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People, livelihoods, and infrastructure in Myanmar suffer from devastating monsoonal

flooding on a frequent basis. Quick and effective management of flood risk relies

on planning and preparedness to ensure the availability of supplies, shelters and

emergency response personnel. The mandated government agency Department of

Disaster Management (DDM) as well as local and international organizations play

roles in producing, disseminating, and using accurate and timely information on flood

risk. Currently, systematic flood risk maps are lacking, which leaves DDM to rely on

inconsistent historic reports and local knowledge to inform their emergency planning.

Although these types of knowledge are critical, they can be complemented to reduce

bias and human error to planning processes and decisions. As such, the present

situation has led to ineffective distribution of emergency response resources prior to

flooding, leaving vulnerable populations less-than-prepared for inevitable flood events.

Given these issues, we have developed a flood risk decision-support tool in collaboration

with DDM. The tool uses surface water maps developed by the Joint Research Center

(JRC), which were derived from more than 30 years of Landsat imagery. We have also

incorporated population data, land cover data, and other information on flood exposure

and vulnerability to create the first scalable and replicable Flood Risk Index (FRI) for flood

risk reduction in Myanmar.

Keywords: flood frequency, remote sensing, water management, Google Earth Engine, disaster preparedness,

Myanmar, disaster management, earth observations

1. INTRODUCTION

Floods are considered to be one of the most recurrent natural hazards which can rapidly become
significant disasters. Impacts of floods are amplified in the wake of increased vulnerability due to
many factors such as rapid land cover changes (Markert et al., 2018b), urbanization, and changing
climate (Tolentino et al., 2016). According to a recent United Nations Office for Disaster Risk
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Reduction report, floods were reported to be the most frequent
disasters, where 3,148 occurrences accounted for 43.4% of total
types of disasters from 1998 to 2017. The damages from these
events were also found to be the largest at an estimated 2 billion
lives affected, which accounted for 45% of the total impacts
from all disasters (Wannous and Velasquez, 2017). Developing
countries are particularly vulnerable to floods due to the lack of
resources to prevent, mitigate, and adequately respond to floods
(Adger et al., 2003; Douglas et al., 2008; Poortinga et al., 2017).

Given the occurrence and widespread damages due to floods,
it becomes imperative to address flood risks from a disaster risk
reduction (DRR) approach. In this regard, a variety of scientific
approaches are being used for mapping flood hazard and
informing risk assessments. Risk assessment is a key component
in risk management and reduction in the broader sense. Disaster
management aims to avoid or reduce potential risks from
floods and assure immediate and appropriate response to flood
events. Furthermore, effective disastermanagement enables rapid
and effective recovery after a flood event. Four phases of
disaster management have been used by governments, including
mitigation, preparation, response, and recovery (Thieken et al.,
2007; Carter, 2008). Implementing these four components in a
disaster risk reduction approach is expected to increase resilience
and reduce economic and human losses.

Flood risk is a function of spatio-temporal hazard of floods,
exposure to floods, and vulnerability to floods (UNISDR, 2011).
Flood hazard is defined by the spatial extent and temporal
frequency of flood events themselves (Winsemius et al., 2013).
Exposure is considered by the intersection of the hazard with the
people and assets who may experience the hazard. Vulnerability
refers to the susceptibility of those people and objects to potential
loss and is defined by their intrinsic characteristics (Alexander,
2002; Plate, 2002). Flood risk is a combination of the magnitude
and frequency of the hazard, along with the vulnerability of
people and assets exposed to floods (Alexander, 2002). Hence,
understanding of the geographic location and extents is an
essential input into any flood risk assessment.

Winsemius et al. (2013) identified the probability density
of flood hazard, socio-economic indicators, resilience, and
adaptive capacity as main components of their flood risk
framework. Reducing the probability of a flood hazard affecting
populations is therefore a straightforward way to reduce flood
risk. Probability of flood can be derived from historic records
and flood forecasting systems (Carsell et al., 2004; Verkade
and Werner, 2011). However, forecasting systems adequate for
local and national disaster management often rely on complex
models that require extensive inputs and computational power.
Developing countries often lack the capacity, infrastructure and
data to run such sophisticated models. Despite the complex
nature of flood events, knowledge of the location and extent
of floods is often concentrated in specific flood prone areas.
Thorough analysis of historical data is therefore crucial in
complementing existing knowledge to better identify flood
prone areas.

It has been recognized that socio-economic and vulnerability
data are crucial components in disaster risk reduction (Gornitz,
1991). Studies of e.g., Abuodha and Woodroffe (2006) and

Boruff et al. (2005) include examples of vulnerability analyses
that include statistical data on education, family structure, and
social dependence in a robust and consistent manner. Such
vulnerability indices are useful in distinguishing the relative
vulnerabilities of different areas to disasters (Balica et al.,
2012). Recognition of the spatio-temporal dimensions in the
local context are important in determining the degree of flood
exposure and vulnerability. Geographic Information Systems
(GIS) are useful in managing and analyzing data from different
sources to map and understand the spatio-temporal dynamics of
flood risk.

Recent advances in the field of EO have resulted in
technologies and products that make data more easily accessible
for non-experts. Examples are cloud-based platform for
planetary-scale environmental data analysis (Gorelick et al.,
2017) that allow for the development of real-time applications to
monitor environmental conditions (Simons et al., 2017; Markert
et al., 2018b; Poortinga et al., 2018, 2019). Moreover, there are
a large variety of readily available EO derived global products
on surface water extent (Pekel et al., 2016), rainfall (Funk et al.,
2015), surface elevation (Farr et al., 2007; Tadono et al., 2016),
and others. These data can be used directly without experience
in processing raw satellite data. These products are a great
resource in a wide variety of disciplines including hazard and
risk mapping.

In this study we present an innovative approach to flood
risk mapping in a disaster risk reduction framework, leveraging
open data and state-of-the-art cloud computing technologies.
We present a framework to map spatially explicit flood hazard,
exposure and vulnerability, and to merge those data into a single
flood risk index (FRI). The study is presented in the context
of Myanmar, a developing nation that faces many challenges in
the field of disaster risk reduction. The work conducted was
under the auspices of the SERVIR-Mekong project, which is
a collaborative venture between the US National Aeronautics
and Space Administration (NASA) and the US Agency for
International Development. Given the mandate of serving the
Lower Mekong countries, SERVIR-Mekong presently addresses
the needs of Cambodia, Laos, Myanmar, Thailand and Vietnam.
Driven by user-based needs, this program responds to local
issues via provision of cutting edge EO, science and associated
technologies as solutions to development challenges. Key among
these needs are requirements for addressing various aspects of
floods, which includes hazard and risk mapping, monitoring, and
forecasting, via provision of publicly available EO within user-
defined web based applications. Toward addressing flood hazard
mapping, SERVIR-Mekong has developed a Historical Flood
Analysis (HFA) product which was modified to meet the flood
hazard mapping requirement by the Department of Disaster
Management (DDM), Myanmar. This product is based on open
source approach and is available here: https://hfa.adpc.net/en/.

2. MATERIALS AND METHODS

2.1. Study Area
Myanmar is located in Southeast Asia and shares its borders with
China, Lao People’s Democratic Republic,Thailand, Bangladesh

Frontiers in Environmental Science | www.frontiersin.org 2 December 2019 | Volume 7 | Article 191

https://hfa.adpc.net/en/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Phongsapan et al. Operational Flood Risk Index Mapping

and India (Figure 1). Myanmar’s climate is classified as a tropical
monsoon climate and experiences heavy rainfall events. It has
high humidity and an annual average temperature ranging
from 22 to 27◦C. The monsoon gives variations in the water
levels of the Ayeyarwaddy, Chindwin, Thanlwin, and Sittoung,
which are the four main rivers in the country (Taft and
Evers, 2016). These rivers are a vital source for drinking water,
transportation, irrigation and generation of electricity. However,
due to regular flooding events in the monsoon season, effective
disaster management is a major concern which requires a
systematic approach to address the impacts of these events.
Toward meeting these aims, in the following sections, we
provide details of an operational index developed for flood risk
assessment for Myanmar.

2.2. Flood Risk Assessment
Flood risk is calculated from various sources of information
including satellite-derived data products and area-aggregated
statistical data. Most data layers are normalized so that data
from different sources can be compared qualitatively. The final
risk map is calculated using Equation (1), multiplying the flood
hazard, flood exposure, and flood vulnerability indices. Figure 2
shows that different data layers are used to calculate the hazard,
exposure, and vulnerability and how those layers are combined
into the final flood risk index. The flood risk index (FRI) is
calculated from the risk map, in which risk values are aggregated
over a township. We describe how the different indices are
calculated in the following sections.

FRI = FHI × FEI × FVI (1)

where:

FHI = Flood frequency (-)
FEI = Exposure (-)
FVI = Vulnerability (-).

2.3. Flood Hazard Index
Historical trends in flooding are important for understanding
the current risk and what might happen in the future (Klis
et al., 2005). As field data are scattered and difficult to obtain in
Myanmar, we used remote sensing derived products to estimate
flood hazard from historical data. The JRC global water dataset
was used to generate flood frequency maps across Myanmar.
The JRC team developed a method to calculate water pixels
from Landsat satellite imagery. The imagery is going through
a sequence of steps where they detect water while accounting
for false positives including shadow effects. The JRC Monthly
Water History (V1) was used in this study. The dataset contains
monthly layers of the location and temporal distribution of
surface water from 1984 to 2015. The data contains information
on (0) no data, (1) not water and (2) water. The flood frequency
for any given period is calculated by dividing the number of water
observation by total number of observation where no data is not
taken into account. We used all available Landsat data in the JRC
tool as historical occurrence contain valuable information on the
probability of occurrence. As the data-series contains monthly

layers, different time-slices such as months or seasons could also
be investigated.

Permanent water was removed from the data in order to only
include flood events. The United Nations Institute for Training
and Research (UNITAR) provides data on natural disasters
through the Operational Satellite Applications Programme
(UNOSAT) including flood maps. The UNOSAT flood map
is a well recognized data source and was used to distinguish
permanent from temporary water. We used the 2015 data for
the comparison. Figure 3 shows both our water occurrence
map and the UNOSAT permanent water data. It can be seen
that pixels with high water occurrence values are marked as
permanent water in the UNOSAT data. By cross-walking the
data, we found 82% a suitable threshold to distinguish permanent
from temporary water in our study area. Permanent waters were
masked out to distinguish them from flooded areas.

2.4. Flood Exposure Index
Exposure to floods is defined by the assets and values located in
flood-prone areas (Jongman et al., 2014). We separated between
assets that are under direct threat from flood (i.e., land use)
and the distance from assets that offer potential relief to people
exposed to floods. In the category of assets we used a landcover
map containing information on urban, cropland and rice. We
consider these classes important for supporting livelihood which
could be negatively impacted by floods. In the other category
we calculated distance from hospitals, schools and roads as they
provide shelter to the people in case of flood emergencies. The
population density was taken into account as the most important
factor. The calculation for exposure is shown in Equation (2) and
the data sources are shown in Table 1. The different data-layers
are described in the next sections.

FEI = Wp
C + 0.5R+ U + Sd +Hd + Rd

5.5
(2)

where:

FEI = Flood Exposure Index (-)
Wp = Population data (-)
C = Cropland (-)
R = Rice (-)
U = Urban (-)
Sd = School distance (-)
Hd = Hospital distance (-)
Rd = Road distance (-).

2.4.1. Land Cover

Buildings and agricultural lands are directly affected by floods
due to loss of property and means of production. Whereas
floods have played an important role in traditional agricultural
systems (Van Liere, 1980), they have also caused severe damage
to the major crops and threatening the food security of large
regions (Del Ninno et al., 2003). We used the SERVIR-Mekong
cropland, rice and urban probability layers from the regional
land cover monitoring system (https://rlcms-servir.adpc.net/
en/). These yearly maps were created from the Landsat legacy
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FIGURE 1 | Political map of Myanmar/Southeast Asia.

Frontiers in Environmental Science | www.frontiersin.org 4 December 2019 | Volume 7 | Article 191

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Phongsapan et al. Operational Flood Risk Index Mapping

FIGURE 2 | Schematic overview of how the indices on Hazard, Exposure, and Vulnerability are combined into the flood risk index.

FIGURE 3 | The water occurrence map calculated from the JRC surface water data (left) and UNOSAT permanent water map data on the right.
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TABLE 1 | Data sources for the Flood Exposure Index (FEI; Equation 2).

Layer Data sources

Population World population data (Stevens et al., 2015)

Cropland SERVIR-Mekong Land cover data (Saah et al., 2020)

Rice SERVIR-Mekong Land cover data (Saah et al., 2020)

Urban SERVIR-Mekong Land cover data (Saah et al., 2020)

School Myanmar Information Management Unit (MIMU, 2019)

Hospitals Open Street Map (OpenStreetMap Contributors, 2017)

Roads Open Street Map (OpenStreetMap Contributors, 2017)

archive using reference data from the field and collected through
high resolutions satellite imagery (Saah et al., 2019) in a machine
learning algorithm. The probability layers were scaled between
0 and 1. The rice map was multiplied by a 0.5 fraction as the
negative consequences of floods on rice are generally less severe
in comparison to other land cover types.

2.4.2. Infrastructure

Infrastructure is a key component in disaster risk reduction as
failure or capacity degradation directly affects the community
(Luathep et al., 2013). We selected hospitals, schools and roads
as the key components for the risk assessment. Roads are the
lifeline for communities of goods and services and enable people
to evacuate from the area in case of emergency. Hospitals also
provide direct relief to crisis situations for affected people in
the neighborhood. Schools play an important role in raising
awareness among students, teachers, and parents (Strike, 2000).
The school can also serve as a shelter when the integrity of the
building compromised during the flood.We used the Open Street
Map data vector data and calculated the shortest distance to a
feature on a 30 by 30 meter grid. The maximum distance was set
to 10 km. These data were normalized to values between 0 and 1.

2.4.3. Population

Inundation of densely populated areas poses many threats
including the loss of human lives and property as well as the
spread of infectious diseases (Levy et al., 2016). Population
exposure was calculated with the Worldpop dataset. We used
the 2015 national totals adjusted to match UN population
division estimates (Stevens et al., 2015). The product was created
using a random forest regression tree-based mapping approach
integrating census and a wide range of remotely-sensed and
geospatial datasets.

2.5. Flood Vulnerability Index
Vulnerability reduction and increasing resilience are key
components in disaster risk reduction. A first step is to analyze
the current vulnerability of a community, township or region
to floods. However, there are a wide variety of definitions of
vulnerability including a variety of different indicators (e.g.,
Cannon, 1994; Pelling et al., 2004; Borden et al., 2007). We
include three main socio-economic indicators of literacy, age
composition and urbanization, as data on other indicators were
found to be scarce. These data were collected from (http://www.

dop.gov.mm/en) and contain data on the township level. All data
were scaled between 0 and 1 using the maximum value. This
approach was suited to be appropriate as it reflects the relative
vulnerability on a country level. Higher literacy was considered
to decrease vulnerability. In the age composition young and old
people were considered to be more vulnerable. Rural people were
also considered to be more vulnerable than people in the city.
The composition of these vulnerabilities are formulated in an
equation shown below (Equation 3).

FVI =
A+ U + L

3
(3)

where:

FVI = Vulnerability Index (-)
A = Age composition (-)
U = Urbanization (-)
L = Literacy (-).

2.6. Flood Risk Index
The flood risk data were aggregated based on administrative
boundaries, which was used for risk index calculations. Data
aggregation on the administrative level was done to align it with
the scales of social-economic including information on social
vulnerability, environmental vulnerability and capacity. Another
advantage of data aggregation is the reduction of uncertainty
related to individual pixels.

We aggregated the pixel based maps on flood hazard
and exposure into administrative boundaries (with township
boundary representing a particular flood hazard index) by
summing up all the pixel values and then divided this by the
township area. The FRI Equation (1) and figure below describe
the calculation of the flood hazard index for individual Township.
Flood risk per pixel is represented by Fi,N is the number of pixels
per township and A the area of Township (km2). A graphical
presentation is shown in Figure 4, where two townships are
compared. It can be seen that township A has a higher FHI than
township B.

FHI =

∑n
i=1 FiNi

A
(4)

2.7. Computational Framework
The workflow was built using Google Earth Engine (GEE). This
is an online platform that applies cloud computing and storage
frameworks to allow for parallel calculations of large geospatial
datasets (Gorelick et al., 2017). The archive contains a large
amount of Earth observations data such as the JRC global surface
water product. Detailed information on the GEE can be found
in the website (https://earthengine.google.com/). The GEE has a
Python Application Programming Interface (API) which can be
used to develop web applications. The web application provides
an interface to the data while calculations and visualizations are
done in real time. All data layers were ingested into the GEE
which enables users to investigate the separate risk components
and apply different weighing factors in the flood risk analysis.
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FIGURE 4 | Example of flood hazard index calculation for individual Townships.

3. RESULTS

The flood hazard map containing the flood frequencies for the
period 1984–2015 is shown in Figure 5. Areas with high flood
occurrence can be found near the Irrawaddy river and in the
delta and near the coast. The central part of the country also
shows areas with historical floods. It can be noted that recently
constructed dams are visible in the map.

The exposure map is shown in Figure 6. It can be seen that
the vegetated highlands have a low exposure while the higher
exposure can be found in the agricultural and population centers.
The coastal areas of the Rakhine State, located at the western
coast also show high exposure rates. Naypyitaw is the modern
capital of and Yangon, the former capital also show high exposure
risk. We also found higher exposure risk along the Irrawaddy
river. This river is one of the least regulated rivers in Asia
(Hedley et al., 2010; Taft and Evers, 2016) and known for its
dynamic morphology.

The flood vulnerability map composed from age composition,
literacy, and urbanization, is shown in Figure 7. The
map shows the risk in different shades of brown and
districts with no information are shown in white. In
contrast to the flood frequency and exposure map, the
vulnerability map is calculated on a district level. Shan
State in the eastern part of the country bordering China
and Thailand shows a particular high vulnerability. But
also districts in western Myanmar show high vulnerability.
The lowlands show a generally low to medium level
of vulnerability.

The flood risk map for the country on a pixel level is
shown in Figure 8. It can be seen that the Irrawaddy
delta and coastal regions in western Myanmar have
the highest risk. But also riverine areas throughout
the country show higher risk. The high risk in central
Myanmar is particularly notable. It can also be seen
that the eastern and western provinces, which have
vulnerability show a low risks because of the low hazard and
exposure rates.

We calculated the FHI for all townships in Myanmar and
normalized the values between 0 an 100 using the minimum

and maximum values. We then created three categories of
low, moderate and high to classify township in an easy
to understand manner. Classification was done by means
of data exploration and expert knowledge. The threshold
classification are <5 percent, 5–10 percent and more than
10 percent. Those percentage represents low, moderate and
high classification respectively. The resulting map is shown
in Figure 9. It can be seen that districts with a high risk
are concentrated in the deltas and central parts of the
country. Population centers such as Yangon and Mandalay
were found to have a high risk whereas Naypyitaw has a
low risk.

4. DISCUSSION

There is very limited detailed knowledge on river basins and
water dynamics in Myanmar (Taft and Evers, 2016). Although
at a relatively coarse resolution, this study and the tool provides
valuable information on water dynamics and potential human
impacts on a district level. Applications of the tool were identified
from various organizations and departments in Myanmar. They
included the Department of Urban and Housing Development
(DUHD) can use the flood frequency results as one of their
consideration on selecting construction site locations to avoid
frequently flooded areas. The Directorate of Water Resources
and Improvement of River Systems (DWIR) may potentially
use the flood hazard index to identify townships along rivers
where the level of hazard is high to consider for constructing of
the mitigation infrastructure. The Department of Meteorology
and Hydrology (DMH) are interested to use flood frequency
maps for selecting locations of new meteorological stations. The
Department of Disaster Management (DDM) wants to use the
flood hazard index to adjust the amount of the relief items for
the stockpiling. The threshold value of flood hazard index is
applicable only for Myanmar. Different countries may need to
re-adjust the threshold with the expert consultation.

A limitation of this study it that we have not performed
any validation of the data to quantify the uncertainty and
errors. This could not be done as there very limited field data
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FIGURE 5 | Flood frequency map of Myanmar calculated from the JRC surface water data.
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FIGURE 6 | Flood exposure map of Myanmar. Flood exposure includes land cover, infrastructural, and population data.
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FIGURE 7 | Flood vulnerability on a township level for Myanmar. Vulnerability was calculated from literacy, population composition, and urbanization.
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FIGURE 8 | Flood risk at the country-wide scale for Myanmar.

Frontiers in Environmental Science | www.frontiersin.org 11 December 2019 | Volume 7 | Article 191

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Phongsapan et al. Operational Flood Risk Index Mapping

FIGURE 9 | Flood risk index at a township level in Myanmar.
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available from Myanmar. This was also identified by previous
studies of for example Salmivaara et al. (2013), Varis et al.
(2012), and Taft and Evers (2016). Remote sensing can fill an
important data gaps, but has limitations. For example, Landsat
has a revisit schedule of 16 days, and does not capture surface
data in cloudy conditions. Hence, some historical flood events
might not be captured, or the maximum extents of historical
floods may be underrepresented. The MODIS archive could
add valuable information to the system as it contains daily
imagery for the period 2000–2018. With the recent availability
of the European Space Agency (ESA) Copernicus Sentinel-
1a/b satellites that acquire synthetic aperture radar (SAR) data,
observations of flood extent during cloudy conditions will
improve. The forthcoming NASA-ISRO SAR (NISAR) mission
will acquire additional SAR data. Radarsat-1 archived data and
ALOS PALSAR-1 data have also recently become available and
could add to the flood record. Furthermore, including data
fusion methods that incorporate multiple sensors (both optical
and SAR data) can potentially increase temporal resolution
across cloudy regions (Markert et al., 2018a), thus improving
surface water observations which in turn can improve the flood
frequency analysis.

In this work, we have developed a novel approach to
distinguish surface water from floods. However, the JRC tool
Pekel et al. (2016) does not separate water in paddy from other
floods; therefore, a process to distinguish standing water in
paddy field from floods that impact populations, infrastructure,
and other land use types, would enhance the FHI. Additionally,
the current FHI data derived from the JRC surface water data
is only available from 1984 to 2015. Further improvements to
this approach are planned including the update of the JRC
tool to the present date for the Lower Mekong Region and
beyond. Inputs to each of the indices were available at different
spatial resolutions. The FHI relied on Landsat pixels at a 30m
horizontal resolution. The FEI used 30 m land cover data and
100 m gridded population data. Inputs to the FVI were available
at the township level, and the final FRI was produced at the
township level.

The method to calculate FHI could consider other parameters
that influence floods (e.g., rainfall intensity, elevation, land
use, distance from drainage network). Other approaches could
capture more sudden, fleeting flash floods that are unlikely
to appear in the Landsat-based observations. Therefore, the
final FRI produced in this study likely represents riverine and
coastal floods, and not flash or finer scale urban floods.Future
studies could integrate potential damage assessments as
inferred from flood depth and duration as well (Oddo et al.,
2018). While GIS allows for overlaying and combination of
disparate data layers, it does not solve the decision-making
processes involved in assigning weights or significance to
quantitative and qualitative data. Roy (2018) discusses multi-
criteria analysis (MCA) approach in applying geospatial
indices toward reducing flood risk in India, the lessons of
which could be applied to risk mapping and related decisions
in Myanmar.

New cloud based geo-computational technologies make it
easy to develop online tools that perform real time calculation.
This enables end users with limited knowledge in the field
of remote sensing and GIS to perform analysis which were
beyond their reach before. This is particularly useful in the
context of developing countries and disaster risk reduction.
The end-user will be able to select and prioritize variables
of the model and assign different weight to them. Results
can be calculated and displayed in real time in a spatial
explicit manner.

5. CONCLUSIONS

For the purposes of incorporating EO into planning and
risk reduction, it is important to distinguish between flood
and surface water, and our approach achieves this objective
for the DDM in Myanmar. We have applied an index-
based approach to reclassify historic flood frequency into
a flood hazard index. We have also created geospatial
exposure and vulnerability indices using socioeconomic and
land use data. Combined, this resulted in a nationwide flood
risk map, summarized at the township scale for Myanmar
as depicted in Figure 9. Such knowledge aids in a more
objective and complete understanding of historic flood patterns,
which may inform annual budget decisions on the pre-
allocation of flood relief supplies before each monsoon season.
Further, this new characterization of overall flood risk by
township pinpoints critical areas for additional disaster risk
reduction investments.

Further refinement of the present work are planned
in order to address the limitations outlined in section
3.1 above. This includes an update of the JRC dataset
including data from additional sensors such as Sentinel-
2, inclusion of other layers of locally available exposure
and vulnerability data (including different types of social
and socio-economic data) as are made available in the
collaboration with DDM and other participating departments
in Myanmar.

The risk map developed in this work and in collaboration
with DDM is now being considered by other relevant
departments including the Road Transportation Administration
Department (RTAD) in Myanmar. With the feedback
from end-user’s, we expect to refine and build upon
methods for improved decision support and planning for
flood hazards.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

KP, AP, BB, DS, and FC contributed to the conception and design
of the study. KP organized the data collection. KP, AP, BB, and FC

Frontiers in Environmental Science | www.frontiersin.org 13 December 2019 | Volume 7 | Article 191

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Phongsapan et al. Operational Flood Risk Index Mapping

performed the statistical analysis. KP, AP, and FC wrote the first
draft of the manuscript. All authors contributed to manuscript
revision, read, and approved the submitted version.

ACKNOWLEDGMENTS

The authors would like to thank the support and feedback from
Myanmar’s Department of Disaster Management (DDM) on
the tool and analysis. A special thanks is given to the Google

Earth Engine team for their support and use of the platform.
Support for this work was provided through the joint US
Agency for International Development (USAID) and National
Aeronautics and Space Administration (NASA) initiative
SERVIR-Mekong, Cooperative Agreement Number: AID-486-
A-14-00002. Individuals affiliated with the Earth System Science
Center, University of Alabama in Huntsville (UAH) are funded
through the NASA Applied Sciences Capacity Building Program,
NASA Cooperative Agreement: NNM11AA01A.

REFERENCES

Abuodha, P. A. O., andWoodroffe, C. D. (2006).Assessing Vulnerability of Coast to

Climate Change: A Review of Approaches and Their Application to the Australian

Coast. University of Wollongong, Faculty of Science Papers.

Adger, W. N., Huq, S., Brown, K., Conway, D., and Hulme, M. (2003). Adaptation

to climate change in the developing world. Prog. Dev. Stud. 3, 179–195.

doi: 10.1191/1464993403ps060oa

Alexander, D. (2002). Principles of Emergency Planning and Management. London:

Oxford University Press.

Balica, S. F., Wright, N. G., and van der Meulen, F. (2012). A flood vulnerability

index for coastal cities and its use in assessing climate change impacts. Nat.

Hazards 64, 73–105. doi: 10.1007/s11069-012-0234-1

Borden, K. A., Schmidtlein, M. C., Emrich, C. T., Piegorsch, W. W., and Cutter, S.

L. (2007). Vulnerability of US cities to environmental hazards. J. Homel. Secur.

Emerg. Manage. 4, 1–21. doi: 10.2202/1547-7355.1279

Boruff, B. J., Emrich, C., and Cutter, S. L. (2005). Erosion hazard vulnerability

of us coastal counties. J. Coastal Res. 21, 932–942. doi: 10.2112/

04-0172.1

Cannon, T. (1994). Vulnerability analysis and the explanation of ‘natural’ disasters.

Disast. Dev. Environ. 1, 13–30.

Carsell, K. M., Pingel, N. D., and Ford, D. T. (2004). Quantifying the

benefit of a flood warning system. Nat. Hazards Rev. 5, 131–140.

doi: 10.1061/(ASCE)1527-6988(2004)5:3(131)

Carter, W. N. (2008). Disaster Management: A Disaster Manager’s Handbook.

Manila: Asian Development Bank. Available online at: http://hdl.handle.net/

11540/5035

Del Ninno, C., Dorosh, P. A., and Smith, L. C. (2003). Public policy,

markets and household coping strategies in bangladesh: Avoiding a food

security crisis following the 1998 floods. World Dev. 31, 1221–1238.

doi: 10.1016/S0305-750X(03)00071-8

Douglas, I., Alam, K., Maghenda, M., Mcdonnell, Y., McLean, L., and Campbell,

J. (2008). Unjust waters: climate change, flooding and the urban poor in africa.

Environ. Urban. 20, 187–205. doi: 10.1177/0956247808089156

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al.

(2007). The shuttle radar topography mission. Rev. Geophys. 45, 1–13.

doi: 10.1029/2005RG000183

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,

et al. (2015). The climate hazards infrared precipitation with stations-a

new environmental record for monitoring extremes. Sci. Data 2:150066.

doi: 10.1038/sdata.2015.66

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.

(2017). Google earth engine: planetary-scale geospatial analysis for everyone.

Remote Sens. Environ. 202, 18–27. doi: 10.1016/j.rse.2017.06.031

Gornitz, V. (1991). Global coastal hazards from future sea level rise. Global Planet.

Change 3, 379–398. doi: 10.1016/0921-8181(91)90118-G

Hedley, P. J., Bird, M. I., and Robinson, R. A. (2010). Evolution of

the irrawaddy delta region since 1850. Geograph. J. 176, 138–149.

doi: 10.1111/j.1475-4959.2009.00346.x

Jongman, B., Koks, E. E., Husby, T. G., and Ward, P. J. (2014). Increasing flood

exposure in the Netherlands: implications for risk financing. Nat. Hazards

Earth Syst. Sci. 14, 1245–1255. doi: 10.5194/nhess-14-1245-2014

Klis, H., Baan, P. J. A., and Asselman, N. E. M. (2005). Historische analyse van de

gevolgen van overstromingen in Nederland: een globale schatting van de situatie

rond 1950, 1975 en 2005. Q4005.

Levy, K., Woster, A. P., Goldstein, R. S., and Carlton, E. J. (2016). Untangling

the impacts of climate change on waterborne diseases: a systematic review of

relationships between diarrheal diseases and temperature, rainfall, flooding,

and drought. Environ. Sci. Technol. 50, 4905–4922. doi: 10.1021/acs.est.5b06186

Luathep, P., Suwanno, P., and Taneerananon, P. (2013). “Identification of critical

locations in road networks due to disasters,” in Proceedings of the Eastern Asia

Society for Transportation Studies, Vol. 9 (Hat Yai), 206.

Markert, K., Chishtie, F., Anderson, E. R., Saah, D., and Griffin, R. E. (2018a).

On the merging of optical and sar satellite imagery for surface water mapping

applications. Results Phys. 9, 275–277. doi: 10.1016/j.rinp.2018.02.054

Markert, K., Schmidt, C., Griffin, R., Flores, A., Poortinga, A., Saah, D., et al.

(2018b). Historical and operational monitoring of surface sediments in the

lower mekong basin using landsat and google earth engine cloud computing.

Remote Sens. 10:909. doi: 10.3390/rs10060909

Myanmar Information Management Unit (MIMU). Formal Sector School Location

Upper Myanmar (2019). Available online at: http://geonode.themimu.info/

(accessed May 20, 2019).

Oddo, P. C., Ahamed, A., and Bolten, J. D. (2018). Socioeconomic impact

evaluation for near real-time flood detection in the lower mekong river basin.

Hydrology 5:23. doi: 10.3390/hydrology5020023

OpenStreetMap Contributors (2017). Planet Dump. Retrieved from: https://planet.

osm.org

Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S. (2016). High-resolution

mapping of global surface water and its long-term changes. Nature 540:418.

doi: 10.1038/nature20584

Pelling, M., Maskrey, A., Ruiz, P., Hall, P., Peduzzi, P., Dao, Q. H., et al. (2004).

Reducing Disaster Risk: A Challenge for Development. New York, NY: United

Nations Development Programme, Bureau for Crisis Prevention and Recovery.

Plate, E. J. (2002). Flood risk and flood management. J. Hydrol. 267, 2–11.

doi: 10.1016/S0022-1694(02)00135-X

Poortinga, A., Bastiaanssen, W., Simons, G., Saah, D., Senay, G., Fenn, M., et al.

(2017). A self-calibrating runoff and streamflow remote sensing model for

ungauged basins using open-access earth observation data. Remote Sens. 9:86.

doi: 10.3390/rs9010086

Poortinga, A., Clinton, N., Saah, D., Cutter, P., Chishtie, F., Markert, K. N.,

et al. (2018). An operational before-after-control-impact (baci) designed

platform for vegetation monitoring at planetary scale. Remote Sens. 10:760.

doi: 10.3390/rs10050760

Poortinga, A., Tenneson, K., Shapiro, A., Nquyen, Q., San Aung, K., Chishtie, F.,

et al. (2019). Mapping plantations in Myanmar by fusing landsat-8, sentinel-

2 and sentinel-1 data along with systematic error quantification. Remote Sens.

11:831. doi: 10.3390/rs11070831

Roy, P. S. (2018). Flood risk assessment using multi-criteria analysis: a case study

from kopili river basin, assam, india. Geomat. Nat. Hazards Risk 9, 79–93.

doi: 10.1080/19475705.2017.1408705

Saah, D., Johnson, G., Ashmall, B., Tondapu, G., Tenneson, K., Patterson, M., et al.

(2019). Collect earth: an online tool for systematic reference data collection

in land cover and use applications. Environ. Modell. Softw. 118, 166–171.

doi: 10.1016/j.envsoft.2019.05.004

Frontiers in Environmental Science | www.frontiersin.org 14 December 2019 | Volume 7 | Article 191

https://doi.org/10.1191/1464993403ps060oa
https://doi.org/10.1007/s11069-012-0234-1
https://doi.org/10.2202/1547-7355.1279
https://doi.org/10.2112/04-0172.1
https://doi.org/10.1061/(ASCE)1527-6988(2004)5:3(131)
http://hdl.handle.net/11540/5035
http://hdl.handle.net/11540/5035
https://doi.org/10.1016/S0305-750X(03)00071-8
https://doi.org/10.1177/0956247808089156
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/0921-8181(91)90118-G
https://doi.org/10.1111/j.1475-4959.2009.00346.x
https://doi.org/10.5194/nhess-14-1245-2014
https://doi.org/10.1021/acs.est.5b06186
https://doi.org/10.1016/j.rinp.2018.02.054
https://doi.org/10.3390/rs10060909
http://geonode.themimu.info/
https://doi.org/10.3390/hydrology5020023
https://planet.osm.org
https://planet.osm.org
https://doi.org/10.1038/nature20584
https://doi.org/10.1016/S0022-1694(02)00135-X
https://doi.org/10.3390/rs9010086
https://doi.org/10.3390/rs10050760
https://doi.org/10.3390/rs11070831
https://doi.org/10.1080/19475705.2017.1408705
https://doi.org/10.1016/j.envsoft.2019.05.004
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Phongsapan et al. Operational Flood Risk Index Mapping

Saah, D., Tenneson, K., Poortinga, A., Nguyen, Q., Chishtie, F., Aung, K. S.,

et al. (2020). Primitives as building blocks for constructing land cover maps.

Int. J. Appl. Earth Observ. Geoinform. 85:101979. doi: 10.1016/j.jag.2019.

101979

Salmivaara, A., Kummu, M., Keskinen, M., and Varis, O. (2013). Using global

datasets to create environmental profiles for data-poor regions: a case from

the Irrawaddy and Salween River basins. Environ. Manage. 51, 897–911.

doi: 10.1007/s00267-013-0016-x

Simons, G., Poortinga, A., Bastiaanssen, W. G., Saah, D., Troy, D., Hunink, J., et al.

(2017). On Spatially Distributed Hydrological Ecosystem Services: Bridging the

Quantitative Information Gap Using Remote Sensing and Hydrological Models.

Wageningen: FutureWater.

Stevens, F. R., Gaughan, A. E., Linard, C., and Tatem, A. J. (2015).

Disaggregating census data for population mapping using random

forests with remotely-sensed and ancillary data. PLoS ONE 10:e0107042.

doi: 10.1371/journal.pone.0107042

Strike, K. A. (2000). Schools as communities: four metaphors, three models, and a

dilemma or two. J. Philos. Educ. 34, 617–642. doi: 10.1111/1467-9752.00198

Tadono, T., Nagai, H., Ishida, H., Oda, F., Naito, S., Minakawa, K., et al.

(2016). “Generation of the 30 m-mesh global digital surface model

by alos prism,” in International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences (Prague), 41.

doi: 10.5194/isprs-archives-XLI-B4-157-2016

Taft, L., and Evers,M. (2016). A review of current and possible future human–water

dynamics in Myanmar’s river basins. Hydrol. Earth Syst. Sci. 20, 4913–4928.

doi: 10.5194/hess-20-4913-2016

Thieken, A. H., Kreibich, H., Müller, M., and Merz, B. (2007). Coping with floods:

preparedness, response and recovery of flood-affected residents in germany in

2002. Hydrol. Sci. J. 52, 1016–1037. doi: 10.1623/hysj.52.5.1016

Tolentino, P. L. M., Poortinga, A., Kanamaru, H., Keesstra, S., Maroulis,

J., David, C. P. C., et al. (2016). Projected impact of climate change

on hydrological regimes in the philippines. PLoS ONE 11:e0163941.

doi: 10.1371/journal.pone.0163941

UNISDR (2011). Global Assessment Report on Disaster Risk Reduction: Revealing

Risk, Redefining Development.

Van Liere, W. J. (1980). Traditional water management in the lower mekong basin.

World Archaeol. 11, 265–280. doi: 10.1080/00438243.1980.9979766

Varis, O., Kummu, M., and Salmivaara, A. (2012). Ten major rivers in

monsoon Asia-Pacific: an assessment of vulnerability.Appl. Geogr. 32, 441–454.

doi: 10.1016/j.apgeog.2011.05.003

Verkade, J., and Werner, M. (2011). Estimating the benefits of

single value and probability forecasting for flood warning.

Hydrol. Earth Syst. Sci. 15, 3751–3765. doi: 10.5194/hess-15-37

51-2011

Wannous, C., and Velasquez, G. (2017). “United Nations Office for Disaster

Risk Reduction (UNISDR)-UNISDR’s Contribution to Science and Technology

for Disaster Risk Reduction and the Role of the International Consortium

on Landslides (ICL),” in WLF 2017:Advancing Culture of Living with

Landslides, eds K. Sassa, M. Mikoš, and Y. Yin (Cham: Springer), 99–115.

doi: 10.1007/978-3-319-59469-9_6

Winsemius, H., Van Beek, L., Jongman, B., Ward, P., Bouwman,

A. (2013). A framework for global river flood risk assessments.

Hydrol. Earth Syst. Sci. 17, 1871–1892. doi: 10.5194/hess-17-18

71-2013

Conflict of Interest: FC, AP, and DS are employed by Spatial Informatics

Group, LLC.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2019 Phongsapan, Chishtie, Poortinga, Bhandari, Meechaiya,

Kunlamai, Aung, Saah, Anderson, Markert, Markert and Towashiraporn. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Environmental Science | www.frontiersin.org 15 December 2019 | Volume 7 | Article 191

https://doi.org/10.1016/j.jag.2019.101979
https://doi.org/10.1007/s00267-013-0016-x
https://doi.org/10.1371/journal.pone.0107042
https://doi.org/10.1111/1467-9752.00198
https://doi.org/10.5194/isprs-archives-XLI-B4-157-2016
https://doi.org/10.5194/hess-20-4913-2016
https://doi.org/10.1623/hysj.52.5.1016
https://doi.org/10.1371/journal.pone.0163941
https://doi.org/10.1080/00438243.1980.9979766
https://doi.org/10.1016/j.apgeog.2011.05.003
https://doi.org/10.5194/hess-15-3751-2011
https://doi.org/10.1007/978-3-319-59469-9_6
https://doi.org/10.5194/hess-17-1871-2013
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Operational Flood Risk Index Mapping for Disaster Risk Reduction Using Earth Observations and Cloud Computing Technologies: A Case Study on Myanmar
	1. Introduction
	2. Materials and Methods
	2.1. Study Area
	2.2. Flood Risk Assessment
	2.3. Flood Hazard Index
	2.4. Flood Exposure Index
	2.4.1. Land Cover
	2.4.2. Infrastructure
	2.4.3. Population

	2.5. Flood Vulnerability Index
	2.6. Flood Risk Index
	2.7. Computational Framework

	3. Results
	4. Discussion
	5. Conclusions
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


