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Temperature plays an important role in electricity demand and generation; heat waves

and cold waves represent potential threats to the energy system due to the sustained

nature of such events. In the current climate change context, it is important to anticipate

possible changes in the occurrence of the most severe events to adapt energy system

planning and management. However, because such events are rare, any estimation of

their frequency is uncertain and a very large data sample is required to reduce any

sampling uncertainty. In this paper, a way of expanding multimodel or single-model

ensembles in order to produce a much larger ensemble of temporal evolutions of a

temperature based indicator, is presented. This ensemble can then be used to statistically

estimate the occurrence and occurrence changes in time of the most extreme events.

The generation of additional time series is made by use of a stochastic weather generator

designed for the simulation of the stochastic residuals once the trends and seasonalities

in mean and standard deviation of the temperature have been removed. The approach is

first described and applied to an observed 32-station weighted average temperature time

series in France, used as an indicator for the role of temperature in electricity demand,

in a cross-validation setting. Using the observed time series of this thermal indicator

over the period 1950–2017, the approach is calibrated over the period 1955–1986 to

generate similar time series over the whole period 1955–2017 using different CMIP5

Global Climate Model simulations. Then the generated set of time series are validated

for the mean annual cycle and distributions of heat waves and cold waves over the

period 1987–2017. The choices made for generation and reconstruction are detailed

and motivated. The methodology is used to generate a large set of indicator evolutions

covering recent past and near future periods, which is used to identify changes in the

frequencies of the most severe heat waves or cold waves. The increased frequency of

very severe heat waves is found in agreement with previous studies, and estimates of

the decreased frequency of the most severe cold waves are also provided.

Keywords: temperature, climate change, stochastic generator, future evolution, heat and cold waves

INTRODUCTION

The climate and energy systems are closely interrelated; future changes in the climate are likely
to drive changes in energy systems (e.g., increased air temperatures requiring more energy for
cooling purposes) and developments in the energy sector (e.g., greater use of renewable energy
and storage technology) will help to decarbonize the economy. The intimate link between weather

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2019.00099
http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2019.00099&domain=pdf&date_stamp=2019-06-28
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sylvie.parey@edf.fr
https://doi.org/10.3389/fenvs.2019.00099
https://www.frontiersin.org/articles/10.3389/fenvs.2019.00099/full
http://loop.frontiersin.org/people/641723/overview


Parey Temperature Time Series Generation

and energy is fully discussed in a recent book (Troccoli et al.,
2014; Añel, 2015). Bossmann and Staffell (2015) studied the
possible changes in electricity demand due to different changes in
electricity use in the future linked to climate change mitigation.
Due to the importance of heating and cooling, temperature will
remain, an important driver of electricity demand. McFarland
et al. (2015) studied the impact of temperature increase on
electricity supply and demand in the United States, by applying
temperature projections to three electric sector models in the US.
In Europe, the historical link between electricity demand and
temperature is not linear, and three types of countries can be
identified (Bessec and Fouquau, 2008): cold countries which only
exhibit a heating effect, intermediate countries with a dominant
heating effect and a small cooling effect and warm countries
which clearly exhibit both effects. France is an intermediate
country in that respect. The study also provides evidence of an
increase in the sensitivity to temperature during the summer
in recent years. In warm European countries, global warming
combined with the urban heat island effect may have a major
impact on electricity consumption (see (Santamouris et al.,
2015) for a review). Besides average load changes, changes
in peak demand are of importance for the design of peak
load management strategies (storage, demand side management,
interconnection, and peaking capacities). Peak demand may be
linked to severe weather conditions like heat waves and cold
waves. For example, during the February 2012 cold wave (Luo
et al., 2014), French electricity consumption reached a new record
exceeding the value from winter 2010 by 5 GW and the 10 years
old previous one by more than 20 GW (RTE, 2012); this record
most likely occurred due to electrical heating in buildings. Añel
et al. (2017) detail the impacts of heat waves and cold waves on
the energy sector with the help of historical events. The impact of
climate change on the frequency and intensity of peak electricity
demand has been studied by Auffhammer et al. (2017) for the
US. They derived statistical models for the link of base and peak
electricity demand with temperature. They used 20 downscaled
General Circulation Model outputs to project climate change
induced base and peak load changes, and showed that the impact
on peak load well exceeds that on base load.

As heat waves and cold waves are rare events, their frequency
can only be estimated from very large samples. To study how
climate change could have modified the probability of occurrence
of a recent cold event in Spain, Añel et al. (2017) analyzed
the very large ensemble of climate projections produced by the
Weatherathome.net project (Massey et al., 2014). The ensemble
is based on only one pair of general and regional circulation
models (HadAM3/HadRM3P) and cannot explore the large range
of uncertainties in climate projections due to model differences.
The aim of this study is to test another way of generating large
ensembles of possible evolutions in order to study changes in the
frequency of heat waves and cold waves. The approach is based
on a combination of observations and climate projections with a
stochastic weather generator.

Weather generators for temperature have commonly been
used for pricing derivatives in the energy sector (Campbell and
Diebold, 2005; Mraoua and Bari, 2007; Benth and Saltyte Benth,
2011); research in the fields of agriculture and hydrology have

also extended the use of weather generators. In those models,
the simulation of temperature is generally conditioned on the
occurrence of rainfall. The most widely used models of such type
are based on the concept proposed by Richardson (1981) that
the standardized residuals of temperature are assumed normally
distributed, and the coefficients of the model are estimated using
autocorrelations and cross-correlations between the residuals of
the different variables involved. Then, the removed means and
standard deviations are reintroduced, depending on whether the
day is dry or wet. More recently, the use of Generalized Linear
Models (GLM) in weather generators have been increasing, since
they allow a better treatment of non-linearity and can model
discrete and non-normally distributed variables. GLMs are also
useful to handle the El Niño-Southern Oscillation (ENSO) and
other modes of variability (Chandler, 2005; Furrer and Katz,
2007). Acknowledging both the usefulness and limitations of
Richardson type generators, Smith et al. (2017) recently proposed
an extension called SHArP (Stochastic Harmonic Autoregressive
Parametric weather generator), used to generate temperature
time series. The proposedmodel framework allows for trends and
seasonality in the temperature generation.

In these studies using weather generators, the impact of
climate change is generally taken into account using Change
Factors (CFs). The CFs express the changes between a baseline
climate and future projections. They are applied to the statistics
of the observed time series to produce projected time series.
Then, these projected time series are used to calibrate the weather
generator. Glenis et al. (2015) used such a technique to provide
large samples of time series allowing the exploration of natural
variability and climate model uncertainties in a study of water
resources management strategies in a non-stationary climate.
Smith et al. (2017) built a continuous temperature time series
between 1948 and 2100 by linking observations with a bias
adjusted climate model simulation. This time series is then used
to fit the generator and produce a larger sample. Here again, only
one climate model is considered.

As stated previously, the goal of this paper is to produce a large
sample of a temperature based indicator by mixing observations,
climate projections and stochastic generation to analyze the
changes in the frequency of heat waves and cold waves in France
due to climate change. This study makes use of another type of
stochastic generator and an ensemble of climate projections with
different climate models is considered. The stochastic generator
relies on the decomposition of the temperature signal into
deterministic parts (seasonality and trends in the mean and the
standard deviation) and a stochastic part, which is represented by
a Seasonal Functional Heteroscedastic Autoregressive (SFHAR)
model (Parey et al., 2014; Dacunha-Castelle et al., 2015).
The trend components are then changed using climate model
simulations to generate a large sample of thermal indicator time
series covering the recent past and the near future. In section
Data and Methodology the temperature dataset used to compute
the indicator will be introduced alongside the principles of the
generator. A test of the proposed approach in a cross-validation
setting will be detailed in section Test in a Cross-Validation
Setting, with a focus on the reproduction of severe heat waves
and cold waves. In section Application to the Production of
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Possible 1981–2040 Trajectories the generation will be extended
to the next decades, with a first estimate of the changes in
frequency of the most intense historical heat waves and cold
waves provided. Section Discussion and Perspectives provides a
discussion and conclusion.

DATA AND METHODOLOGY

The Thermal Indicator
Models used for mid-term load forecasting at Electricité de
France (EDF) are based on past values of load, temperature, date,
and calendar events (Bruhns et al., 2005). In these models, the
influence of temperature is estimated through a thermal indicator
computed as a weighted average of the observed temperature at
32 locations across the country; the weights are representative of
the share of the electricity demand that each city represents in the
nationwide total. The 32 locations are cities where stations of the
Météo-France observation network are located. They are listed in
Table 1 together with their associated longitude, latitude, altitude,
and weight (for the weighted average), and illustrated in Figure 1.
The observation periods are different for the different stations, so
to be able to study this indicator for a long period, it is computed
from the daily mean temperature of the E-OBS gridded dataset
(Haylock et al., 2008) by selecting the nearest grid point to each
station and correcting for the altitude difference between the
selected point and the station. The altitude correction is based
on the standard atmosphere temperature gradient of 6.5◦C/km,
and the weighted average is computed as:

X (t) =
∑32

s=1
w (s)T(s, t),

with T(s, t) the temperature on day t in station s and. w(s)
the weight of each station. Since temperature is highly spatially
correlated in the domain, the averaging does not smooth out
temporal variability.

This produces one daily time series of weighted average
temperatures covering the period 1950–2017 which is called the
thermal indicator. This is not exactly the temperature indicator
used for electricity demand, which is based on the three-hourly
observed temperature datasets at each Météo-France station, but
it has been checked that the obtained time series is fairly close
to this indicator if considered at the daily time scale: the mean
absolute difference is around 0.3◦C and the correlation over the
common period 1980–2009 is 0.997.

In this daily time series of the thermal indicator in France
from 1950 to 2017, the observed minimum is −10.2◦C on
2nd February 1956 and the observed maximum is 28.7◦C on
5th August 2003. For the rest of this paper, comparisons will
focus on heat waves and cold waves. The World Meteorological
Organization (WMO) does not provide any standard definition
for these events. Therefore, they are defined here as a number
of consecutive days with a thermal indicator lower (for cold
waves) or higher (for heat waves) than a low or high threshold.
The chosen thresholds are respectively, the (rounded) 2nd and
98th percentile of the thermal indicator distribution: 0◦C for the
cold waves and 23◦C for the heat waves. Then, each event is
characterized by its duration and its intensity, this last quantity

TABLE 1 | Weather stations for the temperature used to compute the thermal

indicator for electricity demand in France, with their associated longitudes,

latitudes, altitudes, and weights in the weighted average.

Weather station Longitude Latitude Altitude Weight (%)

Abbeville 1.834 50.133 70 1

Bale-Mulhouse 7.518 47.601 245 2

Bordeaux −0.685 44.819 47 4

Boulogne-Sur-Mer 1.6 50.733 73 1

Bourges 2.367 47.067 161 4.2

Bourg-Saint-Maurice 6.752 45.602 865 2.75

Brest −4.402 48.435 94 4.2

Caen −0.452 49.169 64 2.5

Clermont-FERRAND 3.151 45.784 331 2.75

Dijon 5.085 47.268 219 1

Le Luc 6.313 43.395 80 1.2

Lille 3.085 50.568 47 3

Limoges 1.183 45.867 402 3.2

Lyon-Satolas 5.083 45.736 235 5.5

Marseille 5.218 43.435 5 2.4

Montpellier 3.952 43.569 3 1.6

Nancy-Essey 6.217 48.684 212 3

Nantes −1.601 47.15 26 4.2

Nevers 3.1 47 175 1.5

Nice 7.2 43.65 4 3.6

Nimes 4.401 43.851 59 2.4

Orange 4.851 44.134 53 1.2

Paris-Montsouris 2.334 48.818 75 11.25

Perpignan 2.868 42.734 42 1.6

Rennes −1.718 48.067 36 4.2

Saint Auban 5.984 44.052 461 1.2

Strasbourg 7.634 48.536 150 1

Tarbes −0.001 43.184 360 4

Toulouse 1.369 43.618 152 1.6

Tours 0.719 47.435 108 4.2

Trappes 2.001 48.768 167 11.25

Troyes-Barberey 4.018 48.319 112 1.5

being estimated as the summation of the differences to the
threshold across the whole event. The intensity is thus positive
for heat waves and negative for cold waves. The five most intense
events in the total observed period, and in sub-periods 1955–
1986 and 1987–2017, which will be considered in the study, are
summarized in Table 2. One can identify the well-known cold
winters of 1956, 1963, 1985, and 1987 and hot summers of 1976,
1983, 1990, 2003, 2006, and 2015. It is interesting to note that
the most intense cold events occurred in the first sub-period
and the most intense hot events in the second sub-period. This
is consistent with the last IPCC assessment report stating as
very likely that the frequency of cold days has decreased and
the frequency of hot days has increased in the recent decades
(IPCC, 2013).

Climate Model Simulations
Projections of the thermal indicator for the coming decades are
obtained from climate model simulations. The simulations used
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FIGURE 1 | Location of the 32 weather stations used to compute the thermal indicator for the electricity demand in France.

TABLE 2 | Five most intense heat and cold waves observed for the three periods considered.

1950–2017 1955–1986 1987–2017

Dates Duration Intensity Dates Duration Intensity Dates Duration Intensity

HEAT WAVES

02/08–14/08/2003 13 days 59.4 23/06–06/07/1976 14 days 24.8 02/08–14/08/2003 13 days 59.4

10/07–28/07/2006 19 days 33.4 30/07–08/08/1975 10 days 18.6 10/07–28/07/2006 19 days 33.4

23/06–06/07/1976 14 days 24.8 25/07–31/07/1983 7 days 10.7 31/07–05/08/1990 6 days 15.5

30/07–08/08/1975 10 days 18.6 03/07–06/07/1957 4 days 9.1 30/06–07/07/2015 8 days 15.2

31/07–05/08/1990 6 days 15.5 09/07–14/07/1983 6 days 8.7 18/06–28/06/2005i 11 days 13.2

COLD WAVES

11/01–06/02/1963 27 days −98.1 11/01–06/02/1963 27 days −98.1 11/01–22/01/1987 12 days −58.2

03/01–18/01/1985 16 days −89.5 03/01–18/01/1985 16 days −89.5 01/02–12/02/2012 12 days −45.5

08/02–27/02/1956 20 days −84.7 08/02–27/02/1956 20 days −84.7 26/12/1996 08/01/1997 14 days −36.5

11/01–22/01/1987 12 days −58.2 23/12/1970 06/01/1971 15 days −43.6 05/01–13/01/2003 9 days −18.0

01/02–12/02/2012 12 days −45.5 12/01–19/01/1966 8 days −41.5 05/02–14/02/1991 10 days −16.8

here have been extracted from the IPCCAR5 simulation database
and gather 23 model simulations with emission scenario RCP8.5.
The list of the consideredmodels is given inTable 3, and only one
run (the first one) is considered when more than one simulation

is available for a particular model over the same period so that
each model shares the same weight in the ensemble. Then, in the
same way as for the E-OBS gridded dataset, the thermal indicator
is computed from the daily mean temperature time series of the
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TABLE 3 | Climate model simulations used in the study.

Modeling center (or group) Institute ID Model name

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology

(BOM), Australia

CSIRO-BOM ACCESS1.0

ACCESS1.3

Beijing Climate Center, China Meteorological Administration BCC BCC-CSM1.1

College of Global Change and Earth System Science, Beijing Normal University GCESS BNU-ESM

Canadian Center for Climate Modeling and Analysis CCCMA CanESM2

National Center for Atmospheric Research NCAR CCSM4

Community Earth System Model Contributors NSF-DOE-NCAR CESM1(BGC)

CESM1(CAM5)

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC CMCC-CESM

CMCC-CM

CMCC-CMS

Center National de Recherches Météorologiques/Center Européen de Recherche et Formation

Avancée en Calcul Scientifique

CNRM-CERFACS CNRM-CM5

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland

Climate Change Center of Excellence

CSIRO-QCCCE CSIRO-Mk3.6.0

EC-EARTH consortium EC-EARTH EC-EARTH

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3

Institute for Numerical Mathematics INM INM-CM4

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-MR

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute

(The University of Tokyo), and National Institute for Environmental Studies

MIROC MIROC-ESM

MIROC-ESM-CHEM

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for Marine-Earth Science and Technology

MIROC MIROC5

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-MR

Meteorological Research Institute MRI MRI-CGCM3

Norwegian Climate Center NCC NorESM1-M

nearest grid point to the 32 observation stations. The weighted
32-station averages are thus computed for each model simulation
over the period 1955–2100, which is the common period for all
the retrieved model simulations.

Methodology
The Temperature Generator
A SFHAR generator previously developed at EDF/R&D is used to
produce a large sample of this temperature indicator mentioned
above. The principle and mathematical justifications of the
generator are detailed in Dacunha-Castelle et al. (2015), and only
a brief description will be given here.

The temperature based indicator is modeled in the
following way:

X (t) = m (t) + S (t) + s (t) Ssd (t)Z(t)

where X(t) represents the indicator on day t, m(t), and s(t) are
non-parametric trends in mean and standard deviation, S(t) and
Ssd(t) are the seasonality of the mean and the standard deviation,
respectively, and Z(t) is the noise sequence. The aim of such
decomposition is to remove the deterministic parts of the signal
and design a generator for the stochastic part Z(t).

The non-parametric trends are estimated using a degree 1
local regression using the LOESS technique (Stone, 1977). The
choice of the smoothing parameter is based on a modified
partitioned cross-validation approach developed in Hoang

(2010). The classical partitioned cross-validation technique of
Marron (1987) had to be modified because the variance is
not constant.

The seasonality is estimated by a trigonometric polynomial of
the form:

θ0 +
∑p

i=1

(

θi,1 cos

(

2πit

365

)

+ θi,2 sin

(

2πit

365

))

with parameters θ0, θi,1, and θi,2 obtained by least squares fitting.
The degree p is chosen according to an Akaike criterion.

Hoang (2010) showed that if the same smoothing parameters
are used, estimating seasonality first, then trend, gives the same
results as estimating trend first then seasonality. However, the
optimal smoothing parameter may not be the same depending
whether the estimation of the trends is made first or second.
Furthermore, if seasonality is estimated first, some part of the
trend is embedded in the mean seasonality. Therefore, in this
study, trend will be estimated first, then seasonality. Besides,
considering non-parametric trends rather than linear ones allows
us to take into account both the warming effect and some part of
interannual to decadal variability.

Once the trends and seasonality are estimated, the elements of
the noise sequence are estimated through the expression:

Ẑ (t) =
X (t) − m̂ (t) − Ŝ(t)

ŝ(t) ˆSsd(t)
where the hat denotes an estimator.
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The process of Z(t) has been carefully studied in Hoang (2010).
Based on permutation tests, it has been shown that its mean,
variance, skewness, kurtosis, as well as its first and second
order autocorrelations do not show any trend. A stationarity
test based on simulation has also been used to check that
trends are not detected in the tails of its distribution. The
details of the tests can be found in Dacunha-Castelle et al.
(2015). Since the process is Markovian and cyclo-stationary
with an annual period, it can be considered as provided by a
cyclo-stationary diffusion. The proposed SFHAR representation
corresponds to the first order Euler scheme approximation of
the diffusion for discrete variables (see (Dacunha-Castelle et al.,
2015) for the demonstrations). The model is expressed by the
following equation:

Z (t) = btZ (t − 1) + a(t,Z (t − 1))εtwith εt a standard

normal distribution.

The auto regression coefficient bt is seasonal, and is estimated
in the same way as previously by a trigonometric polynomial
whose degree is chosen according to an Akaike criterion. The
volatility a is represented by a degree 5 trigonometric polynomial
of the form:

a2 (t,Z (t − 1)) = (r2 − t)(t − r1)
∑5

k=0

∑p2

j=1
(

α
j

1,k cos

(

2πjt

365

)

+α
j

2,ksin

(

2πjt

365

))

Z(t−1)k

with constraints on the derivatives so that a2 is positive and
is zero outside the interval [r1,r2], with r1 and r2 being the
lower and upper bounds of its distribution. The lower and
upper bounds are estimated by fitting a Generalized Extreme
Value (GEV) distribution to the block minima and maxima,
respectively: r̂1 = µ̂1 −

σ̂1

ξ̂1
and r̂2 = µ̂2 −

σ̂2

ξ̂2
with µ̂1, σ̂1, ξ̂1

and µ̂2, σ̂2, ξ̂2 being, respectively, the estimated parameters of
the GEV distribution fitted to the block minima and to the block
maxima of Z(t). In practice, the autoregressive part of Z(t) is

estimated first, then a is estimated from
(

Z (t) − btZ(t − 1)
)2

by maximum likelihood with constraints. Firstly, the degree (p2)
of the trigonometric polynomial is chosen following an Akaike
criterion and a is estimated by least squares with constraints,
using the algorithm in Golfarb and Idnani (1982) and Godfarb
and Idnani (1983). Then the results of the least square estimation
are used as the initial values for the parameters in the likelihood
maximization. The estimation of a2 is obtained by using the
algorithm of Nelder and Mead (1965). Lastly, a2 is zero outside
the interval (r̂1; r̂2).

In the following, the time series characterizing the evolution of
the thermal indicator over different time periods will be equally
named time series or trajectories.

Building the Trajectories
In France, peak loads occur in winter during intense cold waves
(RTE, 2012). Therefore, a large sample is needed to estimate
frequencies and frequency changes in the most severe events.
Furthermore, even though the sensitivity in summer is much

lower, anticipating the changes in the frequency of the most
intense heat waves is of interest too, because hot events may
lead to a reduction in the generation from thermal plants
due to increases in the temperature of water used for cooling
(Troccoli et al., 2014; Añel, 2015).

The idea here is to take advantage of the previously described
generator to produce the desired large sample of indicator
trajectories. Since the residuals simulated by the generator have
been proven to be stationary with an annual periodicity, they
can be used to build trajectories for different time periods, both
historical and future. Under the assumption that the typical signal
for a period essentially lies in the trends of both the mean and the
standard deviation, a sample of trajectories for a chosen period
can be obtained by combining observed seasonality, projected
trends and a large number of simulations of the residuals given
by the generator. The assumption is reasonable, as illustrated in
Figure 2 which compares trends and seasonality of the indicator
in the period 1955–1986 and in the full period 1950–2017. The
projected trends are provided by climate model simulations.

TEST IN A CROSS-VALIDATION SETTING

To test the proposed methodology and its associated
assumptions, two periods of equivalent length are chosen
from the observation period: 1955–1986 and 1987–2017. The
proposed methodology is then used to build trajectories covering
the whole period 1955–2017 (63 years) in the following way:

– Computation of Z(t) from the observations in period 1955–
1986

– Simulation of a large number of 63-years trajectories of Z(t)
with the generator

– Retrieval of the trends in mean and standard deviation for the
period 1955–2017 from the climate models

– Reconstruction of a large number of trajectories for the
period 1955–2017 by combining the Z(t) trajectories with the
observed seasonalities and the climate model trends.

The sensitivity of the reconstruction to different choices [climate
model, smoothing parameter for the trends, number of Z(t)
trajectories] is investigated and validated against the observations
in period 1987–2017 with a special focus on heat and cold waves.

Calibration
The approach is first calibrated over the period 1955–1986.
Figure 3 illustrates the decomposition of the indicator in the
period 1955–1986. The residuals Z(t) are estimated and used to
fit the generator, which is then used to produce a large sample of
500 63-years trajectories of equivalent residuals.

The construction of a 63-years thermal indicator time series in
the period 1955–2017 requires the replacement of the observed
trends in mean and standard deviation of the indicator over
period 1955–1986 by similar trends over the total period 1955–
2017 given by the climate models. In a first step, to estimate
the sensitivity to the choice of climate model, four climate
simulations have been selected. The selection is based on Boé
(2018) who studied the interdependency of the climate models in
the last CMIP5 exercise. Among the 23 simulations used in this
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FIGURE 2 | Observed indicator from 1950 to 2017 (top left panel), non-parametric trend in mean (middle left panel), seasonality of the mean (bottom left panel),

evolution of the variance (top right panel), non-parametric trend in variance (middle right panel), and seasonality of the variance (bottom right panel). Black curves are

for the total period and red curves for period 1955–1986.

FIGURE 3 | Same as Figure 2 but for period 1955–1986 only.

study, four models presenting different representations for each
of the four components (atmosphere, ocean, land, and ice) are
first selected: BNU-ESM, IPSL-CM5-MR, MIROC5, and MPI-
ESM-MR. Then, the indicator time series over period 1955–2017
obtained from each of the four models are decomposed and

the trends in mean and standard deviation are bias adjusted
to the observed trends. The bias adjustment is made for the
period 1955–1986 only and is a simple mean bias removal. The
obtained trends are illustrated together with the observed ones
in Figure 4. Finally, 500 indicator time series are built using
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FIGURE 4 | Bias adjusted trends in mean (top panel) and standard deviation (bottom panel) extracted from four climate model simulations (dotted lines) with the

observed trends in the calibration period 1955–1986 (black line).

these bias adjusted trends, the observed seasonality and the 500
simulations of the residuals for each of the four models, which
leads to 2000 63-years trajectories.

Validation
A check has been made that the observed mean annual cycle
over the total period 1955–2017 lies inside the minimum and
maximum mean annual cycles of the 2000 trajectories. Figure 5
shows that this is the case.

Then, as the focus here is on heat waves and cold waves,
the number and intensities of these events over each period
(i.e., calibration period 1955–1986 and validation period 1987–
2017) are compared. The observed maximum number of events
and the observed maximum intensity each year is compared
to the 90% confidence interval of the same quantities in the

simulations (the 90% confidence interval’s lower and upper
bounds are respectively, the 5th and 95th percentile of the
distribution given by the 2000 simulations). Figure 6 shows the
results for the yearly maximum number of events (left panels)
and the yearly maximum intensity (right panels) for heat waves
and cold waves in 1955–1986 (first two lines) and in 1987–
2017 (last two lines). Statistically, one can expect that 5% of the
observed maximum numbers or intensities of events exceed the
upper bound or the lower bound of the 90% confidence interval.
Period 1955–1986 is 32 years long and period 1987–2017 31
years long, which means that observations may lie outside the
interval around 1.5–1.6 times for each series. Figure 6 shows that
broadly this is what happens in the period 1955–1986 while in
the period 1987–2017 the observed maximum number of heat
waves exceeds the 90% upper bound four times. However, the
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FIGURE 5 | Observed mean annual cycle in the total period 1955–2017 (red line) compared to the envelope of the mean annual cycles in the same period from the

reconstructions (dotted lines).

intensity of the heat waves are correctly represented, since only
two exceed the upper bound of the 90% confidence interval.
To check if this could be due to the differences in trends
between model and observations, the same estimates have been
provided but for trajectories constructed with the observed
trends over the whole 1955–2017 period. In that case too, four
exceedances occur in the period 1987–2017 for the number
of heat waves. These results show that the reconstruction is
broadly reliable in terms of frequency and intensity of hot and
cold events.

Changes in the Frequency of the Most
Extreme Events
Definitions
With the consideration of four climate models to retrieve the
trends and 500 simulations of the residuals, 2000 trajectories of
the daily thermal indicator in France over the period 1955–2017
are produced. From such a large sample, it is possible to infer
changes in the frequency of intense heat waves and cold waves
between both periods (i.e., the calibration period 1955–1986 and
the validation period 1987–2017). Based on the most extreme
observed events as summarized in Table 2, intense cold waves
will be defined as events with an intensity lower than −90 and
very severe cold waves as events with an intensity lower than
−95. Intense heat waves will be defined as events with an intensity
higher than 55 and very severe events as events with an intensity
higher than 60.

With these definitions, Table 4 compares the results in terms
of number and frequency of these events between the periods
1955–1986 and 1987–2017. It shows that the frequency of
occurrence of intense and very severe cold waves as defined in
this study may have reduced by a factor of 3 between the periods

1955–1986 and 1987–2017, whilst that of intense and very severe
heat waves may have increased by a factor of 4–5 on average.

Sensitivity Tests
After this first application of the proposedmethodology, different
tests have been made to assess the importance of some
modeling choices.

Firstly, the same procedure has been used with another set of
four independent climate models, independency being defined
as previously by the fact that they do not share the same model
for any of the four components of the climate system. The
new set comprises models BCC-CSM1.1, CanESM2, CCSM4,
and EC-EARTH.

Then, for each set of four climate models, the non-parametric
trends in mean and standard-deviation have been estimated with
the same smoothing parameter as for the observations in period
1955–1986 (0.2), rather than looking for the optimal smoothing
parameter for each model as has been previously done. This
allows testing for the influence of the smoothing parameter in the
derivation of the trends.

Table 5 summarizes validation results and changes in the
frequency of intense and very severe events. The same weakness
in the reproduction of the maximum number of hot events in
the period 1987–2017 can be observed, whatever the climate
models or the smoothing parameters. In parallel, a slight
tendency of underestimating the intensity of the coldest events
can also be noticed, with 3 observed years with an event of
maximum intensity lower than the lower bound of the 90%
confidence interval given by the simulations, whereas around 1.5
would be expected. One thus can note some asymmetry in the
performances of the generation, with a small discrepancy for the
maximum number of hot events per year and for the maximum
intensity of cold events. Furthermore, the results show that for
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FIGURE 6 | Yearly maximum number of events (left panels) and yearly maximum intensity of the events (right panels) for heat waves and cold waves in 1955-1986

(first two lines) and in 1987–2017 (last two lines). In all figures, the black lines are for the observations, the red lines correspond to the 90% Confidence Interval from

the reconstructed trajectories and the dotted red line illustrates the maximum obtained from the reconstructed trajectories.

cold waves, the influence of the smoothing parameter to infer the
trends is quite low, while the choice of the climate models seems
to have a greater impact. The decrease in the frequency of intense
and very severe cold events is smaller (factor of 2) with the second
set of models than with the first one (factor of 3). For the most
severe heat waves, the smoothing parameter seems to have some
impact, at least with the first set of models (frequency 0.00044
with 0.2 and 0.00064 with the optimal smoothing parameter of

each model), and again the change between the periods is slightly
smaller with the second set of models (factor of around 3.5) than
with the first one (factor of around 4–5).

Lastly, the number of generated trajectories of the residuals
Z(t) has been tested. Figure 7 shows the evolution of the
frequency of intense and very severe events as a function of the
number of generations of Z(t) used to create the sample, for
hot and cold events and for each set of four climate models. It
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shows that the frequencies stabilize from a number of around
500 generations in all cases, which means that from this number
of simulations, the sensitivity to the stochastic generation can be
neglected. Furthermore, the second set of models leads to smaller
changes in the frequency of intense and very severe cold events
(division by a factor of ∼2 compared to around 3) as well as for
the intense and very severe hot events, although in a lesser extent
(multiplication by a factor of 4.5–5 compared to 5–5.5).

Changes Between Periods 1955–1986 and 1987–2017
The previous tests have shown the importance of the choice
of the climate models, and suggested that the choice of the
smoothing parameter for the non-parametric trends may have
an impact, thus justifying the identification of the optimal
smoothing parameters. Moreover, it seems that the simulation of
500 different time series for the residuals is sufficient. Therefore,
one way proposed here to better estimate the changes in the
frequency of intense and very severe events between periods
1955–1986 and 1987–2017 is to use the full set of 23 model
simulations together with 500 time series of the residuals. Then,
for each model based trend couple (trend for the mean and for
the standard deviation), 500 thermal indicator time series are

TABLE 4 | Number and frequency (mean number per year) of intense and very

severe heat and cold waves in period 1955–1986 and 1987–2017.

1955–1986 1987–2017

Number Return

period

(years)

Frequency Number Return

period

(years)

Frequency

Cold<−90 420 ≈152 0.00656 138 ≈449 0.00222

Cold<−95 352 ≈182 0.00550 108 ≈574 0.00174

Hot>55 64 ≈1000 0.00100 226 ≈274 0.00364

Hot>60 41 ≈1561 0.00064 159 ≈377 0.00265

built. From each of the 23 sets of 500 time series, a frequency
of intense and very severe events for each period can be derived,
which then allows estimating the changes between both periods.
This thus produces a sample of 23 frequency changes (computed
as the ratio between frequency in period 1987–2017 and in
period 1955–1986), from which it is possible to obtain a mean
change and a range of such changes, given by the minimum and
the maximum over all climate models. The results are given in
Table 6. They show that the frequency of intense and very severe
cold waves has been reduced by a factor of 2 on average, with one
model leading to a larger decrease (division by a factor of around
5) and another one projecting almost no change. Concerning
intense and very severe heat waves, for a majority of models the
frequency has been largely increased, by a factor of 4 on average,
with one model even giving a factor of around 10.

The observations only give one trajectory, from which it is
impossible to infer a frequency for events of such intensity, but
the fact that the frequency of severe cold waves has decreased
and the frequency of severe heat waves has increased is consistent
with the observations. Furthermore, these findings are in line
with previous studies which have estimated that human activities
have increased of a factor around 4 the probability of an event
like the 2003 heat wave compared to what it would have been
without the recent warming (Stott et al., 2004; Coumou and
Rahmstorf, 2012; Francis and Vavrus, 2012). The 2003 heat wave
is close to what has been considered here as a very severe event
(intensity 59.4 while very severe events are defined by an intensity
higher or equal to 60). The quantification of the frequency
change of extreme cold events seems to be more difficult and
quantifications can hardly be found in the literature. In Europe,
cold events are linked to anticyclonic blocking situations or by
a flow of very cold Arctic air from the polar region. But most
climate models tend to overestimate the meridional pressure
gradient, implying too moist and mild conditions and fewer
blocking events (van Ulden and van Oldenborgh, 2006; Brands

TABLE 5 | Validation of the maximum number (nb) and maximum intensity (int) of heat and cold waves (number of years with higher numbers of events than the 90%

Confidence Interval upper bound: nb > q95 and number of years with cold events with an intensity lower than the 90% CI lower bound: int < q5 or hot events with an

intensity higher than the 90% CI upper bound: int > q95) and frequency of intense (int < −90 for cold waves, int > 55 for heat waves) and very severe events (int < −95

for cold waves and int > 60 for heat waves) in periods 1955–1986 and 1987–2017 according to different sensitivity tests.

BNU-ESM, IPSL-CM5-MR, MIROC5, MPI-ESM-MR BCC-CSM1.1, CanESM2, CCSM4, EC-EARTH

Smoothing param.: 0.2 Optimal smoothing param. Smoothing param.: 0.2 Optimal smoothing param.

55–86 87–17 55–86 87–17 55–86 87–17 55–86 87–17

COLD WAVES

nb>q95 0 1 0 1 0 1 0 1

int<q5 3 3 3 3 3 2 3 2

int<−90 0.00619 0.00214 0.00656 0.00222 0.00605 0.00332 0.00645 0.00335

int<−95 0.00508 0.00172 0.00550 0.00174 0.00512 0.00264 0.00525 0.00263

HEAT WAVES

nb>q95 0 4 0 4 0 4 0 4

int>q95 2 2 1 2 1 2 1 2

int>55 0.00091 0.00335 0.00100 0.00364 0.00114 0.00366 0.00122 0.00439

int>60 0.00044 0.00238 0.00064 0.00265 0.00080 0.00257 0.00087 0.00323
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FIGURE 7 | Evolution of the frequency of intense (intensity < −90, cyan) and very severe (intensity < −95, blue) cold events as a function of the number of stochastic

simulated evolutions of the residuals for period 1955–1986 (thin lines) and 1987–2017 (bold lines) with the first set of four climate models (top left panel); evolution of

the frequency of intense (intensity > 55, orange) and very severe (intensity > 60, red) hot events as a function of the number of stochastic simulated evolutions of the

residuals for period 1955–1986 (thin lines) and 1987–2017 (bold lines) with the first set of four climate models (top right panel); bottom panels: same as top panels but

for the second set of climate models.

et al., 2013). Thus, the change evaluated here is difficult to validate
against other studies.

APPLICATION TO THE PRODUCTION OF
POSSIBLE 1981–2040 TRAJECTORIES

The previously described and tested approach is then used to
build a large sample of possible thermal indicator evolutions in
the next decades. To do so, the generator is first calibrated by

using the observations between 1951 and 2010. As a matter of
fact, the estimates of trends are more robust when made from
a larger sample. The stochastic SFHAR model is fitted to the
estimated residuals and 500 equivalent trajectories are simulated.
Then, the non-parametric trends in mean and standard deviation
in the period 1981–2040 are derived for each simulation of the
23 climate models and bias adjusted to the observed trends in
the period 1981–2010 (Figure 8). The combination of these sets
of trends with the observed seasonality and the 500 simulated
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trajectories of residuals allows the construction of a large set of
23 times 500 trajectories covering the period 1981–2040, from
which, in the same way as previously, the changes in frequency of

TABLE 6 | Distribution of the frequency changes for intense and very severe heat

and cold waves between periods 1955–1986 and 1987–2017 obtained with the

23 climate model simulations, expressed as the ratio between frequencies in each

period (frequency in 1987–2017/frequency in 1955–1986).

Minimum Median Mean Maximum

Cold int<−90 0.18 0.39 0.49 0.98

Cold int<−95 0.17 0.38 0.48 1.00

Hot int>55 1.03 3.15 4.11 10.08

Hot int>60 1.33 3.54 4.64 10.41

The frequency corresponds to the mean number of events per year over a period.

intense and very severe hot and cold events can be studied. The
results are given in Table 7 and they indicate a larger decrease
in the frequency of very cold events than had been experienced

TABLE 7 | Distribution of the frequency changes for intense and very severe heat

and cold waves between periods 1981–2010 and 2011–2040 obtained with the

23 climate model simulations, expressed as the ratio between frequencies in each

period (frequency in 2011–2040/frequency in 1981–2010).

Minimum Median Mean Maximum

Cold int<−90 0.01 0.24 0.22 0.45

Cold int<−95 0.02 0.20 0.20 0.44

Hot int>55 0.67 2.17 2.21 4.22

Hot int>60 0.68 2.12 2.32 4.53

The frequency corresponds to the mean number of events per year over a period.

FIGURE 8 | Bias-adjusted trends in mean (top panel) and standard deviation (bottom panel) obtained from the 23 climate model simulations for the period 1981–2040

(dotted lines) with the observed trends in period 1981–2010 superimposed (black line).
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in 1987–2017 compared to 1955–1986. In the period 2011–2040,
the considered climate models project a reduction by a factor of
5 on average in the frequency of intense and very severe cold
events compared to period 1981–2010, whereas this reduction
was a factor of 2 between the previously considered historical
periods. On the other hand, the frequency of extreme hot events
is projected to increase further, but here in a lesser extent than
what had been estimated for the historical periods; the models
project on average a doubling of the frequency of 1981–2010 in
the coming 2011–2040 period, compared to a factor of 4 increase
between 1955–1986, and 1987–2017. The previous mean values
correspond now to the maxima instead.

DISCUSSION AND PERSPECTIVES

In this study, a methodology has been proposed and tested to
build a very large sample of a temperature based indicator over
the recent past and the next decades. The approach is based
on the decomposition of the time series into deterministic parts
(seasonality and trends), and a stochastic residual part. Previous
work had shown that this residual part can be considered as
stationary with an annual periodicity, and a stochastic model has
been put in place to simulate it. The construction of the evolution
of the indicator over the recent past and the next decades is
then obtained by combining observed seasonality with climate
model derived trends and a large sample of trajectories for the
residual part.

The proposed approach has first been checked in a cross-
validation setting. It has been shown to be reasonable, although
a tendency to slightly underestimate the maximum number of
warm events per year and slightly underestimate the maximum
cold event intensity has been shown. Then, sensitivity tests
have highlighted the importance of climate model choice and
identified a number of the 500 trajectories of the residuals as
the minimum required to stabilize the estimations of events
frequencies and frequency changes.

Based on these outcomes, an evaluation of the changes in
frequency of past extreme hot and cold events has been proposed,
based on a set of 23 climate model simulations. Concerning
historical changes between the periods 1955–1986 and 1987–
2017, an average reduction by a factor of 2 of the frequency
of intense and very severe cold events has been found, while
the frequency change for the intense and very severe hot events
is estimated as having been increased by a factor of 4 on
average. These findings are consistent both qualitatively with
the observations and quantitatively with previous studies in the
literature. Then, the changes in the coming decades (period
2011–2040) compared to the current climate (period 1981–2010)
are shown to go in the same direction, but with a larger decrease

in the frequency of extreme cold events (reduction by a factor of
5 on average) and a smaller increase in the frequency of extreme
hot events (increase by a factor of 2 on average).

These results have to be considered as a first step and
the approach could undergo further analyses. First, the role
of the choice of the calibration period should be investigated
further. Secondly, a larger set of climate model simulations
could be considered, including different runs for each model,
as it could lead to a larger sample of possible combinations of
long term climate variability and change. A clustering step may
then help identifying possible evolutions shared by groups of
simulations. Furthermore, this approach could be compared to
other techniques used in the literature to estimate past or future
changes in the frequency of extreme events.

The proposed approach is used here to estimate possible
changes in the frequency of extreme events in relation to
electricity demand through the use of a dedicated thermal
indicator. The same setting may allow for the consideration
of decadal predictions rather than climate projections when
available. A further step will be to generate consistent sets of
such trajectories for the different climate variables influencing
electricity demand and generation (e.g., precipitation, wind, and
radiation). Such a generator based on hiddenMarkov models has
recently been proposed (Touron, 2019) and its use in a climate
change context will be studied further.
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