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In terms of natural hazard events, resilience characterizations provide a means of

identifying risk profiles, degrees of preparedness, and the ability of communities to

respond and recover. While nationally consistent measures of community resilience to

natural hazards are needed to address widespread socio-ecological impacts from a

broad policy perspective, geographically specific resilience characterizations are needed

to target local resources to increase community resilience. The Climate Resilience index

(CRSI) was developed to characterize the resilience of socio-ecological systems in the

context of governance and risk to natural hazard events for all U.S. counties for the

years 2000–2015. Those resilience characterizations were based on the full range of

nationwide county domain scores. This paper presents a re-scaled application of CRSI,

where county domain scores are limited to the range of scores within a specific set of

U.S. coastal and shoreline counties within each of eight coastal regions. The re-scaled

CRSI values for selected counties/parishes in the Gulf of Mexico (GOM) region are

also presented in conjunction with calculated Location Quotients (LQ) values >1.0,

which represent a high employment dependence on ocean economy sectors. Using

a combination of re-scaled CRSI and LQ values provides a more holistic picture of

vulnerability and resilience in these U.S. coastal shoreline counties. The relative resilience

assessments presented for coastal regions are useful in identifying potential strengths

and weaknesses in resilience aspects given similar hazard profiles, a signature otherwise

diluted in nation-wide county-level assessments. The unique approach of combining

CRSI and LQ for characterizing natural hazard resilience described could be transferred

to other specific geographies as defined by population groups, hazard profiles and

economic dependence.

Keywords: climate resilience screening index (CRSI), U.S. coastal and coastal shoreline counties, natural hazard

events, location quotient (LQ), ocean economy, socio-ecological characterizations
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INTRODUCTION

Resilience describes the ability of a system and its component
parts to anticipate, absorb, accommodate or recover from the
effects of a hazardous event in a timely and efficient manner
(Intergovernmental Panel on Climate Change (IPCC), 2012).
Within the framework of resilience, sustainability is reflected
in the ability of a locality to recover from damages, decreases
in productivity and quality of life impacts due to extreme

events, without significant dependence on outside assistance
(Mileti, 1999). Additionally, social-ecological resilience can be

described as the capacity of socio-ecological systems (SES)
to adapt and transform in the face of extreme events, in a

manner that continually fosters human well-being (Folke et al.,
2016). Collectively, transformations in the social and ecological
elements that maintain the structure, function and identity of SES
in the face of perturbations, stressors and change are at the core
of improving resilience (Moore et al., 2014).

In terms of natural hazard events, resilience characterizations

provide a means of identifying risk profiles, degrees of
preparedness, and the ability of communities to respond
and recover. General resilience strategies as described by
Carpenter et al. (2012) are useful for developing scalable
resilience assessment approaches. For example, in the case of
natural hazard events, general resilience can be characterized in
context of multiple exposure types (e.g., hurricanes, droughts,
wildfires). General resilience approaches applied to similar
geographies with similar hazard profiles provide a means to
examine characteristics that contribute to resilience and identify
opportunities to improve resilience in a comparable manner.
One approach to capture general resilience is composite indices
that can be deconstructed into information that may be used
to tailor practices to system characteristics (e.g., governance,
social aspects, ecological conditions) for resource allocation and
implementation of policies and actions to increase resilience.
Such approaches can be used as a starting point to address the
six objectives identified by Mileti (1999) to sustainably mitigate
hazards to reduce catastrophic losses due to natural hazard
events nationwide—(1) maintain and enhance environmental
quality, (2) maintain and enhance people’s quality of life,
(3) foster local resiliency and responsibility, (4) recognize
that vibrant local economies are essential, (5) ensure inter-
and intra-generational equity, and (6) adopt local consensus
building. Geographically-specific resilience characterizations are
needed to target the use of local resources to increase
community resilience.

From a policy perspective, there is a need for nationally
consistent measures of community resilience that address the
potential widespread socio-ecological impacts of natural hazard
events. Summers et al. (2017a) conducted an extensive review
of over 500 resilience domains and indicators, and nearly 1,200
metrics associated with the vulnerability and recoverability of
social and natural systems in context of natural hazard events
(e.g., Pratt et al., 2004; Esty et al., 2005; Hazards and Vulnerability
Research Institute (HVRI), 2010; Esnard et al., 2011; Joerin
and Shaw, 2011; Meher et al., 2011; ARUP, 2014, 2015; Cutter
et al., 2014; Batica, 2015). No singular approach among existing

composite measures of natural hazard resilience from the
literature was identified to adequately address a combination of
multiple hazards exposures, governance, and strengths in social,
built and natural environments, for U.S. counties, boroughs
and parishes nationwide. However, the reviewed literature
provided the building blocks (e.g., individual metrics, suites
of indicators and descriptive domains) for developing the new
climate resilience screening index (CRSI) as outlined in the
Summers et al. (2017b) conceptual framework for constructing
the CRSI (Figure 1).

The Climate Resilience Screening Index (CRSI) is a composite
measure for characterizing the resilience of SES in the context
of governance and risk to natural hazard events. CRSI is a
composite index, including five domains (Risk, Governance,
Society, Built Environment, and Natural Environment) made
up of 20 indicators and 117 metrics (Summers et al., 2017a;
Figure 2). CRSI was developed for all U.S. counties for the years
2000–2015, with resilience characterizations based on the full
range of nationwide county domain scores. CRSI is particularly
well-suited as a screening approach, as it characterizes general
resilience in a multi-hazard landscape. It does this by addressing
twelve types of weather and natural hazard events and eight
technological hazards (e.g., contaminated sites and toxic release
locations, nuclear facilities and resource conservation and
recovery act sites) as part of the exposure indicator of the
Risk domain.

The CRSI approach is unique in that it addresses a
combination of multiple hazards, governance, and, strengths and
weaknesses in social, built and natural environments, for U.S.
counties, boroughs and parishes nationwide. The structure of
CRSI, the methods used to construct the index and the use
of publicly available data lend themselves to a valid approach
to rescaling for specific U.S. geographies. CRSI provides a
comparative characterization of county-level resilience for all
U.S. counties, thus permitting smaller evaluations of regions
or states at the same broad comparative level, i.e., inclusive of
all counties (Summers et al., 2018). This type of assessment
is useful because it measures a broad set of indicators yet
reduces resilience to a single unit of measurement while still
allowing evaluations at the levels of individual domains and
related indicators to permit a deeper understanding of the
relationships among resilience concepts to inform management
actions (Quinlan et al., 2015).

CRSI characterizes the appropriate components to identify
communities based on their hazard profile and other
characteristics; however, the individual metrics of CRSI
have not been analyzed within specific geographic locations.
These geographically specific characterizations are needed to
inform local decision making. An example of such a geographic
grouping of communities with similar hazard exposures is
coastal areas, which have varying degrees of resilience within
regions. Coastal areas face specific unique resilience challenges
with increased vulnerability to human and natural threats.
The multiple threats and impacts natural hazard events,
like hurricanes, have raised concerns from policy makers,
stakeholders and residents regarding the long-term viability of
coastal communities (Reams et al., 2012).
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FIGURE 1 | Conceptual representation of the Climate Resilience Screening Index (CRSI) Approach (Summers et al., 2017a).

Evidence of the challenges to coastal resilience was
demonstrated by two recent events, Hurricane Katrina and
the Deepwater Horizon oil spill (Zhang et al., 2015). Coastal
counties are an important national asset with tremendous

economic value and a substantial proportion of the U.S.
population. In 2015, the U.S. ocean and Great Lakes economies
accounted for an estimated 128 billion in wages, 320 billion in
goods and services, and directly employed 3.2 million people
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FIGURE 2 | Description of five CRSI domains and twenty indicators; (#) indicates the number of metrics used to calculate each indicator.

[National Oceanic and Atmospheric Administration (NOAA),
2018]. The U.S. ocean economy accounted for 12 percent more
employment than U.S. crop production, telecommunications
and building construction industries combined. Many of these
employees not only work in, on or near the oceans, but also live
nearby. According to the National Coastal Population Report
[National Oceanic and Atmospheric Administration (NOAA),
2013], in 2010, 39% of the U.S. population lived in coastal
shoreline counties, <10% of the total land area. CRSI can be
complemented by additional information such as economic
vulnerabilities specific to coastal shoreline areas and societal
aspects that may be directly influenced by actions aimed at
increasing resilience.

In context of social resilience, diversity of livelihoods may be
an important factor in buffering the impacts of natural hazard
events (Adger et al., 2005). Location Quotient (LQ) is a way
of quantifying how concentrated an industry is in a location
compared to a larger geographic area. LQ can be used to examine
economic dependencies based on employment data, where
higher industry LQ indicates higher reliance on that industry,
relative to other locations in the larger geographic area. For
coastal and shoreline counties, examining the employment base
in ocean economic sectors relative to the total employment in
the county may be useful in further characterizing the resilience
of these geographic areas. Those regions frequently exposed to
hurricanes and coastal flooding, may be even more vulnerable
given the direct impact these natural hazards can have on

coastal resource-dependent industries. Lower economic diversity
and high dependence on the ocean economy combined with
lower resilience scores provides additional information regarding
employment dependence and lower economic diversity as a
potential vulnerability within a region.

The nation-wide CRSI results provide a scale of assessment
important for broad national policy development and targeting
areas for improvement; however, it does not allow more
in-depth assessments for areas that share common traits
(e.g., specific risks) or share smaller common boundaries
(e.g., state, multiple adjacent counties). Similarly, the unscaled
CRSI is a screening assessment and does not evaluate
CRSI alongside other tools more specific to economic or
quality of life information. To address these issues, CRSI
analyses were rescaled to coastal regions and coupled with
LQ values to characterize the differences among coastal
counties. We differentiate and compare risk components and
evaluate relative domain contributions to resilience within
each of within each of eight coastal regions. For the Gulf of
Mexico (GOM) region, we present CRSI values in conjunction
with Location Quotients (LQ) based on ocean economy
sector employment for a subset of coastal counties/parishes.
The objective is to demonstrate the approach for rescaling
CRSI for coastal areas and to present the potential value
of a combined index approach to regionally characterize
resilience for coastal counties with economic dependence on
coastal resources.
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METHODS

The dependence on ocean and Great Lakes economies and the
specific set of hazard designations associated with U.S. coastal
shoreline counties provides the set of coastal counties uponwhich
CRSI was recalculated to characterize coastal shoreline counties’
resilience within the context of each of eight coastal regions.
The re-scaled CRSI scores were then examined in relation to
county dependence on the ocean economy as represented by the
calculated location quotient (LQ) for the total ocean economy
and six ocean sectors. In the GOM region, a subset of coastal
counties with ocean economy LQ (LQ_OE) values >1.0 (high
dependence on the ocean economy) were also characterized by
examining levels of resilience (CRSI scores) along with calculated
LQ values.

Defining Coastal Counties
The coastal and coastal shoreline counties identified for regional
scaling of CRSI were selected from NOAA’s Economics: National
Ocean Watch (ENOW) 2015 dataset1. The ENOW 2015 dataset
includes 402 coastal shoreline and coastal counties in 30 coastal
states in eight regions. The coastal shoreline counties in this data
set are based on the Federal Emergency Management Agency’s
designation requiring a coastal county to have a coastline
bordering the open ocean or the Great Lakes, or contain coastal
high hazard areas referred to as V-zones, special flood hazard
areas or areas that are vulnerable to high velocity wave action
from storms or seismic activity)2. The ENOW dataset excludes
shore-adjacent counties with no relevant economic activity (11
counties and the District of Columbia) and includes 17 additional
counties that are not shore-adjacent but do have significant ocean
and Great Lakes economic dependence. Of the 402 counties in
the ENOW dataset, CRSI metric data were available for 398
counties. Hereafter, these 398 counties will be referred to as
ENOW coastal counties. Each county was assigned to an ENOW
designated region to rescale CRSI for regional characterizations.
The number of counties within each region are as follows:

Great Lakes (85)
Gulf of Mexico (68)
Mid-Atlantic (93)
North Pacific (19)
Northeast (28)
Pacific (5)
Southeast (53)
West (47).

Rescaling CRSI Within All ENOW Counties
and Within Each Coastal Region
Original CRSI resilience characterizations were for all U.S.
counties for the years 2000–2015, scaled based on the full range
of nationwide county scores. These national scale resilience
characterizations are intended to provide information and results
comparable across all U.S. counties and regions. We rescaled
CRSI using the ENOW coastal counties and regions as identified

1https://coast.noaa.gov/digitalcoast/training/enow-counties-list.html
2https://www.fema.gov/coastal-high-hazard-area

above. The ENOW regional rescale for CRSI was done by limiting
the range of metric values assessed to only those for counties
within each of coastal region. ENOW coastal county CRSI results
for the coastal regions are comparable only within each region.
Re-scaled metric values were used to calculate indicator and
domain scores following Summers et al. (2018).

The Risk domain includes two indicators, exposure and
loss. Metrics were derived as a probabilistic calculation based
on geophysical and technological hazards as described in
Buck et al. (2018). Natural hazards exposures characterized
include hurricanes, tornadoes, inland flooding, coastal flooding,
earthquakes, wildfires, drought, high winds, hail, landslides,
extreme low temperatures, and extreme high temperatures.
Human and monetary losses were quantified and attributed to
each hazard. The product of the exposure and loss scores for
each county resulted in the county Risk domain value, which
contributed to the final CRSI calculation.

We calculated domain scores for each of the other four
domains (Governance, Society, Built Environment and Natural
Environment) from re-scaled metric scores. Summers et al.
(2018) calculated metric values from data that were adjusted
for age, population or spatial area, as appropriate, prior to
standardization (e.g., number of hospitals in a county adjusted
by the population of the county). We utilized the adjusted
metric values in our re-scaling to calculate metric scores. The
scores for each of the four domains were calculated in the
following manner:

Metric score=Min-max standardized metric values
Indicator score=Min-max standardized sum of metric scores
Domain score=Min-max standardized sum of indicator scores

All domains for each ENOW coastal county were min-
max standardized on a scale from 0.01 to 0.99. The
final CRSI calculation begins as a scaled value for
recoverability/vulnerability derived from Governance and
Risk (basic CRSI) with the Governance value being adjusted
by the remaining domain scores for social, built environment
and natural environment to complete the calculation of CRSI as
shown below:

CRSIi = (Govi + Soc(a)iGovi + BE(a)iGovi + NE(a)iGovi)/

Riski

where CRSIi = the value of CRSI or adjusted resilience for county
i and Soc(a)i, BE(a)i, and NE(a)i are the adjustment multipliers
for Society, Built Environment, and Natural Environment in each
county i, and Riski is the Risk score for county i. The adjust
factors are calculated as:

Soc(a)i =
(Soci−Socm)�Socm

where Soc(a)i is the adjustment multiplier for society in county
i, Soci is the social domain score for county i and Socm is the
median social domain score for all counties;

BE(a)i =
(BEi−BEm)�BEm
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where BE(a)I is the adjustment multiplier for built environment
in county i, BEi is the built environment domain score for county
i and BEm is the median built environment domain score for
all counties;

NE(a)i =
(NEi−NEm)�NEm

and where NE(a)I is the adjustment multiplier for natural
environment in county i, NEi is the natural environment domain
score for county I and NEm is the median natural environment
domain score for all counties.

The distribution of ENOW coastal county CRSI scores within
each coastal region was examined to identify domain level
differences in county resilience characterizations and to compare
natural hazards profiles. Regional coastal re-scale CRSI results
were examined to look at top and bottom-ranked counties and
to highlight domains positively and negatively influencing overall
scores. CRSI scores for the GOM region were then supplemented
with location quotients for the total ocean economy and ocean
sectors to characterize potential socio-economic vulnerabilities
specific to ENOW coastal counties.

Location Quotients for Total Ocean
Economy and Ocean Sectors
The CRSI Society domain includes an Economic Diversity
indicator calculated from two metrics, the Gini coefficient
and The Hachman Index (Summers et al., 2017b). The Gini
coefficient represents the distribution of wealth and is the
most commonly used measurement of inequality. The Hachman
Index is the reciprocal of the sum of location quotients for
2 digit NAICS codes weighted by industry shares. Hachman
Index values show how similar an area is to another larger
area (i.e., for CRSI county to nation) with values bound
between 0 and 1.0. A value of 1.0 indicates identical industry
employment distributions between the area of interest and the
reference area (high diversity). A Hachman Index value of 0.0
represent completely dissimilar industry concentrations (lowest
diversity). The broader Hachman Index used in CRSI may not
reveal economic vulnerabilities that are particular to specific
geographies like ENOW coastal counties.

NOAA’s Economics: National Ocean Watch (ENOW) data
includes employment data statistics derived from the Bureau of
Labor Statistics’ Quarterly Census of Employment and Wages
data. ENOW provides both employment data for Total Ocean
Economy, and for the six ocean sectors it includes3.

Total Ocean Economy (OE)- All ocean economic activities
within a geography.

1. Living Resources (LR)- Commercial fishing, fish hatcheries,
aquaculture, seafood processing, and seafood markets;
recreational fishing is excluded (included in Tourism
and Recreation).

2. Marine Construction (MC)- Beach nourishment and
harbor dredging.

3Definitions from NOAA’s ENOW Explorer Tool: https://coast.noaa.gov/

enowexplorer

3. Ship and Boat Building (SBB)- Ship and boat building
and repairs.

4. Marine Transportation (MT)- Deep sea freight, marine
passenger transportation, pipeline transportation, marine
transportation services, search and navigation equipment,
and warehousing.

5. Offshore Mineral Extraction (OME)- Oil and gas exploration
and production, and sand and gravel mining.

6. Tourism and Recreation (TR)- Eating and drinking
establishments, hotels, marinas, boat dealers and charters,
campsites and RV parks, scenic water tours, manufacture of
sporting goods, amusement and recreation services, recreational
fishing, zoos, and aquariums.

Each of these six ocean sectors has specific North American
Industry Classification System (NAICS) industry codes
associated with it4 County total ocean economy employment
data and employment data for the six ocean sectors were
obtained from NOAA’s ENOWAPI5.

An ocean economy location quotient (LQ_OE) for each of the
ENOW coastal counties in the GOMRegion was calculated based
on the proportion of county employment in the ocean sector to
the total employment in the county6 as a proportion of the ratio
of the total employment in the ocean sector within the coastal
region to the total employment in all ENOW coastal counties.
In the calculation of each ocean sector LQ, the concentration of
employment in each sector was compared to the concentration
of that sector employment for all ENOW coastal counties within
that region in context of total ocean economy employment for
the region.

Location quotients for the ocean economy and the six sectors
were calculated for each GOM ENOW coastal county as follows:

LQi = (ei/e)/(Ei/E)

Where,

LQ= location quotient for the total ocean economy or sector (i);
ei = county employment in the total ocean economy or
ocean sector,
e= total county employment for ocean economy LQ calculation
or total county employment in ocean economy for ocean sector
LQ calculations;
Ei = GOM region employment in the ocean economy or sector;
E = total GOM region employment for ocean economy LQ
calculation or total GOM region employment in ocean economy
for ocean sector LQ calculations.

Examining CRSI and LQ Values
A subset of counties (n = 42) within the GOM region with
LQ_OE values > 1.0 were selected to examine employment
dependence in context of resilience scores. First, all values were
percentile ranked. Each county CRSI score and LQ_OE value was

4Cross-walk of ocean sectors and NAICS industry codes: https://coast.noaa.gov/

data/digitalcoast/pdf/enow-crosswalk-table.pdf
5NOAA’s ENOWAPI: https://coast.noaa.gov/api/enow/
6Count- level total employment data were obtained from the Bureau of Labor

Statistics API: https://api.bls.gov/publicAPI/v2/timeseries/data/
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FIGURE 3 | Distribution of CRSI scores for ENOW counties within each of the eight coastal regions. Lighter colors represent lower scores (less resilience) and darker

colors, higher scores (more resilience). Color scale is based on percentiles associated with CRSI values within each region.

categorized using themedian for eachmeasure, as estimated from
the subset of regional values. Counties with LQ_OE and CRSI
values below the GOM regional median value were categorized as
having lower ocean economic dependence and lower resilience.
Counties with LQ_OE and CRSI values above the median for
the regional subset were categorized as having higher ocean
economic dependence and higher resilience. LQ_OE and CRSI
percentile ranked values were plotted as a four-quadrant bubble
plot displaying the degree of resilience and dependence on the
ocean economy for a visual comparison.

RESULTS

CRSI for ENOW Coastal Counties:
Regional Coastal Rescale
Themap shows the distribution of CRSI scores scaled within each
of the eight coastal regions (Figure 3). The color scale is based on
the range of county, borough and parish CRSI values within each
of the eight regions. The range of CRSI scores within each region
are represented in Table 1. Scoring metrics within the regions
results in indicator, domain and CRSI scores much different than
those resulting from national assessments. Since the range of
metric values used to set the minimum and maximum values
used to score metrics is set within each region, CRSI scores re-
scaled within each region are comparable only within the region
not across regions. The regional re-scaled CRSI results now
show higher and lower scores distributed throughout each coastal
region, a resolution among scores that is otherwise diluted in
the original national assessment and is more useful for targeting
resources within these regions to increase resilience to a shared

set of natural hazards. The CRSI scores and the accompanying
domain scores resulting from the coastal regional rescale are
included in the Supplemental Material (ENOW regional re-
scaled results sheet).

Rescaling CRSI within coastal regions puts ENOW coastal
counties in context of similar natural hazard exposures, further
highlighting sub-regional county differences. Re-examining
ENOW coastal counties within coastal regions (Figure 3;
Table 1) demonstrates an enhanced range of resilience scores
for the Northeast, Mid-Atlantic and GOM regions. This spread
of CRSI scores and component domain scores makes it easier
to discern potential county resilience related strengths and
weaknesses. An ENOW coastal county may appear to have a
“good” score for a domain on a national scale while being

below the median for the re-scaled regional score for the same
domain. For example, when scaled within coastal regions, the
ENOW counties Ulster County, NY and Victoria County, TX
have high CRSI scores (>100) and Wayne County, GA and
Kenedy County, TX have low CRSI scores (< −20). In the Gulf
Region, Victoria County, TX ranked high among all ENOW
counties in the original CRSI (2nd) and ranked 1st in the

ENOW regional re-scale. Kennedy County, TX CRSI scores
dropped in rank from 59th in the national CRSI to 68th in
the ENOW regional re-scale [Rankings within each region are

included in the Supplemental Material for the original national
and ENOW regional re-scaled results along with the change
in rank due to the re-scaling efforts (Rescale Change in Reg
rank sheet)].

Counties with the highest and lowest CRSI scores (top
and bottom 5) are presented for each regional characterization
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TABLE 1 | Highest and lowest CRSI scores within each of the coastal regions.

Region Rank County, State CRSI GOV RISK BLT SOC NAT

Great Lakes 1 Oceana, MI 24.66 0.62 0.01 0.38 0.39 0.41

2 Huron, MI 13.91 0.93 0.08 0.53 0.66 0.33

3 Ashland, WI 12.67 0.89 0.13 0.25 0.83 0.86

4 Sheboygan, WI 11.87 0.59 0.10 0.51 0.74 0.73

5 Jefferson, NY 11.30 0.66 0.09 0.74 0.39 0.66

81 Erie, PA 0.06 0.01 0.24 0.65 0.43 0.58

82 Luce, MI −0.05 0.80 0.38 0.07 0.25 0.76

83 Wayne, MI −0.22 0.52 0.48 0.63 0.14 0.07

84 Lucas, Ohio −0.31 0.37 0.47 0.35 0.36 0.01

85 Keweenaw, MI −1.22 0.99 0.44 0.21 0.01 0.60

Gulf of Mexico 1 Victoria, TX 107.83 0.54 0.01 0.54 0.83 0.57

2 Jefferson, FL 75.46 0.81 0.01 0.16 0.87 0.44

3 Franklin, FL 64.49 0.52 0.01 0.08 0.98 0.82

4 Gulf, FL 25.60 0.26 0.01 0.15 0.53 0.74

5 Brazoria, TX 14.71 0.82 0.18 0.89 0.72 0.81

64 Orleans, LA 0.35 0.71 0.24 0.29 0.41 0.32

65 Monroe, FL 0.35 0.01 0.06 0.58 0.82 0.53

66 Liberty, FL 0.20 0.43 0.07 0.05 0.01 0.85

67 Kleberg, TX −0.35 0.66 0.03 0.21 0.29 0.43

68 Kenedy, TX −22.20 0.85 0.02 0.27 0.08 0.32

Northeast 1 Ulster, NY 110.63 0.74 0.01 0.65 0.60 0.47

2 King William, VA 23.89 0.84 0.04 0.27 0.77 0.67

3 Putnam, NY 17.08 0.66 0.06 0.50 0.82 0.56

4 Queen Anne’s, MD 12.44 0.53 0.07 0.52 0.66 0.74

5 Albany, NY 10.00 0.72 0.12 0.57 0.95 0.32

89 Baltimore city, MD −0.81 0.34 0.44 0.21 0.09 0.17

90 Bronx, NY −1.60 0.63 0.43 0.16 0.11 0.19

91 Salem, NJ −1.65 0.81 0.12 0.15 0.15 0.69

92 Somerset, MD −1.75 0.63 0.08 0.14 0.01 0.86

93 Arlington, VA −1.90 0.46 0.21 0.11 0.46 0.01

1 Kodiak Island, AK 44.20 0.41 0.01 0.42 0.54 0.71

North Pacific 2 Dillingham, AK 21.33 0.21 0.01 0.44 0.28 0.99

3 Haines, AK 10.87 0.53 0.06 0.40 0.80 0.56

4 Juneau City 6.62 0.57 0.16 0.33 0.99 0.82

5 Aleutians West 4.12 0.55 0.12 0.44 0.42 0.74

15 Yakutat City 0.13 0.27 0.56 0.12 0.62 0.57

16 Hoonah-Angoon 0.10 0.17 0.23 0.31 0.29 0.59

17 Wrangell City −0.01 0.01 0.22 0.01 0.41 0.75

18 Aleutians East −5.91 0.42 0.02 0.24 0.19 0.51

19 Bristol Bay −7.54 0.91 0.09 0.01 0.23 0.59

Northeast 1 Hancock, ME 139.09 0.92 0.01 0.57 0.64 0.82

2 Waldo, ME 57.07 0.90 0.01 0.30 0.59 0.67

3 Dukes, MA 36.04 0.26 0.01 0.46 0.88 0.77

4 Knox, ME 24.96 0.53 0.03 0.29 0.93 0.81

5 Lincoln, ME 5.13 0.99 0.21 0.19 0.99 0.67

24 New London, CT 0.11 0.08 0.11 0.65 0.01 0.52

25 Strafford, NH 0.02 0.35 0.74 0.41 0.33 0.41

26 Bristol, RI 0.00 0.01 0.51 0.01 0.63 0.72

(Continued)
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TABLE 1 | Continued

Region Rank County, State CRSI GOV RISK BLT SOC NAT

27 Suffolk, MA −0.17 0.32 0.52 0.34 0.18 0.47

28 Nantucket, MA −0.22 0.36 0.18 0.41 0.14 0.53

Pacific 1 Honolulu, HI 28.69 0.99 0.39 0.91 0.99 0.99

2 Hawaii, HI 3.99 0.70 0.99 0.99 0.55 0.48

3 Maui, HI 2.37 0.92 0.27 0.50 0.38 0.10

4 Kauai, HI 2.02 0.69 0.17 0.01 0.97 0.08

5 Kalawao, HI −1.79 0.01 0.01 0.05 0.01 0.01

Southeast 1 Pender, NC 17.20 0.58 0.05 0.56 0.61 0.48

2 Camden, GA 10.73 0.99 0.12 0.32 0.65 0.69

3 Bryan, GA 8.35 0.49 0.09 0.45 0.72 0.58

4 Currituck, NC 7.54 0.62 0.13 0.45 0.48 0.82

5 Carteret, NC 7.50 0.65 0.16 0.42 0.53 0.99

49 Hertford, NC −1.55 0.80 0.12 0.17 0.37 0.35

50 Putnam, FL −2.09 0.24 0.06 0.43 0.02 0.22

51 Charlton, GA −6.92 0.66 0.08 0.01 0.15 0.43

52 Brantley, GA −17.88 0.51 0.04 0.14 0.01 0.20

53 Wayne, GA −30.91 0.47 0.01 0.08 0.43 0.19

West 1 Clallam, WA 71.13 0.63 0.01 0.38 0.82 0.62

2 Santa Cruz, CA 17.31 0.49 0.04 0.32 0.65 0.99

3 Skagit, WA 14.15 0.84 0.10 0.43 0.72 0.97

4 Whatcom, WA 13.34 0.70 0.10 0.54 0.80 0.90

5 Marin, CA 12.73 0.39 0.04 0.31 0.75 0.92

43 San Joaquin, CA 0.00 0.67 0.43 0.58 0.49 0.03

44 Del Norte, CA −0.04 0.71 0.32 0.08 0.26 0.77

45 Columbia, OR −1.25 0.99 0.27 0.22 0.41 0.32

46 Pacific, WA −2.70 0.72 0.12 0.12 0.40 0.39

47 Wahkiakum, WA −4.72 0.94 0.23 0.01 0.01 0.43

The top five (highest) and bottom five (lowest) scores are shown.

(Table 1). The top and bottom-ranked CRSI scores within each
region is provided to illustrate how differences in the domain
component scores can contribute to higher and lower CRSI
scores. Since the scores for each domain scaled within region,
the number represents a position on the scale from 0.1 to 0.9
(lowest to highest) for that region. Counties with the lowest CRSI
scores may score higher in some domains than those counties
with the highest CRSI scores in the region, but overall, it is the
combination of higher risk, lower Governance scores and the
median adjusted scores for Society and the Natural and Built
Environment domains (not the domain scores shown in Table 1)
that determine the CRSI score (see CRSI equation in Methods
section). A summary follows for each region’s top and bottom
ranking counties, as re-scaled county values are only comparable
within region.

Great Lakes

Among the top-ranked CRSI scores in the counties of the
Great Lakes region, risk domain scores were low (less risk),
contributing to higher CRSI scores. For the lowest CRSI scores
in the region, Risk domain scores were high and most counties
ranked in the bottom five had lower scores in the Society domain.
The highest and lowest Governance domain scores within the

entire region were in Keweenaw County, MI and Erie County,
PA respectively; both ranked in the bottom five for CRSI scores
in the region. Keweenaw County, MI also had the lowest Society
domain score for the entire region. Built Environment domain
scores varied across the top and bottom-ranked counties. The
majority of Natural Environment domain scores among the top
and bottom-ranked counties fell within the upper 50th percentile
range for the region.

Gulf of Mexico

Governance domain scores were generally in the upper 50th
percentile with the exceptions of Liberty, Gulf and Monroe
counties in Florida. Monroe, Florida ranked last in the
Governance domain among all GOM counties. Risk domain
scores were lowest for the highest-ranking counties for CRSI,
except Brazoria, TX, which had a higher Risk domain score than
the other top five and bottom five counties except Orleans, LA.
All ranked counties shown had Risk domain scores in the lower
25th percentile across the GOM region. Of the top and bottom
ranked counties, only three had scores above the 50th percentile
for the Built Environment domain. Counties with the lowest
CRSI scores also scored low in the Society domain exceptMonroe
County, Florida. Natural Environment domain scores for the top

Frontiers in Environmental Science | www.frontiersin.org 9 June 2019 | Volume 7 | Article 96

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Smith et al. U.S. Coastal Counties Resilience Screening

and bottom-ranked counties in the GOM were generally lower
for the bottom-ranked counties except for Liberty County, FL.

Mid-Atlantic

As seen within many of the regions, Risk domain scores
were lowest among the top-ranking counties in the Mid-
Atlantic region. However, both Salem County, NJ and Somerset
County, MD scored low for Risk and scored among the bottom
five ranked CRSI scores. Scores for the Built Environment,
Society and Natural Environment domains were much lower
for the bottom-ranked counties except Salem County, NJ
and Somerset County, MD which scored highest among the
ranked counties shown for the Natural Environment domain.
Arlington County, VA ranked scored the lowest in the region
for the Natural Environment domain. King William County,
VA scored low for the Built Environment domain among the
top five CRSI ranked counties. Governance domain scores
shown for the ranked counties were all in upper 50th percentile
for the region except Baltimore City, MD and Arlington
County, VA.

North Pacific

In the North Pacific region (Alaska), Kodiak Island Borough
scored highest for CRSI and Bristol Bay Borough scored lowest.
Risk domain scores among the highest and lowest ranked
counties for CRSI were low except for Yakutat City Borough
which scored the much higher (0.56). Governance domain scores
varied across the counties shown with Bristol Bay Borough
scoring the highest among the top and bottom-ranked counties
and Wrangell City Borough scoring the lowest in the North
Pacific region. These same two boroughs scored lowest in the
region for the Built Environment domain. Society domain scores
also varied across the top and bottom-ranked boroughs; however
lower scores are shown for the Census Areas of Dillingham
and Hoonah-Angoon and for the boroughs of Bristol Bay
and Wrangell City. Natural Environment domain scores shown
were all greater than the 50th percentile for the region with
the Dillingham Census Area scoring highest within the North
Pacific region.

Northeast

Hancock County, ME scored highest for CRSI in the Northeast
region, while Nantucket County, MA scored lowest. Risk domain
scores were lowest among the top-ranked CRSI counties in the
Northeast region except Lincoln County, ME. Built Environment
domain scores varied across the ranked counties shown with
one of the top-ranked counties, Lincoln County, ME scoring
low and Bristol, RI scored the lowest for this domain within
the entire region. The lowest score within the region for the
Governance domain was also shown for Bristol County, RI and
the score was also low for New London County, CT. New
London County also had the lowest Society domain score for
the Northeast region; Lincoln County, ME the highest. All
but two ranked counties, Strafford County, NH and Suffolk
County, MA, scored above the regional mean for the Natural
Environment domain.

Pacific

The highest Risk domain scores among the five counties of the
Pacific region (HI) are shown for the two top CRSI ranked
counties, Honolulu and Hawaii. Hawaii County had the highest
Risk domain score for the region, but also scored highest for
the Built Environment domain. Hawaii County scored highest
in the region for the Society and Natural Environment domains.
Maui scored low in the Natural Environment domain, as did
Kauai County. Kauai County also scored lowest in the region
for the Built Environment domain. Kalawao County scored
lowest in this region for the domains of Governance, Society
and the Natural Environment and also scored low in the Built
Environment domain.

Southeast

Within the Southeast region, Pender County, NC scored highest
for CRSI and Wayne County in GA scored lowest. All but two
counties scored above the median for the Governance domain.
Risk domain scores for the top and bottom-ranked counties
in the region were all low. Only one ranked county shown,
Pender County, NC, scored in the upper 50th percentile for
the Built Environment domain. Lower Built Environment scores
are shown for the bottom-ranked counties. Brantley County,
GA scored lowest in the region for the Society domain and
all bottom-ranked counties in the region scored lower for this
domain. Similarly, Natural Environment domain scores for the
lower ranked counties were all lower than those with the highest
CRSI scores.

West

The highest and lowest CRSI scores for the West region were in
Clallam and Wahklakum Counties in WA, respectively. Higher
Governance domain scores are shown for the counties that
ranked lowest for CRSI in this region. Counties ranked in the
bottom 5 for CRSI had higher Risk domain scores. Lower scores
for the Built Environment, Society and Natural Environment
domains are shown for most of the bottom-ranked counties with
the exception of San Joaquin County, CA, which scored higher
for the Built Environment domain and Del Norte County, CA
which scored higher in the Natural Environment domain.

Resilience characterizations within geographically,
economically and socially similar areas may foster peer to
peer transfer of best practices. For example, in the GOM region,
Kenedy County, TX (CRSI=−22.2) might look to best practices
in Victoria County, TX (CRSI = 107.8) for built environment,
society, and natural environment activities to improve Kenedy
County resilience. These two GOM counties have similar risk
profiles. Similarly, in the Mid-Atlantic region, Somerset County,
MD (CRSI = −1.75) and King William County, VA (CRSI =
23.89) have similar risk profiles but Somerset has significantly
lower domain scores in all categories. KingWilliamCounty could
provide Somerset with examples of actions that have enhanced
King William’s governance, built and natural environments or
social systems.
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Ocean Economy Employment Dependence
in the GOM Region
The location quotients >1.0 for the total ocean economy
(LQ_OE) and the corresponding ocean sector location quotients
for GOM counties are included along with the CRSI scores
(Table 2). Forty two counties/parishes in the GOM region had
total ocean economy LQ values (LQ_OE) >1.0, indicating a
higher dependence on the ocean economy compared to all
ENOW counties in the GOM region. Monroe County, FL and
Plaquemines Parish, LA both ranked in the top ten for LQ_OE
values and both rank in the bottom 10 for CRSI scores among
the ocean economy dependent counties and parishes in the
region. However, for both Monroe County and Plaquemines
Parish the ocean economy is diverse with tourism and recreation
being a major component in Monroe County and employment
concentrated heavily in offshore mining and extraction (OME)
and inmarine construction (MC) in Plaquemines Parish.Monroe
County ranks 4th from last in the region for CRSI with a
high score for the Society domain which includes economic
diversity. The information in Table 2 can be used to compare
counties with ocean economies concentrated in similar sectors.
For example Mobile County, AL and St. Mary Parish, LA both
have employment concentrated in the ship and boat building
industry (SBB) and have similar lower CRSI scores.

Percentile ranked LQ_OE, and CRSI scores for the forty-
two ENOW coastal counties and parishes in the GOM region
are plotted in Figure 4. Median values for LQ_OE and CRSI
delineate quadrants along the X and Y axes, respectively. LQ_OE
values increase from left to right; CRSI values increase from
bottom to top. Each quadrant is labeled accordingly. The color
of each bubble represents the state in which the county is located.
All counties shown have a dependence on the ocean economy
with an employment concentration in ocean sectors higher than
that observed across the GOM region, suggesting an added
vulnerability in the socio-ecological context of resilience.

As presented, counties falling in the lower right-hand
quadrant should be considered more vulnerable compared to
the other counties shown in the region. The counties in the
upper left-hand quadrant (Lower LQ_OE/Higher CRSI) should
be considered less vulnerable. Those counties in the lower right
quadrant may be more vulnerable in the GOM region. This
quadrant includes four Louisiana parishes with the lowest CRSI
scores in the region: Orleans, Iberia, Terrebonne and Lafourche.
These parishes also have higher Risk scores. Particular attention
needs to be given to the Society domain for these counties, which
negatively impacted CRSI scores in the lowest ranked counties
for the region, in addition to lower scores in the other domains.
All nine parishes in Louisiana had CRSI values lower than most
other ocean economic dependent counties.

DISCUSSION

Coastal counties share certain governance approaches, natural
resource practices, built environment requirements, and
demographic characteristics not shared with non-coastal
counties. Thus, an analysis that includes all counties tends to

“dilute” differences among coastal counties. To differentiate
among coastal counties with ocean economies, a regional ENOW
coastal county rescaled analysis specifies the differences in CRSI
scores within the identified region. This rescale differentiates
patterns among ENOW coastal counties and allows for a more
relevant assessment of potential areas for improvement in
coastal areas.

While the original CRSI quantitative resilience scores are
useful for comparisons across the nation, they may offer little
to direct investment for the enhancement of overall resilience
at regional and state levels (Frazier et al., 2013). Applications of
the Conjoint Community Resilience Assessment Measurement
(Cohen et al., 2013) and the Spatially Explicit Resilience-
Vulnerability (SERV) model (Frazier et al., 2014) demonstrate
the need for specific local information to address local resilience
issues. Re-scaling ENOW coastal county assessments to specific
regions provides information regions and states can use
to equitably allocate resources for improving infrastructure,
protecting and restoring natural environments, and enhancing
quality of life in coastal areas. In counties where risk profiles
and governance are similar, it is important to take a look at
the resilience characteristics (indicators and metrics) identified
in CRSI for the Built Environment, Society and Natural
Environment domains. It is at this level that states may be able to
evaluate differences and allocate resources to support economic
vitality, increase resilience and improve overall humanwell-being
for these natural hazard-prone areas (Cutter et al., 2014).

Resilience and sustainability are inextricably linked to
economic conditions and activities (Espiner et al., 2017). The
Location Quotient for the total ocean economy and each ocean-
dependent sector based 6 digit NAICS codesmay reveal economic
vulnerabilities overlooked in the broader Hachman Index used
in CRSI. Re-scaled CRSI scores account for within-region
differences in the economic diversity, but providing location
quotient information in addition to the CRSI indicator scores
for Economic Diversity highlights an economic vulnerability
specific to the GOM region. Similarly, economic scaling can be
an issue when examining the relationship between community
resilience and long-term tourism (Bec et al., 2016). There is
recent consensus among researchers that coastal vulnerability is
geographically dependent and requires placed-based information
(Bevacqua et al., 2018). The present re-scaling of CRSI is
especially important for the GOM region as it is frequently
exposed to natural hazards (e.g., hurricanes and coastal flooding)
that can directly impact the ocean sector industries upon which
these coastal counties depend. The utility of more detailed
economic information is increased within the specified coastal
regions. At the regional scale, the additional economic measures
complement the minimal economic metrics of CRSI resulting
in more explicit differentiation and allowing further sub-
groupings (e.g., targeting areas that concentrate on ship and boat
building or tourism). A re-assessment of the GOM region that
includes employment dependencies through a location quotient
analysis, in addition to regionalized CRSI results, offers a unique
characterization of general resilience to natural hazard events that
CRSI and LQ do not capture independently (e.g., Morrisey, 2016;
Jahn, 2017; Fracasso and Marzetti, 2018). The joint assessment
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TABLE 2 | Location Quotients for the Gulf of Mexico for Total Ocean Economy (OE)>1.0 and the ocean sectors location quotients for the ocean sectors: Living Resources

(LR), Marine Construction (MC), Marine Transportation (MT), Offshore Mining and Extraction (OME), Ship and Boat Building (SBB) and Tourism and Recreation (TR).

LQ

County/Parish State OE LR MC MT OME SBB TR CRSI

Monroe* FL 4.29 1.02 0.24 0.02 0.05 1.72 0.35

Jackson** MS 4.08 0.39 1.13 0.42 7.54

Refugio TX 3.27 3.31 0.64 4.99

Terrebonne* LA 3.09 2.79 1.49 0.46 2.03 5.79 0.53 1.38

Lafourche* LA 3.00 6.50 0.63 0.10 1.63

Aransas TX 2.99 1.05 1.32 5.48

San Patricio** TX 2.83 0.17 0.69 13.24

Walton** FL 2.69 0.29 1.72 5.91

Vermilion LA 2.50 14.99 0.49 3.06

Plaquemines* LA 2.47 0.83 2.39 2.70 2.74 2.32 0.24 0.49

St. Mary LA 2.35 1.80 0.59 12.28 0.18 2.99

Iberia* LA 2.35 1.92 0.62 2.73 3.63 0.47 0.47

Bay** FL 2.19 0.28 0.03 1.50 13.50

Baldwin** AL 2.12 0.42 0.39 1.63 9.83

Orleans* LA 1.87 0.44 1.04 0.39 0.02 1.40 0.35

Galveston TX 1.78 2.37 0.64 1.03 0.19 1.35 3.31

Franklin** FL 1.75 1.75 64.49

Santa Rosa FL 1.74 0.44 0.01 1.66 3.43

Okaloosa FL 1.72 0.05 0.04 1.71 4.13

Harrison MS 1.67 3.86 0.19 0.43 1.46 4.26

Matagorda** TX 1.65 0.62 1.12 9.83

Jackson** TX 1.62 0.37 0.62 11.56

Collier FL 1.54 0.40 0.26 0.02 1.73 4.07

Charlotte FL 1.48 0.64 0.68 0.03 0.04 1.69 3.29

Nueces** TX 1.46 0.29 1.05 1.23 8.24

Jefferson LA 1.43 0.75 0.55 1.04 0.18 1.35 2.67

Manatee* FL 1.38 0.27 0.34 0.19 1.50 1.67

Willacy TX 1.31 1.34 4.35

Escambia FL 1.28 2.06 0.13 0.22 1.63 2.93

Lee FL 1.27 0.63 0.64 0.13 0.02 0.17 1.68 2.24

Calhoun TX 1.27 20.76 0.28 0.93 4.43

Wakulla FL 1.21 1.75 5.22

Pinellas FL 1.20 0.93 0.39 0.78 0.89 1.57 3.18

Kleberg* TX 1.19 1.75 −0.35

Mobile AL 1.19 5.50 0.99 1.38 0.01 17.12 0.71 3.27

Sarasota FL 1.18 0.07 0.58 0.23 1.66 2.76

Chambers TX 1.14 1.07 0.65 2.05

Levy** FL 1.12 3.08 1.12 9.33

Gulf** FL 1.10 1.75 25.60

Hernando FL 1.06 1.30 4.02

Hancock* MS 1.05 0.37 1.54 1.22

St. John the Baptist* LA 1.04 1.41 1.56 0.00 1.72

*ranked in the bottom 10 CRSI scores; **ranked in the top 10 CRSI scores for the Gulf of Mexico Region ocean economy dependent counties.

also determines if certain types of economic activities are more
vulnerable to certain events.

At a macroeconomic level, community resilience can be
clearly influenced by economic sectors (Rose and Krausmann,
2013). Using economic assets to improve housing, infrastructure

or employment has been demonstrated to aid decision-making
and enhance disaster resilience for coastal communities in
the GOM (Cutter et al., 2014) and coastal Oregon (Fischer,
2018). Although connections between community resilience, its
capacity level and economic factors have been theorized or
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FIGURE 4 | Scatter plot showing LQ_OE (x-axis) and CRSI (y-axis) percentile ranked values for the forty-two GOM coastal shoreline counties with LQ_OE values

>1.0. Quadrants are delineated by the median values along the x and y axes. Bubbles are color coded by state.

demonstrated (Tobin, 1999; Cutter et al., 2003; Buikstra et al.,
2010; Cui et al., 2016), some studies have demonstrated no
association between economic factors and community resilience
for the oil and gas industry in the GOM (Reams et al.,
2012) or level of community development in general in the
northern GOM (Lam et al., 2016). Natural and anthropogenic
hazards (e.g., hurricanes, sea level rise, salt water intrusion
and oil spills) in the GOM can pose unique problems to the
dominant sources of coastal economies (Kim and Marcouiller,
2015; Zhang et al., 2015; Jurjonas and Seekamp, 2018). Our
results suggest employment dependence on ocean sectors and
lack of diversity across ocean sectors may be a vulnerability
that could potentially reduce coastal community resilience.
Particular interest should be focused on those industries that
suffer long term effects due to the impacts of natural disasters.
The CRSI/LQ combination offers a multi-dimensional approach
to examine general resilience characteristics across five domains
while identifying potential employment vulnerabilities based on
ocean economy dependence and lack of diversity across sectors.

High ocean dependence (LQ_OC) and a lack of ocean sector
diversity should be considered an indicator of added economic
vulnerability along with the economic indicators already in the
CRSI Society domain. For example, parishes in Lousiana with a
dependence on Ship Boat Building (SBB) or the fishing industry,
tend to have lower resilience scores. These two industries may
exacerbate vulnerabilties not pinpointed specifically in CRSI
scores. Hurricanes can completely close fisheries for extended
periods of time and the impact of coastal flooding and hurricanes
may exacerbate contamination exposures (Superfund, RCRA and
TRI sites) associated with the SBB industry and other ocean

sector industries in addition to directly impacting the economic
vitality. It is not suggested that ENOW coastal counties in the
GOM region are less resilient overall based on their dependence
on the ocean economy, but they may be slower to recover in
the event of hurricanes and coastal flooding because of this
dependence. Futhermore, loss of employment in ocean economy
sectors following natural hazard events could impact the well-
being of those coastal communities.

LQ and CRSI information may be used to look within
each state to evaluate resilience differences by focusing on
the commonality of ocean economic dependence. In Alabama,
Baldwin County is two times more dependent on the ocean
economy than Mobile County; however, Baldwin County scores
much higher for resilience. The counties also have different
industry profiles for the ocean economy sector employment.
With similar risk profiles, domain scores need to be dissected to
the indicator level to evaluate how these economic dependences
may influence resilience.Measures such as the LQ could be linked
back to a variety of socio-ecological measures used in the CRSI
Society domain and is worthy of further examination.

Examining the intersections among different domains and
indices is an important aspect of improving SES resilience
characterizations (Faulkner et al., 2018). Bringing together
elements of resilience and economic information can better
inform disaster risk management and foster community
organization (Faulkner et al., 2018). Typologies, like the one here
using CRSI and LQ, for characterizing ENOW coastal counties
in a region of the United States could assist government in
developing guidance (for risk, vulnerability, or recovery) that
are more applicable to specific local contexts (Chang et al.,
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2018). Similarly, these groupings can facilitate the development
of peer localities networks (in this case coastal counties in the
Gulf of Mexico region) for advocacy and knowledge exchange.
These rescaled assessments provide within state comparisons that
could help states target resources and improve regional resilience
considering all counties within a region. Increasing resilience in
coastal areas is expected to have a positive influence on human
well-being over time. Including more specific quality of life
measures with economic information and resilience as defined
by CRSI would further enhance a locality’s ability to learn from
and respond to extreme weather events.

Regionally-derived resilience indices for GOM counties (Lam
et al., 2016) have shown “ranking” patterns similar to our
GOM re-scaled regional CRSI analysis. However, differences in
scale, selection of metrics and analytical methods can all yield
different results. For example, our results differ from national
assessments like Baseline Resilience Indicators for Communities
(BRIC; Cutter et al., 2014). BRIC results show Louisiana parishes
among the most resilient counties in the U.S, while regional
ENOW coastal county assessments rank them among the lowest.
Results of CRSI should be further compared (fidelity tested)
to additional resilience assessment results. Such comparisons
to the CRSI approach and results may be useful to refine or
complement existing measures. For example, our data-driven
typological approach would be useful in conjunction with
Sempier et al. (2010) Coastal Community Resilience Index, an
internal self-assessment tool, developed to help communities
address resilience issues and identify how to allocate resources
to prepare and recover from disasters. Although the county-level
of assessment CRSI provides is at a smaller scale than many
other assessments, e.g., island-nation, country, region (Arkema
et al., 2013; Selig et al., 2018), some community level tools
and decisions require more localized scales. Future work could
explore down-scaling CRSI results to sub-county scales to inform
these types of tools and decisions.

The CRSI re-scaling approaches described in this paper can
be transferred to other specific geographies and the data used
to calculate CRSI and LQ values are both publicly available.
Employment dependence as presented for LQ can be tailored
to specific industries within the geographic area of interest.
However, approaches to refine rescaled CRSI characterizations
for geographically specific areas may be needed and could
include a finer scale population-based exposure characterization
of risk. Additionally, metrics for the Governance domain of CRSI
could be further developed for specific geographic areas using
regional or state level resilience plans not consistent enough for
national comparisons. In coastal areas, the number of ecological
restoration, structural protection, and/or non-structural risk
reduction projects that are planned or being implemented may
be appropriate to improve natural or built environmental domain
measures. For example, Louisiana’s Comprehensive Master Plan
for a Sustainable Coast (Coastal Protection Restoration Authority
of Louisiana, 2017) identifies restoration projects to build or
maintain land and support productive habitats for commercially
and recreationally important activities, structural protection
projects to reduce flood risk by acting as physical barriers
against storm surge and non-structural risk reduction projects

to elevate and floodproof buildings and help property owners
prepare for flooding or move out of high-risk areas. The natural
environment component of CRSI could be potentially linked
to community-based natural resource management strategies
to strengthen SES resilience assessments for coastal areas
(Delgado-Serrano et al., 2018).

Another consideration for refining CRSI for regional
applications may be a substitution of regional, more specific LQ
values for the Hackman Index as the sole measure of economic
diversity, and inclusion of the Gini coefficient as a metric of
socio-economics. Lastly, the addition of regionalized quality
of life measures to the CRSI/LQ typology would be useful for
setting baselines to help communities look to one another for
improving their most important quality of life aspects and to
better track progress over time following extreme weather events
and natural disasters. These combinations of measures and
further refinements will strengthen U.S. coastal county resilience
characterizations and may increase the likelihood of improving
environmental, social and economic recovery outcomes.

CONCLUDING REMARKS

ENOW coastal counties share certain governance approaches,
natural resource practices, built environment requirements, and
demographic characteristics. These qualities support the need for
resilience characterizations specific to coastal regions. Although
national level assessments exist, re-scaling CRSI assessments
to ENOW coastal counties within regions highlights resilience
strength and weaknesses otherwise diluted in the national
level assessments. In addition, combining the LQ as measure
of employment dependence on ocean economies with CRSI
scores captures a potential vulnerability specific to coastal
counties which is not reflected in CRSI alone. Including
regionalized quality of life indicators/indices to the CRSI/LQ
typology could help strengthen resilience assessments as an
additional measure of vulnerability of the people living and
working in ENOW coastal counties. The information presented
can help communities identify opportunities (i.e., targeting
resources, knowledge transfer) to strengthen resilience and
improve overall community well-being. The unique approach
of combining CRSI and LQ for characterizing natural hazard
resilience described could be transferred to other specific
geographies as defined by population groups, hazard profiles and
economic dependence.
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