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The objective of this study is to investigate the “inversion approach” for flood defense

optimization in an inundated area. This new methodology within this engineering field

consists in defining a “safety criterion” (for instance, “the water level in a given location

must be lower than a given value”) and the combined analysis of all the uncertain

controlled parameters (i.e., flood defense geometry, location, etc.) that ensure the safety

objective for all the possible combinations of uncontrolled parameters (i.e., the flow

hydrograph parameters) representing the natural phenomenon is not exceeded. To

estimate this safety set, a metamodeling approach will be used which significantly

reduces the number of model evaluations required. This algorithm relies on a kriging

surrogate built from a few model evaluations, sequentially enriched with new numerical

model evaluations as long as the remaining uncertainty of the entire safety set remains too

high. Also known as “Stepwise Uncertainty Reduction,” this algorithm is embedded in the

“Funz” engine (https://github.com/Funz) tasked with bridging the numerical model and

any design of experiments algorithm. We applied this algorithm to a real two-dimensional

numerical model of the Garonne river (France), constructed using the open-source

TELEMAC-2D model. We focused our attention mainly on the maximum water depth

in a given area (the “safety criterion”) when considering the influence of a simplified

flood defense during a flooding event. We consider the two safety control parameters

describing the slab and dyke elevations of the flood defense system, to design against

the full operating range of the river in terms of possible watershed flooding. For this

application case, it appears that less than 200 simulations are needed to properly

evaluate the restricted zone of the design parameters (the “safety zone”) where the

safety criterion is always met. This provides highly valuable data for full risk-informed

management of the area requiring protection.

Keywords: kriging surrogate, Bayesian optimization, inversion, level set, uncertainty, hydraulic modeling

1. INTRODUCTION

It is well-known that the world’s major lowland rivers (the Rhine, the Po, the Elbe River, and
the Loire River) are protected against flooding by embankments or other flood defenses (Ciullo
et al., 2019). The embankments and so-called primary flood defenses such as flood walls and dams
(Kind, 2014) are aimed primarily at reducing the likelihood of flooding in the protected area, and
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historically they have been the most commonly-adopted flood
risk reduction measure (Ciullo et al., 2019). The design of these
flood protection measures is therefore of major importance
society-wide, and can have a considerable impact on the
economic and demographic development of the alluvial plains
(White, 1945).

The classical approach for flood defense systems design was
developed in the Netherlands in the wake of the 1953 disaster
(see Vrijling, 2001). Since, reliability-based flood defense design
strategies have been developed all over the world (see Vrijling,
2001; van Gelder and Vrijling, 2004; Ciullo et al., 2019). These
strategies mainly involve the statistical quantification of the
hazard (see Vrijling, 2001; Apel et al., 2004; van Gelder and
Vrijling, 2004; Polanco and Rice, 2014) and the “economic”
optimization of the flood defense systems (see Vrijling, 2001;
van Gelder and Vrijling, 2004; Ciullo et al., 2019). The optimum
design is considered to be the value at which the total cost of
investment (which increases with the height of the flood defense)
and the present value of the risk (which diminishes with the
increasing height) takes its minimum (see Vrijling, 2001; van
Gelder and Vrijling, 2004; Ciullo et al., 2019). Another good
example is the optimization model introduced by van Dantzig
(1956) for the embankment height, which was further developed
by other authors, as reported by Eijgenraam et al. (2016).

These statistical studies are well-suited to the definition of a
global flood protection strategy (at “country” scale), as they are
not supported by intensive numerical modeling. Although the
value of these models is indisputable, the flooding probabilities
of the protected areas are assumed to be independent of one
another, disregarding the change in hydraulic load along the river
stretch as a consequence of the state (e.g., failure, increase in
safety) of the embankments elsewhere (Ciullo et al., 2019).

At a local scale, in practical engineering applications, the
classical method for the design of flooding protections for urban
and industrial facilities relies on the development of sophisticated
and refined numerical model systems able to reproduce surface
flow accurately for a given chosen “design scenario” (such as
the 100-year return period flood event). The quantities of major
interest for the design of a flood defense (wall, urban structures,
drainage network, etc.) are often related to the parameters
describing this design scenario, such as the water height at a given
location, or the water velocity in the inundated area (Milanesi
et al., 2015). Once these quantities are evaluated, the flood defense
is accordingly designed.

Although robust, this “classical approach” can appear too
simplified considering the variability of natural phenomena
and the numerous uncertainties related to natural hazard
modeling. Ideally, flood disaster mitigation strategies should
be based on a comprehensive assessment of the flood risk,
combined with a thorough investigation of the uncertainties
associated with the risk assessment procedure (Apel et al., 2004).
Specifically, numerous studies have demonstrated the influence
of uncertainties on flood hazard assessment (see Apel et al., 2004;
Alho and Mäkinen, 2010; Domeneghetti et al., 2013; Maurizio
et al., 2014; Nguyen et al., 2015; Abily et al., 2016; Bacchi
et al., 2018), sometimes underling the hard-to-estimate damage
caused by flooding (see Apel et al., 2004). These studies are

often based on the use of simplified numerical models which
reduce the computational time (see Apel et al., 2004; Alho and
Mäkinen, 2010; Domeneghetti et al., 2013; Maurizio et al., 2014;
Nguyen et al., 2015), and they are an example of how uncertainty
quantification techniques could be employed for the assessment
of natural hazards. If applied to the design of flood defenses, these
studies can be considered an “improvement” on the classical
approach, since they make it possible to better evaluate the
uncertainties related to the “design” parameters, which in this
case are the target values derived from uncertainty quantification
(i.e., a target water height).

However, both the “classical” and “improved” approach for
flood defense design suffer the same limitations, as they do not
allow the end-user of the methodology to robustly evaluate the
best flood defense configuration (the geometry) for the natural
variability of the simulated phenomenon. Within this context,
the objective of this work is therefore to investigate the “robust
inversion approach,” subsequently referred to as RSUR, for the
design of a flood defense in a two-dimensional inundated area.
This method consists in defining a “safety criterion” (such as
“the water level in the slab must remain lower than 25 cm”)
and the analysis of suitable design parameters (for instance, the
elevation of the flood defenses) that ensure the safety objective
for all the possible combinations of uncertain input parameters
(for instance, the flow hydrograph characteristics) describing the
natural phenomenon to be met.

To estimate this safety set, a standard surrogate approach
will be used (Jones et al., 1998), which significantly reduces the
number of model evaluations needed. This algorithm relies on a
kriging surrogate built from a fewmodel evaluations, sequentially
enriched with new numerical model evaluations as long as the
remaining uncertainty of the entire safety set remains too high
(Chevalier, 2013). This algorithm therefore appears well-suited to
the rigorous study of the uncertainties of very refined numerical
models traditionally used in engineering applications. Belonging
to a more general class of “Stepwise Uncertainty Reduction,” this
algorithm is embedded in the “Prométhée” workbench (using
the “Funz” engine) tasked with bridging the numerical model
and any design of experiments algorithm (further technical
information is provided in an Annex).

In this research work, we first introduce the engineering
problemwewant to solve (section 2). Our proposedmethodology
for model resolution is then presented (section 3) with a focus on
the numerical tools we develop for the methodology’s application
to the chosen real case (section 4). Lastly, the results and main
conclusions and perspectives are reported (section 5). The results
will be introduced as the safety set and will be analyzed in terms
of safety control within the river’s operating range. Once properly
evaluated, this constrained zone provides highly valuable data for
full risk-informed management of the river.

2. PROBLEM SPECIFICATION

The study area is a 50-km-long reach on the Garonne river
between Tonneins and La Réole (Figure 1). The area was settled
to protect flood plains by organizing flooding and flood storage
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FIGURE 1 | Location and span of the modeled study area on the Garonne river including the location of the industrial site (gray surface) and the protection (gray line)

requiring modification to meet the safety criterion.

between 1760 and 1850, when many earthen levees were built to
protect the harvest against spring floods (LPCB, 1983; SMEPAG,
1989). The river was canalized to protect residents from flooding
after the historic 1875 flood event (SMEPAG, 1989).

In this section of the Garonne river, the flood defense
is actually designed for a river flood of nearly 3,500 m3/s.
Specifically, successive storage areas give the Garonne profiles a
particular configuration and allow flooding in the floodplain to be
controlled. Figure 2 shows three flow characteristics on a typical
cross-section of the Garonne to illustrate the flooding sequence:
(1) base flow 1,100 m3/s; (2) bankfull flow 2,400 m3/s; and (3)
flow before overflow of the levees with the lowest protection level
3,500 m3/s. Consequently, flooding of the less protected areas
between Tonneins and La Réole occurs with a low return period,
i.e.,∼10 years, and only a few levees have a standard of protection
higher than 30 years. Due to the flat topography and the presence
of a steep floodplain lateral slope, the floodplains are largely
inundated even for high-probability floods. The December 1981
flood was one of the largest floods occurring since themost severe
flood on record (1875); this flood event was used as a reference for
our study. During this 9-day event, the peak discharge measured
at Tonneins reached 6,040m3/s, corresponding approximately to
a 20-year flood, and the floodplains were fully inundated.

Within this context, it was decided to site an industrial area
spanning nearly 1 km2 in the vicinity of the left bank of the

Garonne river (see gray area in Figure 1). This zone is protected
by a dyke that is nearly 2 km long, 20 m wide and at a constant
elevation of nearly 25.8 m NGF1 (see gray line in Figure 1).
However, the local topography of this zone varies between 18
and 22 m NGF, and the area is fully inundated during a flooding
event characterized by a peak discharge higher than 3,500 m3/s
according to the current design of the dykes (see Figure 2). To
protect the new industrial area against flooding, a decision was
made to investigate the impact of modifying the current crest of
the dyke and the basement of the future industrial area.

More practically, the objective of the study is to identify the
actual dyke elevation and the platform elevation (the slab), to
ensure the industrial area remains operational under all possible
watershed flooding exceeding the defense (occurring at nearly
3,500 m3/s). Specifically, the water height in the vicinity of the
industrial area must not exceed 0.25 m above the slab, which
is the safety criterion of this study. With this aim, we made
the following assumptions for the uncontrolled input parameters
(the flow hydrograph) and the controlled input parameters (crest
of the flood defense, basement of the industrial area), both of
which have a different role in the RSUR algorithm workflow
presented in Table 1 below:

1Nivellement Général de la France (Above Ordnance Datum).
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FIGURE 2 | Typical cross-section of the Garonne between Tonneins and La Réole and the design zone. In gray, the industrial area (slab elevation Za), in orange, the

wall to be designed (elevation Zf ).

TABLE 1 | Qualified parameters of the study: time to peak discharge Tp, peak

discharge rate Qp, dyke elevation Zf , slab elevation Za.

Uncontrolled

parameters

Controlled

parameters

Tp [s] Qp [m3/s] Zf [m NGF] Za [m NGF]

3600.0–86400.0 2600.0–8000.0 20.0–28.0 18.0–25.0

The methodology used and the numerical chain developed for
the study are presented in the next sections.

3. METHODOLOGY FOR ROBUST DESIGN
OF PROTECTIONS

The intrinsic nature of many engineering problems like flooding
protection is a combination of several “canonical” problems (a
word used to express a natural orthogonality), mainly within the
following mathematical classes:

• Optimization (e.g., search for the worst flood conditions).
• Inversion (e.g., set defense to not exceed 25 cm of flooding).
• Randomization (e.g., integrate a probabilistic flooding model

according to a given model like the Gumbel law).

For instance, here we choose to describe the flood protection
problem as a combination of designing protections to avoid
exceeding a given water level (i.e., inversion part) when faced
with the worst rain conditions for a given return period
(i.e., max/optimization part). It should be noted that qualification
of these aspects of the problem is somewhat arbitrary and may
largely depend on the country’s regulation practice and the safety
objective considered.

However, regardless of the choice made, the main nature
of the problem considered (the identification/inversion of a
flood level) is often “tainted” by secondary issues (worst
flooding conditions), and all the parameters belong to one of
these canonical roles. As an example, we could also mention
other common engineering problems like robust optimization
(optimizing some parameters and considering others as random)
or constraint optimization (optimizing some parameters, keeping
others verifying an [in]equality).

This “real-world” engineering practice also brings more
complexity than canonical problems and thus requires dedicated
algorithms in order to be solved efficiently (Chevalier, 2013). In
the following, we will focus on the “robust inversion” problem,
where the objective is to restore the civil engineering safety
set identified for the worst flooding conditions without any
probabilistic assumption.

3.1. Bayesian Metamodeling
The fairly common practice of Bayesian metamodeling is now a
standard for solving any engineering task requiring numerous
CPU-expensive simulations. Indeed, since the seminal paper
describing the Efficient Global Optimization (EGO) algorithm
(Jones et al., 1998; Roustant et al., 2012), many improvements
have been proposed, investigating the algorithms’ efficiency
(Picheny and Ginsbourger, 2013) or different problems to solve
(Chevalier et al., 2014).

The rationale behind this approach consists in replacing most
of the costly numerical simulations with an inexpensive surrogate
function to investigate the properties that are relevant to our
engineering purpose, like possible optimizers, excursion set or
its main parameter effects. This surrogate function is designed
to interpolate a few known “true” simulation points (Figure 3),
taken as conditioning events of an initial uncertain/random
function. Starting with a largely uncertain metamodel (Figure 3),
this iterated process leads to a very precise metamodel around
“true” simulated points, cleverly chosen in relation to our
engineering objective (Figure 3):

A variety of metamodels have been applied in the water
resources literature (Santana-Quintero et al., 2010; Razavi et al.,
2012). Moreover, some examples of applications in the context
of flood management have already been published (e.g., Yazdi
and Salehi Neyshabouri, 2014; Löwe et al., 2018). However,
like the previously mentioned EGO algorithm, for the study
presented here, we will rely on conditional Gaussian processes
(also known as kriging Roustant et al., 2012), derived from
Danie Krige’s pioneering work in mining, later formalized within
the geostatistical framework by Matheron (1973). Our choice is
mainly motivated by this non-parametric metamodeling because
although some properties of the considered response surface
may be assumed (like continuity, derivability, etc.), its precise
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FIGURE 3 | (Left to right, top to bottom) Identification of a safety set on a synthetic case, based on a kriging metamodel iteratively filled/conditioned to reduce set

uncertainty (the dots are detailed simulations performed).

shape cannot be assumed a priori. Thus, kriging became a
standard metamodeling method in operational research (Santner
et al., 2003; Kleijnen, 2015) and has performed robustly in
previous water resource applications (Razavi et al., 2012; Villa-
Vialaneix et al., 2012; Löwe et al., 2018). More practically, it is of
considerable interest when investigating engineering objectives
like max-minima or level sets of such random functions,
inheriting convenient properties of Gaussian processes, and the
method is fast provided the datasets exceed no more than a few
hundred observations. The kriging model (which later provides
an estimation of water height in an industrial area) is then defined
for x ∈ S (x will then represent study variables like the slab and
dyke height or flow hydrograph parameters) as in the following
Gaussian process:

M(x) = N (m(x), s2(x)) (1)

where (for “simple” kriging):

• {X,Y} are the coordinates of the “true” numerical simulations,
taken as conditioning events of the statistical process:

• thus conditional mean ism(x) = C(x)TC(X)−1Y
• thus conditional variance is s2(x) = c(x)− C(x)TC(X)−1C(x)
• C is the covariance kernel C(.) = Cov(X, .), c(.) = Cov(x, .)

More than a commonplace deterministic interpolation method
(like splines of any order), this model is much more informative
owing to its predicted expectation and uncertainty. The fitting
procedure of this model includes the choice of a covariance
model [here a tensor product of the “Matern52” function,
(Roustant et al., 2012)], and then the covariance parameters
(e.g., range of covariance for each input variable, variance of
the random process, nugget effect, etc.), could be estimated
using Maximum Likelihood Estimation (standard choice we
made) or Leave-One-Out minimization [known to mitigate the
arbitrary covariance function choice (see Bachoc, 2013)], or even
sampled within a full Bayesian framework (too far from our
computational constraints at present). Once such a metamodel
is specified, the following criteria will draw on such information
to optimize the algorithm’s iterative sampling policy.

3.2. Design of (Numerical) Experiments
Once the Bayesian metamodeling framework is provided, the
remaining issue is to define the sampling criterion used to fill
the design of experiments: each batch of experiments will be
proposed by the algorithm, then evaluated by the numerical
simulator, and returned to the algorithm in order to propose the
next batch (Algorithm 1). This general iterative process must be
defined for each problem addressed: X input space, Y output
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Algorithm 1: Sequential design of numerical experiments
procedure based on J criterion of interest

Result: Alogrithm target (e.g., optimum, control set,
sensitivity coefficients, . . . )

Input : number of iterations, input variables space S,
black-box function f , criterion maximizing
algorithm target J

Output: sample of points in input space S, corresponding
output values from f , metamodelM

1 Choose a preliminary uniform random sample X for some
x ∈ S

2 Evaluate Y = f (X)
3 Fit metamodelM on {X,Y}
4 while not reached end of iterations do

5 Compute Xnew = argmaxx∈S
(

JM(x)
)

6 Evaluate Ynew = f (Xnew)
7 Append X = X ∪ Xnew and Y = Y ∪ Ynew

8 Fit metamodelM on {X,Y}

9 end

target, and J criterion of interest (see later canonical or hybrid
concrete instantiations):

Improvements to this fully sequential procedure have been
proposed, like asynchronization (Le Riche et al., 2012) whichmay
reduce the servers’ sleep time between iterations (especially if the
simulations have very different computing times). Nevertheless,
it is often easier to consider synchronous batching (Ginsbourger
et al., 2010) as an efficient turn-around to reduce user time, so the
algorithm we will actually use becomes (Algorithm 2):

Note that this last algorithm may be greatly improved and
likened to the previous one, when the criterion J is computable
(in closed form) for a whole batch of points (see Chevalier and
Ginsbourger, 2013 for such optimization criterion), which is
sadly not often the case.

3.2.1. Canonical Optimization Problem
The EGO algorithm (Jones et al., 1998) is the common entry
point for batch sequential kriging algorithms, as it proposes an
efficient criterion (standing for criterion of interest J) called the
“Expected Improvement” (EI):

J : x −→ EI(x) = E[(min(Y)−M(x))+] (2)

• . −→ .+ being “positive part” function,
• M is the kriging metamodel (see Equation 1),
• X is the optimization input space,
• Y are the black-box function evaluations on X

(see Equation 1).

Computing this criteria (using the previous kriging formulas)
is quite simple, so the main issue relates to the optimization of
this criterion, whose maximum will define the most “promising”
point for the next batch. This strategy will just propose the
next point, and although a “multiple expected improvement”
criterion (Chevalier and Ginsbourger, 2013) allows many points

Algorithm 2: Batch sequential design of numerical
experiments procedure based on J criterion of interest

Result: Alogrithm target (e.g.. optimum, control set,
sensitivity coefficients, . . . )

Input : number of iterations, input variables space S,
black-box function f , criterion maximizing
algorithm target J, batch size

Output: sample of points in input space S, corresponding
output values from f , metamodelM

1 Choose a preliminary uniform random sample X for some
x ∈ S

2 Evaluate Y = f (X)
3 Fit metamodelM on {X,Y}
4 while not reached end of iterations do
5 Set X∗ = X, Y∗ = Y ,M∗ = M
6 while not reached end of batch do

7 Compute x∗new = argmaxx∈S
(

JM∗ (x)
)

8 Estimate y∗new = E[M∗(x∗new)] (known as "kriging
believer" proxy)

9 Append X∗ = X∗ ∪ x∗new and Y∗ = Y∗ ∪ y∗new
10 Fit metamodelM∗ on {X∗,Y∗}

11 end

12 Get Xnew = ∁X∗X (ie. new points from X∗ not yet in X)
13 Evaluate Ynew = f (Xnew)
14 Append X = X ∪ Xnew and Y = Y ∪ Ynew

15 Fit metamodelM on {X,Y}

16 end

to be proposed at a time, it remains practically more robust
(numerically speaking) to use heuristics, which are usually
preferred by practitioners: “Constant Liar,” “Kriging Believer”
(see Picheny and Ginsbourger, 2013).

3.2.2. Canonical Inversion Problem
Beyond such criteria dedicated to optimization problems, others
are proposed to solve the (also) canonical problem of inversion,
like Bichon’s criterion (Bichon et al., 2008) which is similar to
Expected Improvement, but focuses on proposing points closest
to the inversion target:

J : x −→ EE(x) = E[(s(x)− |T −M(x)|)+] (3)

• . −→ .+ being “positive part” function,
• M is the kriging metamodel and s its variance (see Equation 1),
• X belongs to the inversion input space S,
• T being the target value of inversion output Y .

Other criteria for inversion have been proposed (Ranjan et al.,
2008), but all of these so-called “punctual” criteria have the same
intrinsic limitation of searching for a punctual solution to the
inversion problem, while the answer should lie in a non-discrete
space (usually a union of subsets of S).

Trying to solve the inversion problem more consistently will
require defining an intermediate value like the uncertainty of
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the excursion set above (or below) the inversion target (Bect
et al., 2012). A suitable criterion will then focus on decreasing
this value, and the final inversion set will be identified through
the metamodel instead of its sampling points. This leads to the
“Stepwise Uncertainty Reduction” (SUR) family of criteria (also
abusively naming the following inversion algorithm) which takes
a non-closed form, unlike the previous punctual ones:

J : x −→ SUR(x)

= −E

[∫

S
P[T < Mn+{x}(x

′)]× P[T ≥ Mn+{x}(x
′)] dx′

]

= −E

[∫

S
P[T < Mn+{x}(x

′)]× (1− P[T < Mn+{x}(x
′)]) dx′

]

(4)

• Mn+{x} is the kriging metamodel conditioned by the n points
{X,Y} (just like “M” in Equation 1), plus the new point x,

• X belongs to the inversion input space S,
• T is the target value of inversion output Y ,
• so P[T < Mn+{x}(x

′)] stands for the probability of exceedance
in x′, then P[T < Mn+{x}(x

′)]×(1−P[T < Mn+{x}(x
′)]) gives a

null contribution in the integral as far asMn+{x}(x
′) is certainly

upper or lower than T.

At the cost of a significantly more computer-intensive task, the
SUR criterion will proposemore informative points and avoid the
over-clustering defect often encountered with “punctual” criteria
(even with the EGO algorithm whose exploration/exploitation
trade-off is indeed due to heuristic tuning).

3.2.3. Robust Inversion Hybrid Problem
A by-product of the SUR algorithm is the extensive formulation
used, which allows a flexible expression of the interest
expectation. Therefore, it is now possible to use more complex
interest values, for instance relying on the process properties
of each subspace: Sc for controlled parameters and Su for
uncontrolled parameters. The “Robust Inversion” will then use
the statistic of the marginal uncontrolled maximum (on Su) of
the process to integrate into the criterion (Chevalier, 2013):

J : x −→ RSUR(x = {xc, xu})

= −En

[∫

Sc

Pn+1(x
′
c)× (1− Pn+1(x

′
c))dx

′
c

]

(5)

where:

• x = {xc, xu}:**

– xc stands for the coordinate of x in the input controlled
subspace Sc,

– xu stands for the coordinate of x in the input uncontrolled
subspace Su,

• Pn+1(xc) = P[T < maxxu∈Su (Mn+{xc ,xu}(xc, xu))] is the
marginal uncontrolled maximum probability:

– Mn+{x} is the kriging metamodel conditioned by the n
points {X,Y} (just like “M”), plus the new point x,

– T being the target value of inversion.

Using such an expression combines non-homogeneous
subspaces, here an inversion subspace (for controlled variables)
Sc, and an optimization subspace (for uncontrolled variables) Su.
Thus, this criterion leads to a hybrid algorithm of optimization
“inside” inversion. More generally, this approach may be used to
establish other criteria to solve hybrid problems. For instance,
just replacing the “maxxu” statistic (used to define Pn+1(xc)) by a
mean or quantile on Su may be useful for solving a probabilistic
inversion problem, instead of the present worst-case inversion.
Such hybrid algorithms are often much closer to solving real
engineering concerns than purely canonical algorithms.

At this point of reasoning, it is very important to understand
that a one-point marginal prediction of any kriging model is not
sufficient to fully access the process behavior (and thus integrate
it). Indeed, the correlation function behind process C(., .) is
strongly related to the process sample functional properties,
which may vary greatly depending on the kernel assumption
(Figure 4). Such a process statistic (maximum here) is then
impossible to compute as an independent sum of punctual
evaluations of x ∈ S. A simple, but more costly approach consists
in using a simulation of the random processes instead of its
prediction statistical model.

Using this latter criterion (Equation 5) on our practical case
study, we will now ask the algorithm (Algorithm 2) to sample the
S space, trying to identify the safety set (dyke and slab height),
irrespective of the flooding duration and discharge values.

In a self-supporting form, the batch sequential algorithm
using this RSUR criterion on a TELEMAC-2D model of the
Garonne river becomes:

4. SOFTWARE AND NUMERICAL TOOLS

This work lies within a trend of applied research aimed
at engineering enhancement. In practice, the previous
(Algorithm 3) requires a heterogeneous set of hardware
and software to be applied. The workbench which drives the
simulations according to the algorithm: (Richet, 2019) [which
may also be used through its Graphical User Interface (Richet,
2011)] is intended to fill the gap between:

• the flooding simulations: TELEMAC-2D, running in parallel
on some Amazon Web Services “instances” (i.e., virtual
machines);

• the robust inversion algorithm: RSUR, from the RobustInv R
package (Chevalier et al., 2017). As a “reproducible research”
target, these components are all available as free software and
standard hardware (seeAnnex for details of how to implement
them on a cloud platform).

4.1. Hydrodynamic Model of the Study Area
The Institut de radioprotection et de sûreté nucléaire (Institute
for Radiological Protection and Nuclear Safety, IRSN) has been
involved in the “Garonne Benchmark” project instigated by EDF.
The aim of the project was to obtain an uncertainty quantification
with hydraulic modeling on a stretch of the Garonne river. Earlier
work carried out by Besnard and Goutal (2011) and Bozzi et al.
(2015), has investigated discharge and roughness uncertainty
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FIGURE 4 | Exponential (right) and gauss (left) kernels random processes. Plain line: one sample drawing, dotted line: mean value, blurred zone: quantiles.

Algorithm 3: Batch sequential procedure to sample the safety frontier (maxt(Hp1) < 0.25 m NFG) in control space {Za,Zf }

Result: Safety frontier (maxt(Hp1) < 0.25 m NFG) in control space {Za,Zf }
Input : number of iterations, batch size
Output: Sampling of safety frontier (maxt(Hp1) < 0.25 m NFG) in control space {Za,Zf }, corresponding output values from

TELEMAC-2D, kriging metamodel

1 Choose preliminary Latin Hypercube random sample X = {Tp,Qp,Za,Zf } ∈ {[3600, 86400]× [2600, 8000]× [18, 25]× [20, 28]}

2 Simulate with TELEMAC-2D Hp1(X) (one simulation for each point of X)
3 Evaluate Y = maxt(Hp1(X))
4 FitMatern3/2 krigingM: maximize likelihood on {X = {Tp,Qp,Za,Zf },Y = maxt(Hp1)} with hyper-parameters (variance and

covariance range of Tp,Qp,Za,Zf )

5 while not reached end of iterations do
6 Set X∗ = X, Y∗ = Y ,M∗ = M
7 while not reached end of batch do

8 Maximize on x∗new = {tpn, qpn, zan, zfn} criterion RSURM∗ (x∗new) = −E
[

∫

[18,25]×[20,28] Pn+1(za, zf )× (1− Pn+1(za, zf ))

dzadzf ], where Pn+1(za, zf ) = P[0.25 < max∀tp ,qp (M
∗
n+x∗new

(tp, qp, za, zf ))] stands for the probability of exceeding 0.25 for

any possible {tp, qp} at a given coordinate (za, zf )

9 Estimate y∗new = E[M∗(x∗new)] (mean value ofmaxt(Hp1) predicted by kriging)
10 Append X∗ = X∗ ∪ x∗new and Y∗ = Y∗ ∪ y∗new
11 Fit metamodelM∗ on {X∗,Y∗}

12 end

13 Get Xnew = ∁X∗X (ie. new points from X∗ not yet in X)
14 Simulate with TELEMAC-2D Hp1(Xnew) (one simulation for each point of Xnew)
15 Set Ynew = maxt(Hp1(Xnew)) (for each point of Xnew)
16 Append X = X ∪ Xnew and Y = Y ∪ Ynew

17 FitMatern3/2 krigingM: maximize likelihood on {X = {Tp,Qp,Za,Zf },Y = maxt(Hp1)}

18 end

in 1D and 2D hydraulic models. In order to contribute to the
project, a version of the MASCARET 1D and TELEMAC-2D
model, as well as hydraulic and hydrological data required to
build these numerical models, were provided to the project’s
participants. In Besnard andGoutal (2011), themodels’ capacities
to represent a major flood event were compared.

In this study, we use 2D model TELEMAC-2D from the open
TELEMAC-MASCARET system (http://www.opentelemac.org).
TELEMAC-2D solves 2D depth-averaged equations (i.e., shallow

water Equation 6). Disregarding the Coriolis, wind and viscous
forces and assuming a vertically hydrostatic pressure distribution
and incompressible flow, the 2D depth-averaged dynamic wave
equations for open-channel flows can be written in conservative
and vector form as:

∂U/∂t + ∇ · F = S (6)

where

Frontiers in Environmental Science | www.frontiersin.org 8 November 2019 | Volume 7 | Article 160

http://www.opentelemac.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Richet and Bacchi Inversion-Optimization Against Garonne Flooding

• t = time (seconds)
• (x, y, z) = coordinate systemwith the x-axis longitudinal, y-axis

transversal and the z-axis vertical upward (meters)
• U = [h, hu, hv]T = vector of conservative variables, with h

being flow depth (meters), u and v = x and y-components of
the velocity vector (meters/seconds)

• F = F(U) = [E(U),G(U)] = flux vector with E =

[hu, hu2 + gh2/2, huv]T and G = [hv, huv, hv2 + gh2/2]T (g
is gravitational acceleration inmeters/seconds2)

• S = S0 + Sf , with S0 = [0,−gh∂zb/∂x,−gh∂zb/∂y]
T

= dimensionless bottom slope and Sf = [0,−gn2u(u2 +

v2)1/2/h1/3,−gn2v(u2 + v2)1/2/h1/3]T = energy losses due to
the bottom and wall shear stress, where zb is bed elevation and
n is Manning roughness (seconds/meters1/3).

The roughness is flow and sediment dependent, but for simplicity
it is assumed to be constant in each of the numerical runs.
In this work, turbulence is modeled using a constant eddy
viscosity value.

A two-dimensional model of the study area was constructed
by EDF within the framework of the “Garonne Benchmark”
(Besnard and Goutal, 2011). The model is composed of nearly
82,116 triangular elements with different lengths varying from 10
m (for the dyke crest, or the main channel of the Garonne River)
to 300 m for the inundated areas. The floodplain topography and
bathymetry are represented by the interpolation of the triangular
mesh on the photogrammetry data (downstream part of the study
area) and the national topographic map (upstream part). The
model covers nearly 136 km2 of the Garonne river basin. It is
forced upstream (the “Tonneins” section) by a flow hydrograph
and downstream by considering steady flow conditions (the “La
Réole” section). The model calibration is reported in Besnard and
Goutal (2011).

The presented model was modified slightly in this study
to introduce the industrial area reported in Figures 1, 2. The
industrial platform was inserted into the model by elevating the
topography of the corresponding mesh at a constant mean level
varying from 18.0 to 25.0 m NGF (Table 1).

For the purpose of the study, triangular flow hydrographs
were used in the upstream section of the model. At the
beginning of each simulation, a steady flow corresponding to a
permanent discharge of 2,100 m2/s is imposed on the model.
The flow discharge is then increased linearly until the maximum
water discharge (Qp) is reached at the time step corresponding
to Tp. Once the peak discharge Qp is reached, the discharge
is decreased linearly until the permanent flow of 2,100 m3/s is
reached at a time step of 2 ∗ Tp.

4.2. Robust Inversion Algorithm
The Robust Stepwise Uncertainty Reduction (RSUR) algorithm
was implemented in a dedicated R package (Chevalier et al.,
2017). It should be used in the same way as other R packages
dedicated to Bayesian optimization or inversion like DiceOptim
(Picheny and Ginsbourger, 2013) or KrigInv (Chevalier et al.,
2012). However, for convenient and simple integration (in the
Funz workbench), the standardized wrapper of the MASCOT-
NUM research group (Monod et al., 2019) was applied to

provide a front API2 (http://www.gdr-mascotnum.fr/template.
html) with the following R functions (https://github.com/Funz/
algorithm-RSUR):

• RSUR(options): basic algorithm constructor, will return
RSUR object to hold algorithm state

• getInitialDesign(rsur,input,output): function to return a first
random sample based on input and output information
(dimension, bounds, etc.)

• getNextDesign(rsur,X,Y): function to return iterative new
samples which maximize the RSUR criterion, based on
previous {X,Y} conditions

• displayResults(rsur,X,Y): function to display the current state
of the RSUR algorithm based on previous {X,Y} conditions.

4.3. Funz Workbench
Developed by the IRSN and distributed under the BSD3

license (https://github.com/Funz), Funz is a server client
engine designed to support parametric scientific simulations.
An overhanging graphical user interface design for practical
engineering is also available at http://promethee.irsn.fr. Funz can
be easily and quickly linked to any computer simulation code
through a set of wrapping expressions (a set of regexp-like lines
in the ASCII file). It uses the R programming language that
is freely available and widely used by the scientific community
working with applied mathematics. In addition to its use by
the research community, this language is also used by many
regulatory organizations. It is therefore simple to integrate
algorithms developed and validated by the scientific community
into Funz, which can then be applied to the previously-linked
computer codes. Thus, to perform this study, Funz was used
to link Telemac (plugin available at https://gtihub.com/Funz/
plugin-Telemac) and the RSUR algorithm (available at https://
github.com/Funz/algorithm-RSUR).

Moreover, in order to perform a given set of computations,
Funz can bring together independent servers, clusters (above
their own queue manager if available), workstations, virtual
servers (see Annex for Amazon Web Services / EC2 example),
and even desktop computers running Windows, MacOS, Linux,
Solaris, or other operating systems. While more focused
on medium-sized performance computing (usually less than
100 concurrent connected instances), the high performance
bottleneck is indeed delegated to each connected simulator
instance, able to require dozens of CPUs independently (or even
launch a Funz master itself).

5. RESULTS, ANALYSIS, AND
CONCLUSIONS

5.1. Overview Results of Algorithm
As previously mentioned, the RSUR algorithm is
parameterized with:

• Controlled parameters: Za ∈ [18, 25] (slab elevation), Zf ∈

[20, 28] (dyke elevation),

2Application Program Interface.
3Berkeley Software Distribution.
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FIGURE 5 | Convergence of RSUR criterion during iterations.

• Uncontrolled parameters: Tp ∈ [3600, 86400] (time to peak),
Qp ∈ [2600, 8000] (peak discharge rate),

• Objective function: maxt(Hp1) < 0.25 (p1 being one point in
the center of the slab, this means we aim to not exceed 25 cm
of water on this slab),

• Batches of 8 calculations at each iteration (plus 24 calculations
of input parameter boundary combinations).

• 20 iterations of (algorithm 2).

Among these, the computing parameters (20 batches of 8
simulations) are defined arbitrarily, considering that:

• the number of iterations (20) has to be increased with the
number of variables, so that the relative uncertainty of the
control set reaches some percent in the end;

• the batch size (8) is mainly an opportunistic choice related
to our computing resources, but it is also an empirical
equilibrium to limit the batching effect of the 8 simultaneous
points chosen [to mitigate the temporary hypothesis effect in
M∗, see (Algorithm 2)].

The convergence of the algorithm is measured by the remaining
uncertainty on the control set volume (numerically, this is the
opposite of the RSUR criterion value (see Chevalier et al., 2014
for computing details) in Figure 5. This quantifies the “fuzzy
zone” where it is still unclear whether the safety limit is exceeded
or not, or in other words, where the limit is exceeded with a
probability which is not 0 or 1 (visually the “gray zone”, while
the “white zone” contains definite unsafe points, and the “black
zone” definite safe points, Figure 6).

It should be noted that some intermediate raising of the RSUR
criterion occurs (e.g., between iterations 10 and 11), when the
kriging metamodel is changing abruptly because of the last data
acquired, thus correcting the fitting of some kriging parameters.
Between iterations 10 and 11, the range of covariance over
the Zf variable decreases (from 9.1 to 7.43), so the algorithm

FIGURE 6 | Probability of exceeding the level of 25 cm on the slab, depending

on the controlled Za and Zf parameters, along some RSUR iterations (last

added points as triangles, exceeding the points in red). The fairly dense

sampling of the “safe” zone represents a practical safety guarantee.

expects a lower regularity on the Zf dimension, which leads us
to “discover” an unexpected safe zone for Za > 24 & Zf < 23.

The safety-controlled set Sc = {Za,Zc} is iteratively identified,
with increasing accuracy along the iterations (Figure 6):
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It should be noted that the sampling density of the three
zones is intrinsically different because of the asymmetry of the
algorithm concerning the property of “unsafety”:

• The assumed “safe” zone needs to be sampled densely to
assume its true safety 4.

• The “unsafe” zone is discovered with sparse sampling, as just
one exceeding (of level set) point is sufficient.

• The frontier between safe/unsafe is explored very densely, it
being the critical information returned by the algorithm.

In addition to this raw result on the Sc subspace, it is also useful
to consider some specific coordinates in their Su projection. The
response surface interpolated (by the kriging mean predictor) on
such interest points, whose side of the frontier may lead to the
safety criterion being exceeded (Figures 7–9) (maxt(Hp1) > 0.25
are red points):

• Definitely “unsafe”: exceeding maxt(Hp1) > 0.25, for (Za,Zf )
in the unsafe zone:

• On the frontier: maxt(Hp1) ∼ 0.25, for (Za,Zf ) in the
undefined safety zone:

• Almost definitely "safe": maxt(Hp1) < 0.25, for (Za,Zf ) taken
in the safe zone:

It should be noted that it was quite expected that maximum
duration and discharge would be observed as the most penalizing
configuration of this study, which is confirmed by these
projections. When such an assumption may be proven prior to
a study, it should be reached by using just an SUR algorithm,
reducing the optimization space to a known value: Su =

{Tp,Qp} = {max(Tp),max(Qp)}.

5.2. Validation of Results
Validation of the previous results [i.e., the accuracy of the
safe/unsafe limit where maxt(Hp1) ≃ 0.25] should be performed
considering the accuracy of the kriging metamodel obtained
at the end of the algorithm iterations. Nevertheless, it is
sufficient to verify that the metamodel is sufficiently accurate
for maxt(Hp1) ≤ 0.25, as the inaccuracy of the metamodel for
higher values wheremaxt(Hp1) >> 0.25 has no crippling impact
on safety.

The best possible measurements of metamodel inaccuracy
should be obtained using a fully-independent test basis of points,
which is unattainable in most practical cases, where financial
and resource constraints prevail. A cheaper alternative lies in
cross-validation inaccuracy estimators, keeping in mind that this
estimate is a “proxy” of the metamodel prediction error (see
Bachoc, 2013).We will use the standard “Leave-One-Out” (LOO)
estimator which computes the Gaussian prediction at each design
point xi ∈ X when xi is artificially removed to re-build the kriging
metamodel (see Equation 7):

y−i = Mn−{xi} = N (m−i(x), s
2
−i(x)) (7)

4This will remain an hypothesis, as long as this black-box algorithm does not

consider any physical knowledge about the case study. A deeper physical study

might have rigorously excluded any risk for Za > 24, for instance.

Where Mn−{xi} is the kriging metamodel conditioned by the n
points {X,Y} (just like “M” in (1)),minus the point xi (previously
belonging to X).

We compare this “blind” (somewhat, considering that xi was
not really chosen randomly) prediction y−i (expectation and
95% confidence interval) to the true value yi we already know
(see Figure 10):

We observe that:

• the target value y ≃ 0.25 is sampled closely by several points
(many of them where y ≃ 0);

• these “safety limit” points are quite well-predicted (small bias
and confidence interval), but even at this last iteration few
points are still underestimated in term of risk (i.e., ytrue value >

ypredicted), but it might be improved with somemore iterations;
• although the unsafe zone is not well-predicted (often large

confidence interval), this is not a major concern for the result
(focusing atmaxt(Hp1) < 0.25).

Moreover, along the algorithm iterations the number and
accuracy of the interest points increases (i.e., 95% confidence
interval and bias decreasing together), so that the safety limit
uncertainty decreases at the same time (see Figure 11):

5.3. Engineering Analysis
From an engineering perspective, the numerical tool developed
in this study (sections 3.1, 3.2, and 3.3) allows us to identify
the possible design parameter combinations (Za,Zf ) suitable to
protect the industrial area against all the possible flooding events
identified for the Garonne river (Qp,Tp) (see all hydrographs
simulated in Figure 12):

In particular, according to the parameters reported in Table 1,
we study the combination of the elevation of the industrial
basement Za and the current dyke height Zf for all the possible
flood events that could cause flooding of the area of interest, and
characterized by a peak discharge varying from 2,600 to 8,000
m3/s and a total duration varying from 2 to 48 h. This choice of
uncontrolled parameters for the study seems robust considering
that the historic flood event for this area does not exceed 6,040
m3/s (SMEPAG, 1989).

The results presented in Figure 6 show that the most relevant
parameter for the industrial area’s defense against flooding is
elevation of the industrial area Za. Specifically, the numerical
results show that:

• If the basement of the industrial area is elevated above
24 m NGF, the safety criteria is always met even without
modification of the current protection.

• On the contrary, if the basement of the industrial area
is below 21 m NGF, any modification of the dyke
elevation would be useless as the safety criteria is
never met.

• An intermediary solution could be to set the basement of the

industrial area between 21 and 24 m NGF by controlling the

dyke elevation between 22 and 24 mNGF. The optimum point

could be chosen according to other practical considerations,

like the cost of the civil engineering work (Vrijling, 2001; van
Gelder and Vrijling, 2004; Ciullo et al., 2019).

Frontiers in Environmental Science | www.frontiersin.org 11 November 2019 | Volume 7 | Article 160

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Richet and Bacchi Inversion-Optimization Against Garonne Flooding

FIGURE 7 | Metamodel mean response surface on Su for surely unsafe points.

FIGURE 8 | Metamodel mean response surface on Su for safety limit points.

FIGURE 9 | Metamodel mean response surface on Su for surely safe points.

5.4. Perspectives
The general methodology proposed in this study seems quite
efficient for designing civil engineering for safety purposes.
Although the true penalizing configuration of the worst flood
event may have been assumed beforehand (which was at
least confirmed by a blind metamodel), it might not be
the general case for more complex models (in terms of
protection degrees of freedom). It should be noted that the

rising number of variables (both controlled and uncontrolled)
will have a cost in terms of metamodel predictability, and
therefore in terms of the number of simulations needed to
achieve enough accuracy for the control set limits. Tuning of
such algorithm convergence parameters remains to be done for
general cases.

Moreover, the developed numerical tool could be employed in
several flooding hazard applications, for instance:
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FIGURE 10 | Kriging prediction of maxt (Hp1) vs. true values at the last iteration (19). Gray bars are issued from kriging variance, red line is the safety target, and

dashed line is unbiased prediction.

FIGURE 11 | Kriging prediction of maxt (Hp1) vs. the true values at iteration 1, 7, 13, and 19.

• Quantification of the margins in the existing protections of the
civil/industrial area (i.e., the algorithm ensures the protections
are robust against any possible flood event).

• Reconstitution of a historical event (i.e., it could be possible
to replace the safety criterion with historical knowledge
and check for all the possible configurations of the
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FIGURE 12 | Focused (expected penalizing) flow hydrographs (Tp, Qp).

controlled and uncontrolled parameters reproducing the
historical data).

Lastly, the primary question that remains is the connection of

such an engineering practice to the probabilistic framework often
adopted in regulation practice. The mainstream idea should be

to weight the hydrograph by their probability of occurrence

(thus inside the integral expression of the RSUR criterion),

which will link the protection design to the flood return period
as required.

In a probabilistic framework, results from this kind of

analysis should indicate which return period the protections are

associated with and even which return period is hazardous for the
civil or industrial installation.
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ANNEX: SUPPLEMENTARY INFORMATION
FOR IMPLEMENTATION

As already mentioned, this study relies on the Funz engine
(Richet, 2019) which provides the computing back end to
distribute calculations according to the RSUR algorithm.
Considering that the reproducibility of this study is a standard
deliverable, the following supplementary information details
both the software and hardware implementation.

The “master” computer hosting Funz is a basic desktop
computer (just running the Funz engine and RSUR algorithm),
which will also remotely start the 8 EC2 instances (Script 1),
create the SSH tunnels for protocol privacy and install Telemac
on each instance.

for i in ‘seq 1 8‘
do

FunzDaemon-EC2.sh -d "lib/Funz/scripts/
install_OpenTelemac.sh lib/*.slf" \

-c "bash./scripts/install_OpenTelemac
.sh" -o $i &
done

Script 1: Deploy 8 Funz services on EC2, including the Telemac
installation.

All TELEMAC-2D calculations are then performed on the
8 servers (suited to the mesh used in this model) started
on the Amazon Web Services EC2 cloud computing platform
(Screenshot 1).

The main Funz script (Script 2) then starts the RSUR
algorithm on the Telemac Garonne model, which is compiled
(meaning study parameters are inserted in the template model
files) and sent to the EC2 instances as required when the RSUR
asks for a calculation point.

Funz.sh RunDesign \
-m Telemac \
-if t2d_garonne_hydro.cas t2d_garonne.cli

Qmax_Garonne_CMWR3 \
princi_wall.f poi.txt loihq_Garonne \

-iv $Q_p$=[2600,8000] $T_p$=[3600,86400]
$Z_f$=[20,28] $Z_a$=[18,25] \

-oe "Numeric:max_t(H_p1)" \
-d RSUR -do xinv.index=’3,4’

xopt.index=’1,2’ ytarget=’<0.25’ \
initBatchSize=’8’

initBatchBounds=’true’ batchSize=’8’\
iterations=’20’

Script 2: The main Funz command which starts
the RSUR algorithm on the Telemac Garonne river
model (files t2d_garonne_hydro.cas t2d_garonne.cli
Qmax_Garonne_CMWR3 princi_wall.f poi.txt loihq_Garonne).

Ultimately, this comprehensive study of 20 RSUR
iterations requires about 10 h availability for all
computing instances, equating to a cost of less than
$100 (at the current standard rates of the main cloud
computing platforms).

Screenshot 1 | 8 Amazon EC2 instances running the Telemac calculations on demand from the RSUR algorithm. Sleep times (non-negligible) are waiting for next

RSUR batch.
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