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This paper focuses on reducing the computational cost of the Monte Carlo method for

uncertainty propagation. Recently, Multi-Fidelity Monte Carlo (MFMC) method (Ng, 2013;

Peherstorfer et al., 2016) and Multi-Level Monte Carlo (MLMC) method (Müller et al.,

2013; Giles, 2015) were introduced to reduce the computational cost of Monte Carlo

method by making use of low-fidelity models that are cheap to an evaluation in addition

to the high-fidelity models. In this paper, we use machine learning techniques to combine

the features of both the MFMC method and the MLMC method into a single framework

called Multi-Fidelity-Multi-Level Monte Carlo (MFML-MC) method. In MFML-MCmethod,

we use a hierarchy of proper orthogonal decomposition (POD) based approximations of

high-fidelity outputs to formulate a MLMC framework. Next, we utilize Gradient Boosted

Tree Regressor (GBTR) to evolve the dynamics of POD based reduced order model

(ROM) (Xiao et al., 2017) on every level of the MLMC framework. Finally, we incorporate

MFMC method in order to exploit the POD ROM as a level specific low-fidelity model

in the MFML-MC method. We compare the performance of MFML-MC method with the

Monte Carlo method that uses either a high-fidelity model or a single low-fidelity model on

two subsurface flow problems with random permeability field. Numerical results suggest

that MFML-MC method provides an unbiased estimator with speedups by orders of

magnitude in comparison to Monte Carlo method that uses high-fidelity model only.

Keywords: uncertainty quantification, POD, multi-fidelity Monte Carlo method, multi-level Monte Carlo method,

machine learning

1. INTRODUCTION

Effective propagation of uncertainties through nonlinear dynamical systems has become an
essential task for model based engineering applications (e.g., water resources management,
petroleum reservoir management) (Elsheikh et al., 2013; Petvipusit et al., 2014; Kani and Elsheikh,
2018). There are many possible sources of uncertainties in the input of multi-phase porous media
flow models such as material properties (e.g., permeability, and porosity), boundary conditions,
and geometrical information of the simulated domain. In this work, we focus on the canonical
problem of uncertainty propagation in subsurface flow models due to the stochastic model inputs
mainly the spatially distributed hydraulic conductivity field. In this setting, the high-fidelity model
outputs [quantities of interest (QoI)] are usually defined as a time series of transport variables
at selected grid blocks (e.g., well locations) in the porous media domain. The propagation
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of uncertainties through multi-phase porous media flow models
remains challenging because of high dimensionality of input
parameter space (e.g., heterogeneous permeability) and the non-
polynomial model nonlinearities (Elsheikh et al., 2012, 2013).
For this class of problems, probabilistic techniques, including
stochastic Galerkin (Ghanem and Spanos, 1991; Stefanou, 2009),
and stochastic collocationmethods (Babuška et al., 2007; Doostan
and Owhadi, 2011) have limited applicability despite they are
computationally very effective for quasi-linear flow models with
the small number of random variables (Li and Zhang, 2007; Lin
and Tartakovsky, 2009).

One viable option to handle such situations is theMonte Carlo
method (MC) where repeated evaluations of the high-fidelity
flow models using different instantiations of the random input
are performed. The output of these simulations is post-processed
for estimates of the desired statistics such as the mean and the
variance of the QoI. Generally, the estimators of the MC method
are unbiased. However, since the accuracy of the MC method is
measured in terms of the estimator variance (Giles, 2013), the
convergence rate of MC estimators toward the desired statistics
scales as

√
N, where N is the number of random samples. Given

this slow convergence rate of MC methods, the MC method is
computationally expensive since a large number of high fidelity
simulation have to be performed to obtain a reasonably accurate
statistical estimate for the QoI. One notable advantage of MC
methods in-comparison to other techniques (Li and Zhang,
2007; Lin and Tartakovsky, 2009) is the ease of implementation
using black-box simulators. Also, the rate of convergence is
independent of the dimensionality of the random model inputs.

In this work, in order to make use of the aforementioned
advantages of the MC method and to alleviate the slow
convergence rate, we employ a variant of control variate
method (Ng, 2013; Giles, 2015) called Multi-Level Monte
Carlo method (Giles, 2013, 2015) which makes use of the
correlation between the high-fidelity model output and a multi-
level hierarchy of low-fidelity model outputs. The key aspect
of MLMC method is the repartition of the computational cost
between different hierarchical levels of models based on the
number of samples required to decrease the variance at each
level. More precisely, the MLMC method relies on the fact that
increasing the number of samples reduces the variance at low
levels and at high levels, the level variances are expected to be
typically small and thus MLMC method incurs few expensive
high-fidelity simulations (Giles, 2013; Müller et al., 2013).

Similar to MLMC method, Multi-Fidelity Monte Carlo
method (Ng, 2013; Peherstorfer et al., 2016) is another control
variate method which combines the outputs from an arbitrary
number of low-fidelity models with the high-fidelity model in
order to speedup the statistical estimation of the QoI. The key
aspect of MFMC approach is the initial selection of low-fidelity
models and the corresponding number of model runs for each
model (Ng, 2013; Peherstorfer et al., 2016). Ng (2013) proposed a
multifidelity approach to reduce the cost of expensive objective
functions in stochastic optimization problems by making use
of inexpensive, low-fidelity models. Peherstorfer et al. (2016)
extended the MFMC method introduced in Ng (2013) to
accelerate uncertainty quantification (UQ) tasks by making use

of many number of low-fidelity models. Furthermore, MFMC
method introduced in Ng (2013) can utilize low-fidelity models
of any type, for example, up-scaled models (Durlofsky and Chen,
2012), POD reduced order models (Berkooz et al., 1993; Antoulas
et al., 2001; Lassila et al., 2014) and response surface based
models (Frangos et al., 2010) could be combined in the MFMC
framework.We refer the readers to read the paper by Peherstorfer
et al. (2018) for a complete review of MFMCmethod.

We now present a brief literature review of MLMC method
as applied to uncertainty quantification (UQ) tasks. It appears
Heinrich (2001) was the one to first apply MLMC in the context
of parametric integration. Kebaier (2005) then used similar
ideas for a two-level Monte Carlo method to approximate weak
solutions to stochastic differential equations in mathematical
finance. Giles (2008) extended the MLMC method to solve
stochastic ordinary differential equations of Ito type. Barth
et al. (2011) and Cliffe et al. (2011) introduced MLMC method
for elliptic partial differential equations (PDEs) with stochastic
coefficients. Abdulle et al. (2013) applied MLMC method to
solve elliptic PDEs in divergence form, where the coefficients
are random with multiple scales. Mishra et al. (2012) generalized
MLMCmethod to nonlinear, scalar hyperbolic conservation laws
with random initial data. Mishra et al. (2016) extended the work
of Mishra et al. (2012) for systems of nonlinear, hyperbolic
conservation laws in several space dimensions. Geraci et al.
(2015) proposed a Multi-Level Multi-Fidelity method in which
the MLMC estimator is modified at each level to benefit from a
level specific low-fidelity model.

In the context of fluid flow in porous media, Müller
et al. (2013) applied MLMC method for two-phase transport
simulations of an oil reservoir with uncertain heterogeneous
permeability. Efendiev et al. (2013) used mixed multi-scale
finite element methods within the MLMC framework to speed
up the computations involving multiphase flow and transport
simulations. Efendiev et al. (2015) coupled the generalized
multi-scale finite element method with the Multi-Level Markov
chain Monte Carlo method (MLMCMC), which sequentially
screens the proposal with different levels of approximations and
combines the samples at different levels to arrive at an accurate
estimate. Elsakout et al. (2015) demonstrated the performance
of MLMCMC for uncertainty quantification tasks involving
reservoir simulation with less computational cost in comparison
to the standard Markov Chain Monte Carlo method. Fagerlund
et al. (2016) combined selective refinement technique with the
MLMC for estimating the sweep efficiency in a two-phase flow
scenario where an absolute accuracy of failure probability in a
magnitude 5 to 10 percent is required. Lu et al. (2016) applied
MLMC method for estimating cumulative distribution functions
of QoI obtained from the numerical approximation of large-
scale stochastic subsurface simulations. For a complete review
of MLMC method, we refer the readers to the following papers
by Giles (2013) and Giles (2015).

Historically, MLMC method constructs a hierarchy of coarse
spatial and/or time discretization models as low-fidelity models.
However, it is also possible to formulate a sequence of low-fidelity
models utilizing projection based reduced order models (Wang
et al., 2017; Xiao et al., 2017) of different dimensions. For
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example, Codina et al. (2015) employed different reduced basis
ROMs in theMLMC framework to estimate the statistical outputs
of stochastic elliptic PDEs. In that work, the authors proposed
an algorithm for optimally choosing both the dimensions of the
reduced basis ROMs and the number of Monte Carlo samples at
each level to achieve a given error tolerance.

In this manuscript, we propose a Multi-Fidelity-Multi-Level
Monte Carlo (MFML-MC) method to address some of the
limitations of standard MLMC method with Galerkin projection
based ROMs (Antoulas et al., 2001; Lassila et al., 2014; Codina
et al., 2015) as low-fidelity models, in particular for large scale
nonlinear UQ problems. We first note that the variance, and
hence the mean square error of the standard MLMC estimator
depends on the correlation between every two consecutive level
ROMs. This requires a large number of levels with a small
difference in the number of dimensions between every two
consecutive ROMs. Therefore, the standard MLMC estimator
not only requires many levels of ROMs but also requires ROMs
of high dimensions until high correlation with the high-fidelity
model is achieved. Hence, the MLMC method involving ROMs
obtained directly from high-fidelity model solution data like the
one mentioned in Codina et al. (2015) can significantly limit
the performance of MLMCmethod. Second, Galerkin-projection
ROMs like PODROMs obtained from the nonlinear high-fidelity
model are subject to severe convergence and stability issues
especially when the dimensions of the ROMs are much smaller
than the dimensions of the high-fidelity model (Bui-Thanh et al.,
2007; He, 2010; Wang et al., 2012). This severely limits the
use of POD ROMs with low dimensions in MLMC framework,
and therefore we cannot expect the reduction in computational
complexity by orders of magnitude as a result of state variable’s
dimension reduction (Kani and Elsheikh, 2018). Third, MLMC
method based on ROMs requires reconstruction of the high-
fidelity model state variable for every sample at each level for
nonlinear problems. Such reconstruction of the high-fidelity
model state variable involves a high dimensional matrix-vector
multiplication, and therefore employing ROMs in the MLMC
method can easily cause computational overheads, in particular
for UQ problems with nonpolynomial nonlinearity. However, we
note that this limitation about reconstructing the high-fidelity
model solution to predict outputs of interest does not apply to
linear ROMs with linear outputs. Fourth, finding the optimal
dimensions of the ROMs is not guaranteed despite the additional
computational complexity in the nonlinear integer optimization
problem formulated in Codina et al. (2016).

The proposed MFML-MC method utilizes a number of ideas
that are detailed as follows. The first idea of the MFML-MC
approach is to obtain a sequence of POD based approximations
of the QoI and use these sequence of POD based approximations
as low-fidelity models in MLMC framework. More precisely,
we compute the optimal POD bases from the singular value
decomposition of the snapshot matrix built directly from the
training samples of the QoI. We then employ the computed
POD bases in the least-squares reconstructionmethod to obtain a
sequence of POD based approximations of the QoI (see section 4
for more details). Since the dimension of the QoI is much
smaller than the state variable’s dimension, the dimension of the

basis vector utilized to approximate the QoI is much smaller
than the basis vector utilized to build a standard POD ROM.
Therefore, building QoI POD instead of a full state variable POD
enables the efficient extraction of high-level PODs at a limited
computational cost. The second idea is to employ the MFMC
method at each level of the MLMC method so that the high-
fidelity model is utilized to provide an unbiased estimator, while
the low computational cost of low-fidelity models are exploited
to run a very large number of realizations in order to obtain a low
variance estimator. The third idea in the MFML-MC approach
is to represent the difference between every two consecutive
level models of the MLMC framework in a reduced dimension.
We utilize principal component analysis (PCA) to perform this
dimensionality reduction. The main reason to utilize PCA for
dimensionality reduction is to exploit the linearity of the expected
value operator. The fourth idea is to use a data-driven approach
to construct a non-intrusive ROM (Wang et al., 2017; Xiao
et al., 2017) in order to compute the reduced representation
mentioned in the third step of MFML-MC method. We use
Gradient Boosted Tree Regressor (GBTR) (Friedman, 2001) to
formulate such level specific low-fidelity non-intrusive ROM in
the MFMC setup. We then utilize the constructed non-intrusive
ROM as a low-fidelity model in the MFMC setup on every
level of the MFML-MC method. To the best of our knowledge,
this paper presents the first attempt to combine the features
of MFMC method and MLMC method using machine learning
techniques for UQ analysis of nonlinear dynamical systems
representing multi-phase porous media flow with uncertainty in
the permeability field. In addition, this paper presents the first
attempt to use the MFMCmethod to estimate the statistics of the
vector-valued time series QoI while the standard MFMCmethod
ismainly used for estimating the statistics of scalar QoI (Ng, 2013;
Peherstorfer et al., 2016).

The remaining of this manuscript is organized as follows. In
section 2, multi-phase porous media flow problem is formulated.
In section 3, MC, MFMC, and MLMC methods are briefly
explained. In section 4, MFML-MC method is introduced. In
section 5, Numerical results for two subsurface multi-phase
porous media flow problems showing the performance of
MFML-MCmethod are reported. We note that building reduced
order models for these porous media flow problems is quite
challenging where standard POD-Galerkin reduced ordermodels
produce inaccurate and unstable results even for the cases where
a large number of POD basis vectors is utilized (He et al., 2011;
Kani and Elsheikh, 2018). Hence, in the two numerical test
cases, standardMLMCwith POD-Galerkin ROM had all the four
limitations as mentioned earlier in this section. Finally, in section
6, conclusions and perspectives are drawn.

2. PROBLEM FORMULATION

We consider an immiscible two-phase (oil and water) flow in
an incompressible porous media domain. The flow behavior of
oil and water in a porous media domain can be described by
conservation of mass and Darcy’s law for each phase (Bastian,
1999; Chen et al., 2006; Aarnes et al., 2007). Neglecting the effects
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of gravitation, capillary, and compressibility, and assuming the
density ratio to be equal to one, Darcy’s law for each phase can be
described as

vα = −K
krα

µα

∇p (1)

where the subscript α = w denotes the water phase, the subscript
α = o denotes the oil phase, vα is the phase velocity, p is the
global pressure, K is the absolute permeability tensor, krα is the
relative permeability of phase α, µα is the viscosity of phase
α (Bastian, 1999; Chen et al., 2006; Aarnes et al., 2007). The phase
relative permeabilities krα models the interactions between the
two phases and usually, krα is described as a function of phase
saturation (volume of phase α in a given pore space of the porous
media domain) (Aarnes et al., 2007).

The total conservation of mass can be expressed in terms of
incompressibility condition that takes the form

∇ · v = q (2)

v = vo+vw is the total velocity vector and q is the total source and
sink term. We can combine the equation of Darcy’s law for each
phase (Equation 1) and the conservation of mass (Equation 2) to
derive equations for global pressure and water saturation:

∇ · Kλ ∇p = q

φ
∂sw

∂t
− ∇ · (fwv)+ qw = 0

(3)

where λ = λw + λo is the total mobility, λα = krα/µα is the
phasemobility, fw = λw/(λw+λo) is termed as the fractional flow
function for the water phase and with the constraint sw + so = 1.
In the rest of the manuscript, we use s in place of sw to denote
water saturation.

In this problem, we consider Equation (3) as the high-fidelity
model and we solve Equation (3) for pressure and saturation
using sequential formulation where we solve for pressure first and
then solve for the water saturation. We use finite volume method
to discretize the spatial derivatives of Equation (3) in a spatial
domain of n grid blocks. We use implicit time stepping method
to solve Equation (3) for the high-fidelity model state variable
ys ∈ R

n, where each component of ys is the water saturation value
at the ith grid block.

The QoI is defined as u(t) ∈ R
m, where ui = ys(xi, yi), i =

1 · · ·m≪ n at specific time steps (say t = 10, 20, · · · 200). In the
following, we use u in place of u(t) to simplify the notation and
we are interested in the first moment estimate (i.e., mean) of u.
The grid points of interest (xi, yi) i = 1 · · ·m can be a set of
arbitrary user specific spatial locations. For example, a set of grid
points where injectors and producers are located.

3. MULTI-FIDELITY MONTE CARLO AND
MULTI-LEVEL MONTE-CARLO METHOD

Let x be a realization of the input random vector X(ω), ω ∈ �

where � is the sample space and the quantity of interest be
the expectation of the random variable u. The standard Monte

Carlo method estimates the expectation E[u] of the random
variable u as

û = 1

N

N
∑

i=1

ui (4)

where û is the estimator of E[u], ui = u(xi), and N is the
number of realizations of the model output. As per the law of
large numbers (Central Limit Theorem) (Giles, 2015), a sample
based estimate of the expectation E[u] introduces sampling error
(mean square error) defined as

ǫ = Var(û) = 1

N
Var(u) (5)

where Var(u) is the variance of u. As
√

ǫ known as standard
error scales with 1√

N
for a constant Var(u), MC simulations

are computationally prohibitive because of the slow convergence
rate. One way to achieve a lower ǫ is to reduce the numerator in
Equation (5) (Ng, 2013).

Control variate is a variance reduction technique which uses
alternative estimator for E[u], u ∈ R that takes the form

ûcv = û+ β (v̂− E[v]) (6)

where v(x) ∈ R is an auxiliary random variable. The estimator
ûcv is an unbiased estimator of E[u] with variance defined as Ng
(2013)

Var(ûcv) = Var(û) (1− ρ2) (7)

where ρ is the correlation between u(x) and v(x). Since ρ2 lies
between 0 and 1, Var(ûcv) is always less than Var(û). For UQ
tasks, where the QoI is governed by partial differential equations,
u(x) is obtained from a high-fidelity model output and v(x) is
generally obtained from a low-fidelity model output. In general,
we do not know exactly E[v] and we have to use a more
accurate estimate of E[v]. For example, Ng (2013) replaced E[v]
in Equation (6) by v̂ = 1

M

∑M
i=1 v(xi), whereM≫MHF andMHF is

the number of high-fidelity model samples. Furthermore, it was
proved in Ng (2013) that for a fixed computational budget p, a
perfectly correlated low-fidelity model is not the only condition
for variance reduction over the standard MC estimator but the
low-fidelity model must also be cheaper to evaluate than the
high-fidelity model.

The potential limitation in the aforementioned multi-
fidelity estimator (Ng, 2013) is that it repartitions the given
computational budget p between the high-fidelity model and only
a single low-fidelity model such that the mean square error of the
estimator is minimized. In order to allow an arbitrary number of
low-fidelity models into the control variate method, Peherstorfer
et al. (2016) extended the multi-fidelity approach introduced
in Ng (2013). Multi-Fidelity Monte Carlo method introduced
in Peherstorfer et al. (2016) formulated an optimization problem
that used an arbitrary number of low-fidelity models to derive an
unbiased MFMC estimator of E[u] that takes the form

ûmf = û+ β1 (v̂1 − û)+
I

∑

i=2

β i (v̂i − v̂i−1) (8)
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where v1 · · · vI ∈ R are auxiliary random variables obtained
from I number of different low-fidelity models, v̂i estimates
the expectation E[vi] using Mi samples of low-fidelity model
i, β1 · · ·βI ∈ R are the coefficients. The low-fidelity model
i uses x1 · · · xMi realizations of the input random vector X(ω)
to estimate v̂i, whereas the low-fidelity model i − 1 uses only
the first Mi−1 realizations of X(ω) to estimate v̂i−1. Therefore
the two consecutive estimators v̂i and v̂i−1 are dependent for
all i = 1 · · · I. The cost of the MFMC estimator is C(ûmf ) =
∑I

i=1 Ci · Mi + CHF · MHF, where CHF is the cost of evaluating
a high-fidelity model, and Ci is the cost of evaluating a low-
fidelity model i for all i = 1 · · · I. In Peherstorfer et al. (2016), an
optimization problem was formulated to select optimal values for
the number of samples {M∗

HF,M
∗
1 · · ·M∗

I }, and for the coefficients
{β1∗ · · ·βI∗} such that the mean square error of the MFMC
estimator is lower than the Monte Carlo estimator for a fixed
computational budget.

The multi-level idea is an another extension of the control
variate approach in which a sequence of low-fidelity models at
different levels (vi ∈ R

m with i = 1 · · · I) is used to evaluate
an approximate statistics of u. First, let the index i encodes
the accuracy of vi with respect to the true solution u ∈ R

m.
This means, as i is increased, the accuracy of vi is refined to
approximate u. Consequently, u can be written as a telescopic
sum in terms of vi with i = 1 · · · I, that takes the form (Müller
et al., 2013)

u = v1 − v0 + v2 − v1 + · · · + vI − vI−1 + u− vI =
I

∑

i=0

Yi (9)

where Yi = vi+1− vi with i = 0 · · · I− 1, YI = u− vI , and we set
v0 = 0. Exploiting the linearity of the expected value operator E,
the expected value E[u] defined in Equation (9) can be written as

E[u] =
I

∑

i=0

E[Yi] (10)

The MLMC estimator for the expected value of u is obtained
by replacing the expected values on the right hand side of
Equation (10) by ensemble averages and is defined as

ûml =
I

∑

i=0

Ŷi =
I

∑

i=0

1

Mi

Mi
∑

j=1

Y
j
i (11)

The mean square error (mse) of MLMC estimator ûml is
derived as

ǫml =
I

∑

i=0

Var(Ŷi) =
I

∑

i=0

1

Mi
Var(Yi) (12)

It is evident from Equation (12) that the mse (ǫml) of MLMC
estimator is sum of several smaller contributions 1

Mi
Var(Yi) with

i = 0 · · · I.
The MLMC method is mainly based on the fact that

1
Mi

Var(Yi) at low levels are reduced by increasing number

of samples (Mi) as low level samples are computed at low
computational cost. At high levels, the level variances Var(Yi)
are expected to be typically small, thus Mi can be small and
hence MLMC method incurs few expensive high-fidelity model
simulations. In summary, MLMCmethod relies on the following
variance hierarchy:

Var(Y0) > Var(Y1) > Var(Y2) > · · · > Var(YI) (13)

and also expects C0 < C1 < C2 < · · · < CI , where
Ci is the computational cost to compute one sample of Yi.
In MLMC method, the optimal values for the number of
samples {M∗

0 · · ·M∗
I } are computed by solving a constrained

minimization problem where the cost function to be minimized
is the total computational cost (

∑I
i=0 Ci · Mi) of the MLMC

method and constraint is set by fixing ǫml to a specific value (say
ǫ2

2 ) (Müller et al., 2013; Geraci et al., 2015). The optimal values
for the number of samples are expressed as

M∗
i = 2

ǫ2





I
∑

j=0

√

Cj · Var(Yj)





√

Var(Yi)

Ci
i = 0, · · · , I

(14)
Although MLMC in general refer to control variate method
with a sequence of I geometrical levels (mesh discretization
levels), it can also be utilized with a sequence of I reduced
basis models (Codina et al., 2016) or POD basis models. More
specifically, a sequence of POD basis models can be employed as
sequence of low-fidelity models v1 · · · vI .

A practical implementation of the MLMC algorithm is the
following (Müller et al., 2013)

1. Fix a sequence of levels based on grid resolutions or POD basis
i = 1 · · · I.

2. Fix a number of offline samplesMo and fix a threshold for the
estimated standard error.

3. PerformMo samples of high fidelity simulations.
4. If POD basis models, Derive I number of POD basis models.
5. ComputeMo samples of Yi on every level.
6. Solve the optimization (Müller et al., 2013) problem to

estimateMi samples of Yi with i = 0 · · · I.
7. Update the estimates for E[Yi],Var(Yi), and Ci on every level.
8. Compute and update the required number of samples Mi on

each level.
9. On every level, if the updated Mi is more than the number of

samples already computed, then add an additional sample of
Yi and continue with step 6. If no level requires an additional
sample, then quit.

4. MULTI-FIDELITY-MULTI-LEVEL MONTE
CARLO METHOD

In this section, we present a novel variance reduction method
called Multi-Fidelity-Multi-Level Monte Carlo (MFML-MC)
method addressing the limiting facts observed in the standard
MLMC method with Galerkin projection based ROMs (see
section 1 for more details). In MFML-MC method, we formulate
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FIGURE 1 | Outline of the (MFML-MC) method described in section 4. The low-fidelityi (yellow color) denotes low-fidelity model i (i = 1, 2, · · · I) in MLMC setup. The

low-fidelity
(i)
f
(brown color) denotes low-fidelity f in MFMC method formulated in the ith MLMC setup. QoI denotes the quantity of interest or outputs of interest.

a MLMC framework with I levels and then apply the techniques
of MFMC method on every level of MLMC framework. Figure 1
displays the outline of the MFML-MC method and its detailed
formulation is described as five steps in the rest of this section.

The first step ofMFML-MCmethod is to formulate a sequence
of POD approximations of the QoI u and utilize these sequence

as low-fidelity models [v1, · · · , vI] in MLMC framework. More
precisely, in this approach, vi is ith level POD approximation
of u and is computed from least-squares reconstruction method
defined as

u ≈ vi = Uri
u ũ = Uri

u (Uri
u
⊤ u) (15)
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where ũ ∈ R
ri is the reduced representation of u, Uri

u ∈
R

m×ri is the orthonormal matrix containing ri orthonormal basis
vectors in its columns. The optimal orthonormal basis vectors are
computed from the singular value decomposition (SVD) of the
snapshot matrix Xu =

(

(u1 . . . uT)1 . . . (u1 . . . uT)L
)

, where
T denotes the number of time steps and L denotes the number
of training samples corresponding to different realizations of the
stochastic input parameters. The SVD ofXu is expressed as (Kani
and Elsheikh, 2018)

Xu = Uu 6u Wu (16)

where Uu ∈ R
m×m is the left singular matrix, (σ1 > σ2 >

σ3 > · · · σm ≥ 0) are the singular values of the snapshot
matrix Xu. The associated error termed as least–squares errors
in approximating u by vi using only ri basis vectors is given
by (Berkooz et al., 1993; Lucia et al., 2004)

εi = ‖u− vi‖2 =
m

∑

j=ri+1

σj (17)

Please note that the dimension m of the basis vector in Uu is
much smaller than n (the number of grid points). Hence, for a
large scale UQ problems where m≪ n, we can easily form many
levels with smaller εi in this MLMC framework in comparison
to standard MLMC method. Moreover, vI can be obtained by
using less number of basis vectors (rI ≈ m with εI ≈ 0)
in comparison to standard MLMC method with a sequence of
Galerkin projection based ROMs.

The second step of MFML-MC method is to compute the
reduced representation of Yi over all levels in MLMC framework
(see Equation 9). The reduced representation ofYi is expressed as

Ỹi = U
qi
Yi

⊤
Yi (18)

where Ỹi ∈ R
qi is the reduced representation of Yi, U

qi
Yi

∈ R
m×qi

is the orthonormal matrix containing qi orthonormal basis
vectors in its columns. The optimal orthonormal basis matrixU

qi
Yi

is computed from the singular value decomposition (SVD) of
the snapshot matrix XYi =

(

(Yi1 . . . YiT )
1 . . . (Yi1 . . . YiT )

L
)

,
where Yij = vi+1j − vij (i = 0 · · · I − 1) and YIj = uj − vIj
for all j = 1, · · · ,T. Since, Yi is computed from the difference
between two consecutive levels of POD based approximations
vi+1 and vi, i.e., Yi = vi+1 − vi, the least–squares error in
approximating Yi by (U

qi
Yi

Ỹi) is equivalent to the difference of
two consecutive level ε (see Equation 17) which is expressed as
1εi = εi − εi+1 =

∑ri+1
j=ri+1 σj.

Now the MLMC estimator (see Equation 11) for the expected
value of u is expressed as

E[u] =
I

∑

i=0

E[Yi] ≈
I

∑

i=0

U
qi
Yi
E[Ỹi] = ûml =

I
∑

i=0

Ŷi =
I

∑

i=0

U
qi
Yi
ˆ̃Yi

(19)
The third step of MFML-MCmethod is to set ri for all i = 1 · · · I.
In this framework, we set ri = i. Now,1εi = σi and therefore, we

expect Yi to be attracted to a certain low dimensional subspace of
dimension qi = 1ri = (ri+1 − ri) = 1 over all the levels.

In the fourth step, we extend the Multi-Level Multi-
Fidelity method introduced in Geraci et al. (2015) by adopting
multi-fidelity approach (see Equation 8) on every level of
MLMC framework to derive an unbiased estimator of E[Ỹi] in
Equation (19) that takes the form

ˆ̃Ymf
i = ˆ̃Yi + β1

i (
ˆ̃Y1
i − ˆ̃Yi)+

Fi
∑

f=2

β
f
i (

ˆ̃Yf
i −

ˆ̃Yf−1
i ) (20)

where Ỹ1
i · · · Ỹ

Fi
i are auxiliary random variables obtained from Fi

number of level specific low-fidelity models of Ỹi,
ˆ̃Yf
i estimates

the expectation E[Ỹ
f
i ] usingM

f
i samples of Ỹ

f
i for all f = 1 · · · Fi,

and β1
i · · ·β

Fi
i ∈ R are the coefficients on level i, i = 0 · · · I. In

this paper, we set Fi = 1 for all i = 0 · · · I. Next, we use the
optimization problem formulated in Peherstorfer et al. (2016) to
select optimal values M∗

HF, M
1∗
i such that the mean square error

of the MFML-MC estimator ˆ̃Ymf
i on every level is lower than the

Monte Carlo estimator ˆ̃Yi for the same computational budget.
Now, the MFML-MC estimator for the expected value of u

(see Equation 19) is expressed as

E[u] ≈ ûml =
I

∑

i=0

Ŷi ≈
I

∑

i=0

U
qi
Yi

ˆ̃Ymf
i (21)

In the fifth step, we utilize a data-driven approach to derive a level
specific low-fidelity model Ỹ1

i in the MFMC setup. In this data-
driven approach, we first consider a discrete nonlinear dynamical
system on every level (i = 0 · · · I) that takes the form

Ỹ1
i (t + 1) = Ỹ1

i (t)+ Fi(x, Ỹ
1
i (t)), (22)

where Fi(x, Ỹ1
i (t)) is the nonlinear term utilized to update Ỹ1

i (t+
1) on level i for all i = 0 · · · I (Nagoor Kani and Elsheikh,
2017). Next, we use GBTR (Friedman, 2001) on every level to
approximate Fi(x, Ỹ1

i (t)). We use (x, Ỹ1
i (t)) as an input to GBTR

and compute Fi(x, Ỹ1
i (t)) as an output. We fit GBTRs using

the same training samples
(

(Yi1 . . . YiT )
1 . . . (Yi1 . . . YiT )

L
)

utilized in the second step.

5. NUMERICAL EXPERIMENTS

In this section, we present numerical results to evaluate the
performance of MFML-MC method. The numerical results
are based on two UQ tasks involving two-phase flow in the
heterogeneous porous media domain. The two test cases are
quarter five spot problem and the uniform flow problem
with the uncertainties in the permeability field (Kani and
Elsheikh, 2018). In section 5.1, we describe high-fidelity model
setup, in section 5.2, we describe low-fidelity model setup
in order to formulate MFML-MC framework, in section 5.3,
we describe MLMC with Galerkin-POD ROMs setup, and in
section 5.4, we define a set of error metrics that we utilize
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to compare MFML-MC method with standard MC method
that uses either high-fidelity model or low-fidelity model.
In section 5.5, we provide the results for quarter five spot
problem and in section 5.6, we provide the results for uniform
flow problem.

5.1. High-Fidelity Model Setup
We consider two-phase flow of oil andwater in a two dimensional
porous media domain [0 1] × [0 1] where water is injected to
displace the residual oil. We consider Equation (3) as a high-
fidelity model to describe the flow behavior of oil and water. We
define the relative permeability based on Corey’s model krw(s) =
s∗2, kro = (1 − s∗)2, where s∗ = (s − swc)/(1 − sor − swc),
swc is the irreducible water saturation and sor is the residual oil
saturation (Aarnes et al., 2007). We set swc = 0.2, sor = 0.2, and
initial water saturation to swc(0.2). We set the porosity field in the
porous media domain to a constant value of 0.2. We set viscosity
ratio of water and oil to 0.2. We consider uncertainties from the
permeability field and assumed to be modeled as a log-normal
distribution function with zero mean and exponential covariance
that takes the form

Cov = σ 2
k exp

[

−|x1 − x2|
ιk

]

(23)

where σ 2
k
is the variance, ιk is the correlation length. We set σ 2

k
to

1 and ιk to 0.1. Sample realizations of log-permeability values are
displayed in Figure 2.

As mentioned in section 2, we use sequential formulation to
solve Equation (3) for pressure and water saturation (Aarnes
et al., 2007). We first generate a uniform mesh of 96 × 96 blocks
in a spatial domain. We use finite volume method with two point
flux approximation (Aarnes et al., 2007) to solve for pressure
and an upwind finite-volume method with an implicit backward
Euler method combined with Newton-Raphson iterative method
to solve for saturation. We set time step size to 0.015 and we solve
Equation (3) for 200 time steps. We solve pressure and update

velocity field at every 8th time step as pressure field changes
much slower than saturation field over time. Time is measured
by a non dimensional unit called pore volumes injected (PVI)
(Ibrahima, 2016).

As defined in section 2, QoI is u ∈ R
m, where ui =

ys(xi, yi), i = 1 · · ·m≪ n at specific time steps. The first moment
estimate of u(t) at specific time steps are the desired statistic. The
interested grid points ((xi, yi) i = 1 · · ·m) are 6 × 6 grid points
(m = 36) uniformly selected from the 96 × 96 spatial domain.
The interested time steps are t = 10, 20, · · · , 200. We solve
Equation (3) for 25,000 random realizations of the permeability
field and use Monte Carlo method to estimate the statistics of u
(Ibrahima, 2016).

5.2. Low-Fidelity Model Setup
We first compute the optimal POD bases matrices Uu and UYi

for all i = 0 · · · I. We compute the POD matrices from the
SVD of the snapshot matrices Xu,XYi , i = 0 · · · I. We built
the snapshot matrices from 10 random samples of high-fidelity
model solution data. In order to select the 10 random high-
fidelity models to build snapshot matrices, we use K-means
clustering algorithm to cluster 25,000 random permeability
realizations into 10 clusters (Ghasemi, 2015). Then, we solve
the high-fidelity model for a single permeability realization from
each cluster.

Following that, the obtained matrix Uu is utilized to build a
sequence of POD approximations of u (as detailed in the section
4) from the collected training data. Then thematrixU

qi
Yi
is utilized

to compute training samples of Ỹi (the reduced representation of
Yi) for all i = 0 · · · I. We set I = 18, ri = i, and therefore qi = 1
as already mentioned in section 4.

Next, we build a level specific GBTR on every level (i = 0 · · · I)
to estimate Fi and utilize the estimated Fi in Equation (22) to
compute Ỹ1

i (t+1). We use Scikit-learn (Pedregosa et al., 2011) a
machine learning python package to implement the GBTRs. We
use the training samples of Ỹi to fit the level specific GBTR.

FIGURE 2 | Sample plots of log-permeability field. Uncertain permeability field is modeled from a log-normal distribution function with zero mean and exponential

covariance.
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5.3. Standard MLMC With POD-Galerkin
ROMs Setup
We first compute optimal POD basis vectors for the pressure and
saturation solution vectors from the SVD of the corresponding
snapshot matrices. We built the snapshot matrices from the
solution vectors (pressure and saturation) collected from the
solutions of the high-fidelity model for 45 random realizations
of the permeability field. We then built low-fidelity ROMmodels
of different dimensions via Galerkin projection of the discretized
system of the high-fidelity model Equation (3) on to the POD
space spanned by the POD basis vectors.

Following that one can obtain MLMC framework using
Galerkin projection PODROMs as low-fidelitymodels. However,
in the two numerical test cases namely, the quarter five spot
problem (5.5), and the uniform flow problem (5.6), we obtained
accurate and stable POD results only when the dimensions
of the POD-Galerkin ROMs were on the order of magnitude
nearly equivalent to the dimension of the high-fidelity state
variable (Xiao et al., 2017; Kani and Elsheikh, 2018). Hence, the
computational cost to obtain the QoI from the POD-Galerkin
ROM is more than the computational cost to obtain the QoI
from the high-fidelity model for a single realization. Therefore,
it was infeasible to derive an effective MLMC framework with a
hierarchy of low-fidelity models based on standard POD ROMs.
This is expected because the governing equations of the flow
problem Equation (3) has nonpolynomial nonlinearity and is
well known issue in reduced order modeling for multi-phase
subsurface flow problems (Chaturantabut and Sorensen, 2011;
He et al., 2011; Jansen and Durlofsky, 2017; Kani and Elsheikh,
2018). We also note that we conducted extensive study on

reduced order modeling for these two problems in Kani and
Elsheikh (2018) and we obtained inaccurate and unstable results
when using POD ROMs. At this point, we request the readers
to refer figures included in the numerical results section of Kani
and Elsheikh (2018), where some of the standard POD ROM
unstable results are displayed. Hence, we have not included the
comparison of MFML-MC method with MLMC method based
on standard POD ROMs as low-fidelity models.

5.4. Evaluation Metrics
We evaluate the performance of MFML-MC method using two
time specific error metrics defined by

êbiast = 1

Ne

Ne
∑

j=1

‖ûref
t − û

(j)
t ‖22

êǫt =
1

Ne

Ne
∑

j=1

Var(û
(j)
t )

(24)

where Ne is the number of runs utilized to estimate the errors,
ûref
t is the reference result of E[ut] obtained from Monte Carlo

estimate û(MC)
t computed with N = 25, 000 high-fidelity model

samples. û
(j)
t is the approximation of E[ut] that can be obtained

from various estimators including Monte Carlo estimate that
uses only high-fidelity model, Monte Carlo estimate that uses
only low-fidelity model, and the MFML-MC estimator. We note

that, û
(j)
t is obtained for a fixed computational budget p. The

computational budget is measured in terms of the cost required
to run p number of MC realizations that uses only high-fidelity

FIGURE 3 | Test case 1. (Left) Two dimensional quart-five spot problem set-up where water is injected in the lower left corner (blue dot). Oil is displaced and

produced with water in the upper right corner (blue dot). The red dots denotes spatial locations in the porous media domain where the statistics of the QoI u are

investigated. (Right) Decay of singular values of the snapshot matrix Xu.
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FIGURE 4 | Test case 1: Comparison of estimation of E[ut ] (mean water saturation field at 6× 6 spatial grid) for a fixed computational budget p = 100, where p is the

number of MC realizations that uses only high-fidelity model. (Top Row) Estimation of E[ut ] at time t = 0.3 PVI. (Bottom Row) Estimation of E[ut ] at time t = 0.8 PVI.

FIGURE 5 | Test case 1: Plot of êbiast , and êǫ
t (Equation 24) for the estimation of E[ut ] (water saturation field at 6× 6 spatial grid) obtained from various estimators.

êbiast and êǫ
t are shown as a function of computational budget p = [1, 2, 3, 4, 5]× 102, where p is the number of MC realizations N that uses only high-fidelity model.

(Left) êbiast at time t = 0.3 PVI. (Right) êǫ
t at time t = 0.3 PVI.

model. We also note that, û
(j)
t is evaluated from a different set of

independent samples for set j = 1 · · ·Ne.
Additionally, we utilize two global error metrics defined as

êbias = 1

Ne

Ne
∑

j=1

T
max
t=1

‖ûref
t − û

(j)
t ‖22

êǫ = 1

Ne

Ne
∑

j=1

T
max
t=1

Var(û
(j)
t )

(25)

where all the time snapshots of u are used. We set Ne = 15 to
evaluate the two time specific error metrics and the two global
error metrics.

5.5. Numerical Test Case 1
Test case 1 is two dimensional quart-five spot problem where
water is injected in the lower left corner (0, 0) of the porous
media domain to produce oil and water in the top right corner
(1, 1) (Kani and Elsheikh, 2018). We set q defined in the
saturation equation (Equation 3) to 0.05 at (0, 0) and −0.05
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FIGURE 6 | Test case 1: Plot of êbias and êǫ (Equation 25) estimation of E[u] (water saturation field at 6× 6 spatial grid) obtained from various estimators. êbias and

êǫ are shown as a function of computational budget p = [1, 2, 3, 4, 5]× 102, where p is the number of MC realizations N that uses only high-fidelity model.

at (1, 1). We set no flux boundary condition in all the four
sides of the porous media domain. The left panel of Figure 3
displays the quart-five spot problem set up and the right panel of
Figure 3 displays the decay of the singular values of the snapshot
matrix Xu.

Figure 4 shows the results for the estimation of E[ut] (first
moment of u) obtained from the reference result (MC estimate
with 25,000 samples) and from various MC estimators. In
Figure 4, MC estimator that uses only high-fidelity model is
denoted as MC-HF and that uses only low-fidelity model is
denoted as MC-LF. In Figure 4, results shown in the top row
are obtained at time = 0.3 PVI and results shown in the bottom
row are obtained at time = 0.8 PVI. As shown in Figure 4, the
estimation of E[ut] obtained from MC-LF deviates significantly
from the reference result. This clearly shows that utilizing
only low-fidelity model in MC framework resultant in biased
estimation with respect to the reference result. Furthermore,
Figure 4 shows that the estimation of E[ut] obtained from
MFML-MC estimator is almost indistinguishable from the
reference result. This result confirm that combining higher
number of low-fidelity model realizations with the high-fidelity
model in MFML-MC framework can improve the estimator of
the first moment of the saturation field.

Figure 5 reports the comparison of êbiast and êǫt (see
Equation 24) obtained from various estimators. The left of
Figure 5 reports êbiast and the right of Figure 5 reports êǫt as
a function of computational budget p = [1, 2, 3, 4, 5] × 102,
where p is the number of MC-HF realizations. The results of
êbiast from Figure 5 shows that Monte Carlo estimator that uses
MC-LF is a biased estimator of the mean QoI value. The results
of MFML-MC estimator displayed in left of Figure 5 confirm
that the MFML-MC estimator is an unbiased estimator of the

TABLE 1 | Performance chart of MFML-MC estimator for test case 1.

ǫ p CPU Time (min) Speedup

MC-HF MFML-MC

10−4 5× 102 125 15 8.3

10−5 9× 103 2,250 210 10.5

10−6 25× 103 6,250 490 13.4

ǫ defined in Equation (5) is shown as a function of computational budget p, where p is

the number of MC realizations that uses the high-fidelity model only. ǫ is estimated at time

= 0.3 PVI.

expectation. This shows that despite the low-fidelity model is a
poor approximation of the high-fidelity model, the error of the
MFML-MC estimator can be significantly reduced if the low-
fidelity model is combined with the high-fidelity. The right of
Figure 5 shows that the variance of the MFML-MC and MC-LF
estimators are at least an order of magnitude less when compared
to MC-HF. Nevertheless, while MC-LF is a biased estimator as
shown in left of Figure 5, MFML-MC estimator that uses the low-
fidelity model in combination with the high-fidelity model is an
unbiased estimator of the expectation.

Figure 6 reports the comparison of êbias and êǫ (see
Equation 25) obtained from various estimators. We can clearly
observe the trend of êbias, and êǫ in Figure 6 are similar to
the one observed in Figure 5 which confirms that MFML-MC
method leads to variance reduction with unbiased estimation at
all time steps.

Table 1 compare the speedup factors of MFML-MC method
with respect to the Monte Carlo estimator that uses the high-
fidelity model only. In Table 1, MFML-MC achieves a speedup
with respect to MC-HF that range from 8 up to 15 for the same
specific ǫ.
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FIGURE 7 | Test case 2: (Left) Uniform flow problem set up where water is injected from the left side denoted by blue arrows. Oil and water are produced from the

right side denoted by brown arrows. The red dots denotes the spatial locations of the porous media domain where the statistics of the QoI u are investigated. (Right)

Decay of singular values of the snapshot matrix Xu.

FIGURE 8 | Test case 2: Comparison of estimation of E[ut ] (mean water saturation field at 6× 6 spatial grid) for a fixed computational budget p = 100, where p is the

number of MC realizations that uses only high-fidelity model. (Top Row) Estimation of E[ut ] at time t = 0.3 PVI. (Bottom Row) Estimation of E[ut ] at time t = 0.8 PVI.

5.6. Numerical Test Case 2
Test case 2 is a two dimensional uniform flow problem where
water is injected from the left side of the porous media domain
to produce oil and water from the right side. We set no flow
boundary conditions in the remaining two sides (top and bottom)
of the domain. We set inflow rate to 0.08 and outflow rate to 0.08
due to incompressibility constraint set in the problem (Kani and
Elsheikh, 2018). The left panel of Figure 7 displays uniform flow

problem set up and the right panel of Figure 7 displays the decay
of the singular values of the snapshot matrix Xu.

Figure 8 shows the results for the first moment of the
saturation field (u) obtained from the reference result (MC
estimate with 25000 samples) and from various MC estimators.
The display settings defined in Figure 8 are the same as the
one defined in Figure 4. In Figure 8, we can see that the results
obtained from MFML-MC method are almost indistinguishable
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FIGURE 9 | Test case 2: Plot of êbiast and êǫ
t (Equation 24) for the estimation of E[ut ] (water saturation field at 6× 6 spatial grid) obtained from various estimators.

êbiast and êǫ
t are shown as a function of computational budget p = [1, 2, 3, 4, 5]× 102, where p is the number of MC realizations N that uses only high-fidelity model.

(Left) êbiast at time t = 0.3 PVI. (Right) êǫ
t at time t = 0.3 PVI.

FIGURE 10 | Test case 2: Plot of êbias and êǫ (Equation 25) for the estimation of E[u] (water saturation field at 6× 6 spatial grid) obtained from various estimators.

êbias and êǫ are shown as a function of computational budget p = [1, 2, 3, 4, 5]× 102, where p is the number of MC realizations N that uses only high-fidelity model.

from the reference results whereas MC-LF yields extremely
inaccurate results.

Figure 9 reports the comparison of êbiast and êǫt (see
Equation 24) obtained from various estimators. The variance
reduction can be clearly observed in Figure 9 and the trend of
Figure 9 is similar to the one observed in Figure 5 (Test case 1).

The results of Figure 9 again confirm that combining the high-
fidelity model with the low-fidelity model leads to a variance
reduction. Please note that a similar confirmation was observed
in Figure 5.

Figure 10 reports the comparison of êbias and êǫ (see
Equation 25) obtained from various estimators. As observed in
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TABLE 2 | Performance chart of MFML-MC estimator for test case 2.

ǫ p CPU Time (min) Speedup

MC-HF MFML-MC

10−4 5× 102 148 14 10.8

10−5 9× 103 2,850 197 14.5

10−6 25× 103 7,950 410 19.4

ǫ defined in Equation (5) is shown as a function of computational budget p, where p is

the number of MC realizations that uses the high-fidelity model only. ǫ is estimated at time

= 0.3 PVI.

Figure 6, the results displayed in Figure 9 shows that MFML-MC
method leads to variance reduction with unbiased estimation.

Table 2 compare the speedup factors of MFML-MC method
with respect to the MC method that uses the high-fidelity model
only. In Table 2, MFML-MC achieves a speedup with respect to
MC-HF that range from 10 up to 19 at a specific ǫ.

6. CONCLUSION

In this paper, we proposed a MFML-MC method combining the
features of both the MFMC method and the MLMC method. In
MFML-MC method, we formulated MLMC framework with a
sequence of POD approximations of high-fidelity model outputs.
Furthermore, in MFML-MC method, we formulated a MFMC
setup on every level of MLMC framework in order to compute
an unbiased statistical estimation. Finally, we utilized GBTR in
the MFMC setup to formulate a level specific low-fidelity model.

We applied MFML-MC method on two uncertainty
quantification problems involving two-phase flows in random

heterogeneous porous media where standard MLMC method
with POD-Galerkin ROMs is ineffective. The uncertain
permeability field is modeled from log-normal distribution
function with exponential covariance function. Estimate of the
first statistical moments of the water saturation at uniformly
selected spatial grid points over a specific instant in time
are calculated by MFML-MC, MC-HF, and MC-LF methods.
Comparisons between MFML-MC and MC-LF suggested that
MC-LF as a biased estimator and MFML-MC estimator as an
unbiased estimator of the expectation. Comparisons between the
MFML-MC and MC-HF computing times showed speedups of
MFML-MC with respect to MC-HF that ranged from 8 up to 19
at equivalent accuracy.

Future work should consider the extension of MFML-MC
method by utilizing two or more level specific low-fidelity models
in the MFMC setup. In addition, it will also be interest to use
MFML-MC method for history matching (Elsheikh et al., 2012,
2013), where we aim to minimize the mismatch between field
observation data and the one computed from the high-fidelity
model simulations by adjusting the geological model parameters.
Future work should also verify the applicability of MFML-MC
method for large-scale realistic problems with many wells and
time varying injection rates by which the potential of MFML-MC
method in speeding up a realistic Monte Carlo simulation can be
magnified.
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Computing, eds S. Margenov, J. Waśniewski, and P. Yalamov (Berlin;
Heidelberg: Springer), 58–67.

Ibrahima, F. (2016). Probability distribution methods for nonlinear transport in

heterogenous porous media. (Ph.D. thesis). Stanford Univeristy, Stanford, CA.
Jansen, J. D., and Durlofsky, L. J. (2017). Use of reduced-order

models in well control optimization. Optimizat. Eng. 18, 105–132.
doi: 10.1007/s11081-016-9313-6

Kani, J. N., and Elsheikh, A. H. (2018). “Reduced-order modeling of subsurface
multi-phase flow models using deep residual recurrent neural networks,” in
Transport in Porous Media, eds Z. Zhang, J. Chi, S. Sun, and Z. Pan (Springer),
1–29.

Kebaier, A. (2005). Statistical romberg extrapolation: a new variance reduction
method and applications to option pricing. Ann. Appl. Probabil. 15, 2681–2705.
doi: 10.1214/105051605000000511

Lassila, T., Manzoni, A., Quarteroni, A., and Rozza, G. (2014). “Model order
reduction in fluid dynamics: challenges and perspectives,” in Reduced Order

Methods for Modeling and Computational Reduction, eds A. Quarteroni and G.
Rozza (Cham: Springer), 235–273.

Li, H., and Zhang, D. (2007). Probabilistic collocation method for flow in porous
media: comparisons with other stochastic methods. Water Resour. Res. 43.
doi: 10.1029/2006WR005673

Lin, G., and Tartakovsky, A. M. (2009). An efficient, high-order probabilistic
collocation method on sparse grids for three-dimensional flow and solute

transport in randomly heterogeneous porous media. Adv. Water Resour. 32,
712–722. doi: 10.1016/j.advwatres.2008.09.003

Lu, D., Zhang, G., Webster, C., and Barbier, C. (2016). An improved multilevel
monte carlo method for estimating probability distribution functions in
stochastic oil reservoir simulations. Water Resour. Res. 52, 9642–9660.
doi: 10.1002/2016WR019475

Lucia, D. J., Beran, P. S., and Silva, W. A. (2004). Reduced-order modeling:
new approaches for computational physics. Prog. Aerospace Sci. 40, 51–117.
doi: 10.1016/j.paerosci.2003.12.001

Mishra, S., Schwab, C., and Šukys, J. (2012). Multi-level monte carlo finite volume
methods for nonlinear systems of conservation laws in multi-dimensions. J.
Comput. Phys. 231, 3365–3388. doi: 10.1016/j.jcp.2012.01.011

Mishra, S., Schwab, C., and Šukys, J. (2016). Multi-level monte carlo finite
volume methods for uncertainty quantification of acoustic wave propagation
in random heterogeneous layered medium. J. Comput. Phys. 312, 192–217.
doi: 10.1016/j.jcp.2016.02.014

Müller, F., Jenny, P., andMeyer, D.W. (2013).Multilevel monte carlo for two phase
flow and buckley–leverett transport in random heterogeneous porous media. J.
Comput. Phys. 250, 685–702. doi: 10.1016/j.jcp.2013.03.023

Nagoor Kani, J., and Elsheikh, A. H. (2017). DR-RNN: a deep residual recurrent
neural network for model reduction. arxiv 1709.00939.

Ng, L. W.-T. (2013). Multifidelity approaches for design under uncertainty. (Ph.D.
thesis). Massachusetts: Massachusetts Institute of Technology.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830.

Peherstorfer, B., Willcox, K., and Gunzburger, M. (2016). Optimal model
management for multifidelity monte carlo estimation. SIAM J. Sci. Comput. 38,
A3163–A3194. doi: 10.1137/15M1046472

Peherstorfer, B., Willcox, K., and Gunzburger, M. (2018). Survey of multifidelity
methods in uncertainty propagation, inference, and optimization. SIAM Rev.

60, 550–591. doi: 10.1137/16M1082469
Petvipusit, K. R., Elsheikh, A. H., Laforce, T. C., King, P. R., and Blunt, M. J.

(2014). Robust optimisation of CO2 sequestration strategies under geological
uncertainty using adaptive sparse grid surrogates. Comput. Geosci. 18, 763–778.
doi: 10.1007/s10596-014-9425-z

Stefanou, G. (2009). The stochastic finite element method: past, present
and future. Comput. Methods Appl. Mech. Eng. 198, 1031–1051.
doi: 10.1016/j.cma.2008.11.007

Wang, Z., Akhtar, I., Borggaard, J., and Iliescu, T. (2012). Proper orthogonal
decomposition closure models for turbulent flows: a numerical comparison.
Comput. Methods Appl. Mech. Eng. 237, 10–26. doi: 10.1016/j.cma.2012.
04.015

Wang, Z., Xiao, D., Fang, F., Govindan, R., Pain, C. C., and Guo, Y.
(2017). Model identification of reduced order fluid dynamics systems using
deep learning. Int. J. Numer. Methods Fluids 86, 255–268. doi: 10.1002/
fld.4416

Xiao, D., Lin, Z., Fang, F., Pain, C. C., Navon, I. M., Salinas, P., et al. (2017).
Non-intrusive reduced-order modeling for multiphase porous media flows
using smolyak sparse grids. Int. J. Numer. Methods Fluids 83, 205–219.
doi: 10.1002/fld.4263

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Jabarullah Khan and Elsheikh. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Environmental Science | www.frontiersin.org 15 August 2019 | Volume 7 | Article 105

https://doi.org/10.4208/cicp.021013.260614a
https://doi.org/10.1007/s11004-012-9397-2
https://doi.org/10.1002/2012WR013406
https://doi.org/10.1016/j.advwatres.2016.06.007
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1017/S096249291500001X
https://doi.org/10.1016/j.jcp.2011.06.007
https://doi.org/10.1007/s11081-016-9313-6
https://doi.org/10.1214/105051605000000511
https://doi.org/10.1029/2006WR005673
https://doi.org/10.1016/j.advwatres.2008.09.003
https://doi.org/10.1002/2016WR019475
https://doi.org/10.1016/j.paerosci.2003.12.001
https://doi.org/10.1016/j.jcp.2012.01.011
https://doi.org/10.1016/j.jcp.2016.02.014
https://doi.org/10.1016/j.jcp.2013.03.023
https://doi.org/10.1137/15M1046472
https://doi.org/10.1137/16M1082469
https://doi.org/10.1007/s10596-014-9425-z
https://doi.org/10.1016/j.cma.2008.11.007
https://doi.org/10.1016/j.cma.2012.04.015
https://doi.org/10.1002/fld.4416
https://doi.org/10.1002/fld.4263
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	A Machine Learning Based Hybrid Multi-Fidelity Multi-Level Monte Carlo Method for Uncertainty Quantification
	1. Introduction
	2. Problem Formulation
	3.  Multi-fidelity Monte Carlo and Multi-level Monte-Carlo Method
	4. Multi-fidelity-Multi-level Monte Carlo Method
	5. Numerical Experiments
	5.1. High-Fidelity Model Setup
	5.2. Low-Fidelity Model Setup
	5.3. Standard MLMC With POD-Galerkin ROMs Setup
	5.4. Evaluation Metrics
	5.5. Numerical Test Case 1
	5.6. Numerical Test Case 2

	6. Conclusion
	Author Contributions
	References


