Hanan, 2018b).

In the regions of Senegal south of The Gambia (i.e.,
Casamance region), and furthest to the southeast of Senegal,
where MAP > 900 mm, mapping results showed highest levels
of %WCC, with pockets of >80% cover predicted in some areas.
These high levels of %WCC are evident in the southwestern
corner, particularly in the Saloum delta area and along the
Casamance River, where riparian/mangrove systems abound.
Results also showed, however, instances of fragmentation (breaks
in high %WCC) in the southern forested landscape, notably in the
southcentral zone (Figure 5), a likely outcome of forest clearance
for cultivation.

Interpreting Model Predictions of %WCC
From Satellite-Derived Metrics
Variable Importance
We used variable importance (permutation importance) scores
obtained from the fitted random forest model to examine the
importance of individual metrics in accurately predicting %WCC
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FIGURE 7 | Variable importance in predicting %WCC (refer to Table 1 for full description of abbreviated variable names). Importance weights (x-axis; blue color)
reflect the mean increase in test sample prediction error (with associated standard deviation indicated in orange) arising from iterative permutations of each predictor
variable (y-axis).

in the validation sample (Figure 7). Results indicate that the
median of VV and VH backscatter (med_vv and med_vh), the
median of SWIR21 (med_swir21), and the median of NDVI
(med_nd), were the most important predictors. Meanwhile,
the standard deviation of backscatter (std_vv and std_vh), the
minimum of NDVI (min_nd), and the median NDVI of the driest
quarter of the year (dry_nd) were the least important.

The importance of VV backscatter in predicting woody
cover in our model (more than twice as important as the
runner-up, med_swir21, Figure 7) is supported by previous
savanna mapping studies. Co-polarized radar (i.e., HH and
VV polarization) is known to be sensitive to non-leaf canopy
components (such as branches and stems) compared to cross-
polarized radar (HV and VH polarization), and hence should
be more effective in sensing woody vegetation in the dry
regions like the Sahel where most trees are absent leaves at
some point during the prolonged dry season (Urbazaev et al.,
2015). The second most influential variable was the median of
SWIR21, the ratio SWIR band 2/SWIR band 1 (see Table 1).
Sentinel 2-derived SWIR21 is analogous to the MODIS-derived
SWIR32 (ratio of MODIS SWIR bands 3 and 2), which has
been found to be correlated with cellulose absorption index
(CAI), derived from hyperspectral data and used primarily in
remote sensing of dry/senescent biomass (Guerschman et al.,
2009; Hill et al., 2016, 2017). We therefore postulate that SWIR21
in our model correlates to the abundance and persistence of
(dry) herbaceous biomass, and that its relatively high importance
for predicting %WCC arises indirectly from the competitive
interactions between trees and grasses in mesic savannas (Scholes
and Archer, 1997; Dohn et al., 2013; Kahiu and Hanan, 2018a).

An interesting perspective gleaned from the variable
importance plot is that metrics measuring annual central
tendency (i.e., ‘median’) in remote sensing data appeared to be
more useful than metrics measuring intra-annual variability
(seasonality) (e.g., standard deviation of radar backscatter and the

maximum, minimum, range of NDVI). In an attempt to explain
this, we consider that the most seasonally variant component
of savanna trees and shrubs are the leaves, which are mostly
transparent to C-band radar (l∼5 cm) (Flores-Anderson et al.,
2019) and depending on phenology (i.e., level of deciduousness),
would mostly senesce and fall off during the long dry season. The
intra-annual variability of radar backscatter thus offers little in
the way of discriminating woody canopies due to the (mostly)
unchanging nature of non-leaf components. At the same
time, the prevalence of deciduous woody species with varying
phenologies (Brandt et al., 2016a,b) combined with long dry
periods weakens the model’s ability to discriminate woody plants
collectively from herbaceous vegetation based on inter-seasonal
variations in ‘greenness’ (NDVI). We anticipate however that
precise phenology metrics that capture the onset/length of the
greening and leafing (e.g., the MODIS Land Surface Phenology
product or MCD12Q2.006; Ganguly et al., 2010; Friedl et al.,
2019) may be more useful for mapping %WCC in savannas.
However, for our application, these metrics would need to be
derived at a spatial scale similar to Sentinel data.

Relationship Between Predicted %WCC and
Important Satellite-Derived Variables
We used ALE plots to examine the relationship between
individual independent metrics and %WCC predictions
(Figure 8). ALE plots measure the sensitivity of the dependent
variable to a specific predictor, by averaging the change in
prediction derived using all values of other variables found
within a local window. The ALE plot for Median VV backscatter
showed a strong monotonic association with %WCC prediction.
The average change in predicted %WCC generally increased
with the value of median VV backscatter, most strongly between
the values of ∼−16 dB (below which we expect sample plots
observations to be mostly void of trees and shrubs) and∼−10 dB
(above which we expect woody canopy saturation) (Figure 8A).
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FIGURE 8 | Plots showing Accumulated Local Effects (ALE) plots of percent woody canopy cover (%WCC) prediction sensitivity to the 4 most important
independent variables: (A) median of VV backscatter in dB, (B) median of SWIR2/SWIR1 band ratio, (C) median of VH backscatter in dB, (D) median of NDVI.
Y-axis indicates average change in %WCC prediction. Red lines are plots for 50 different Monte Carlo samples drawn from the model training data, with black lines
showing response without Monte Carlo sampling. Blue markings on x-axis show the distribution of each independent variable.

A similar relationship was observed between change in predicted
%WCC and the median of VH backscatter (Figure 8C), although
the latter’s effect on increasing %WCC predictions begins to
saturate at much lower values. This supports our findings (from
variable importance analysis) of the greater effectiveness of VV
polarized radar to sensing woody canopies.

The ALE plot of med_swir21 (median of SWIR2/SWIR1 band
ratio) revealed a strong negative effect on %WCC predictions
(Figure 8B), also supporting its relatively high position (second)
in variable importance ranking. As we have previously explained,
SWIR21 is used in this case a proxy for detecting dry herbaceous
biomass, and so its annual median value should positively
correlate with grass cover and production in a given location, and
hence may negatively correlate with %WCC due to the dynamics
of tree-grass competition (Dohn et al., 2013). Incidentally, the
numerator of the SWIR21 ratio (i.e., SWIR band 2, ∼2200 nm
wavelength) is also used to calculate normalized burn ratio (NIR-
SWIR/NIR + SWIR) in which low values are used detect large
area burn scars (Key and Benson, 2005). By extension, this means
the model could be picking up the likely correlation between
SWIR21 and persistent burning activity, which also negatively

impacts woody cover (Scholes and Archer, 1997). The ability of
tree-based models to incorporate such latent information and
handle interactions is what makes them powerful (though not
always transparent) tools for predictions.

As would be expected, median NDVI was positively correlated
with %WCC prediction, though with a noticeable saturation at
NDVI>∼0.35 (Figure 8D). This is a reminder of the important,
but limited, role of spectral indices that respond to only green
material in vegetation; they become less effective if used without
other data sources in the prediction of the abundance of woody
components of the landscape.

Differences in the Performance of Sub-Categories of
Satellite-Derived Metrics
The best overall model in terms of accuracy was the full model
with all variables present (lowest test sample RMSE of 8.2%,
Figure 9A), supporting the assertion that combining radar and
optical data sources allows for a more accurate mapping of
trees and shrubs (Baumann et al., 2018). It also means less
important variables were still useful in minimizing the model
generalization error and need not be excluded. Although the
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FIGURE 9 | Woody canopy cover (%WCC) prediction accuracy (training = green, validation = red) for models fitted using different groupings of satellite-derived
variables: (A) Full model with all metrics, (B) all radar-based metrics, (C) all optical-based metrics, (D) radar-based median metrics, (E) optical-based median
metrics, (F) radar-based standard deviation metrics, (G) optical-based (NDVI) seasonality metrics.
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median backscatter metrics individually ranked high in predictive
importance, models using only radar-based metrics did not
achieve the highest model accuracy (test sample RMSE of ∼12%,
Figures 9B,D). In fact, models using optical reflectance metrics,
with or without NDVI-based seasonality metrics, collectively
outperformed the radar-only models (test sample RMSE of ∼9%
and ∼10%, Figures 9C,E, respectively). A possible explanation
is that the optical reflectance metrics collectively provide more
diverse information that is always useful in an ensemble tree-
based model. The overall weakness of metrics only capturing
intra-annual variability or seasonality in both backscatter and
greenness is once again evident (Figures 9F,G). As we have
explained previously, variability in radar backscatter (particularly
the VV band) will not produce a strong signal for discriminating
woody canopies as the most seasonally variable component (i.e.,
small leaves than senesce and fall off during the dry season) are
mostly transparent to C-band radar. However, the usefulness of
variables that capture annual variability of NDVI for woody-grass

differentiation depends on the relative abundance of woody
species with long versus short leaf production periods.

Comparisons With Other Existing Woody
Canopy Cover Datasets
Our derived %WCC map for Senegal reveals minor similarities
and very strong differences when compared to other currently
available datasets. Just like its MODIS counterpart, Landsat VCF
tree cover data is based on methodology that only considers
woody plants greater than 5 m tall, and as such underestimates
canopy cover in the savannas by significant margins (in this
case indicating < 10% for most of Senegal, and <20% for even
the southern densely forested mangrove region in the Saloum
delta, Figure 10C).

Much closer to the estimates in this study are those by
Brandt et al. (2016a), who used FAPAR phenology metrics and
regression models to predict mean 2009-2013%WCC at 1km

FIGURE 10 | Comparison of different woody cover datasets currently available for Senegal: (A) ∼2016 %WCC derived in this study, (B) 2009 – 2013 mean %WCC
estimated by Brandt et al. (2016a) for the West African Sahel using FAPAR phenology metrics, (C) 2015 Landsat VCF tree cover by Sexton et al. (2013). All raster
data shown above are resampled to 1 km cell size for direct comparisons and classified using the same color legend.
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resolution for the entire West African Sahel (Senegal subset
shown in Figure 10B). It is worth noting that both studies
share commonality in the field datasets used for modeling,
with differences in acquisition years and spatial aggregation
scale (individual plot versus site scale, see description of field
data in section “Data preparation”). Agreements can be seen
to a certain extent in the northern and western parts of
Senegal, where both products report mostly < 20% of %WCC
(compare Figures 10A,B). However, although both maps show
a steady southward increase in woody cover, a divergence in
the values is noticeable in the Ferruginous Ferlo to the east,
and the woodlands to the southeast, with differences of up to
20% or more for the same locations. This likely stems from
the significant difference in the spatial scale of the models
used to derive both maps (40 m vs. 1 km). Our 40 m scale
allows us to detect fine but clearly visible patterns of woody
occurrence in otherwise open landscapes. For example, for

a small area in the eastern Ferlo (Figure 11), we correctly
detected high canopy cover (50–70%) for a subset of 40 m
pixels, leading to a higher (and potentially more accurate)
average %WCC estimate when scaled to a larger (e.g., 1 km)
area (Figure 11B).

Mapping at a coarse spatial resolution may also weaken
the ability of phenological metrics, as used by Brandt et al.
(2016a), to discriminate woody canopies in principally deciduous
landscapes. At 1 km scale, it would be challenging to capture
variability in leaf production patterns among woody species.
The relative dominance of a specific phenological type (e.g.,
an Acacia sp. with short duration in annual leaf production)
would influence model predictions of canopy cover for the area.
Meanwhile, the lack of precise phenology metrics in our Sentinel-
based model is offset by the higher spatial resolution and the
inclusion of radar backscatter metrics which is less sensitive to
seasonal leaf dynamics.

FIGURE 11 | A zoomed-in (approximately Lat. 15.09
◦

, Long. −13.62
◦

) comparison of woody cover data in the eastern Ferlo region of Senegal. (A) VHR imagery, (B)
∼2016 %WCC derived in this study at 40 m resolution, with an average of 27.5% over a 1 km × 1 km area, (C) %WCC by Brandt et al. (2016a) at 1 km resolution
with a single pixel value of 17.5% woody cover, (D) Landsat VCF Tree cover at 30 m with an average of 0% woody cover. Imagery source: ESRI Basemaps,
DigitalGlobe.
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CONCLUSION

In this paper we described an approach to efficiently and
accurately map percent %WCC over large savanna areas. We
relied on the use of radar backscatter and optical reflectance
metrics as empirical predictors of %WCC in a random forest
model. The workflow was implemented almost entirely in
Google Earth Engine to leverage the computational power
and ease of data-access made possible in geospatial cloud
computing applications. The intent being to facilitate adoption
by potential users in other countries and regions where low
internet bandwidth and limited access to compute facilities might
otherwise prevent similar analysis.

Using the full extent of Senegal as a test area, we were
able to predict percent %WCC at 40 m resolution with a high
degree of accuracy (RMSE of 8.2% with test plot predictions).
Exploring the inner workings of the model revealed that median
radar backscatter with ‘vertical-vertical’ (VV) polarization was
the most important metric in predicting %WCC, while metrics
measuring intra-annual or inter-seasonal variation in satellite-
derived information were the weakest; a likely result of the
phenological variability within local savanna woody species
in West Africa, which complicates their collective separation
from herbaceous cover at fine scales solely based on seasonal
leaf dynamics. However, our results confirm the findings of
other studies that fusion of backscatter and optical reflectance
data allows for the most effective mapping of tree and shrub
canopies in savannas.

Earth observation data is increasingly important to developing
countries seeking more cost-effective tools for monitoring
and evaluation in the context of reducing emissions from
deforestation and degradation (REDD+), monitoring resource
use, and assessing progress toward sustainable development
goals and targets. However, countries in regions such as West
Africa continue to face challenges in large-scale operational use
remote sensing data. In the case of vegetation mapping, the
advent of improved and freely available satellite imagery such
as the European Space Agency’s Copernicus Sentinel data, and
cloud computing technologies such as Google Earth Engine,
can significantly impact the accessibility of larger datasets and
more complex analysis approaches. This will increase capacity
of local and regional stakeholders for environmental and natural
resource management.

The approach described in this study is designed to fill the
need for woody resource mapping tools tailored for tropical
savanna regions, where current datasets tend to underperform.
Our methodology can be applied across multiple geographic
scales, from local to national and regional levels, and is

transferable to other areas, ideally using local data and expertise
to calibrate and validate predictive models. The remote sensing
and cloud-computing approach advocated here makes for a
highly automated, scalable and repeatable tool that can allow
management agencies and scientists to implement activities for
carbon and woody resource monitoring, adapted to regional
conditions and local stakeholder needs.
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