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High Platform Elevations Highlight
the Role of Storms and Spring Tides
in Salt Marsh Evolution
Guillaume C. H. Goodwin* and Simon M. Mudd

School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

We combine sea level records and repeat lidar surveys at 8 sites in the United Kingdom

and the United States to explore controls on marsh accretion. We compare marsh

elevations relative to sea level as well as lidar-derived marsh accretion rates to simple

0-dimensional settling simulations in order to explore constraints on suspended sediment

concentration and particle size. We find that the marsh platforms examined occupy

a narrow range of elevations in the upper tidal frame, situated between Mean High

Tide MHT and the Observed Highest High Tide OHHT. Under sinusoidal tidal forcing,

common in marsh accretion models, marshes at these elevations are never inundated,

highlighting the inadequacy of sinusoidal forcing in numerical models of salt marshes.

Forcing the model with year-long tidal records, deposition rates follow hyperbolic contour

lines when expressed as a function of sediment concentration and median grain size. We

also observe that when using a median sediment grain size D50 = 50 µm and sediment

concentrations derived from satellite data, modeled deposition rates are much lower than

when using field data. We find that the deposition of coarse, concentrated sediment is

necessary for platforms in the upper tidal frame to withstand sea level rise, suggesting

a strong dependance on infrequent high-deposition events. This is particularly true for

marshes that are very high in the tidal frame, making accretion increasingly storm-driven

as marsh platforms gain elevation. Finally, we reflect on the capacity of marshes to

regenerate after erosion events within a context of changing sediment supply conditions.

Keywords: salt marshes, coastal geomorphology, topography, numerical modeling, lidar

1. INTRODUCTION

The issue of salt marsh elevation change is one that preoccupies coastal geomorphologists and land
managers alike. Often measured relative to mean sea level, elevation determines the frequency and
depth of flooding of the marsh surface, both from astronomic tides and storms (Cahoon and Reed,
1995). Flooding frequency in turn determines salinity, which influences the type and productivity
of the plant communities on the marsh (Pennings et al., 2003; Silvestri et al., 2005; Belliard et al.,
2017), and therefore underpins the functioning of the entire ecosystem. Coastal marshes around
the world face accelerating rates of sea level rise (IPCC, 2014). Decreased sediment supply due
to anthropogenic activities is set to accentuate the pressure of sea level rise on coastal wetlands,
particularly in deltaic systems (Syvitski et al., 2009). Furthermore, subsidence caused by water,
gas and oil extraction add to the existing stress on wetland ecosystems (Kennish, 2001). Factors
that influence marsh growth are less favorable now than in the past (Kirwan et al., 2011), and so
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determining if salt marshes will maintain their elevation within
the tidal frame is an intensively studied research question(Crosby
et al., 2016; Kirwan et al., 2016; Lerberg, 2016).

One approach to explore the future evolution of salt
marsh elevation is numerical modeling, and several models
of salt marshes have been created over the past decades
to address the question (Fagherazzi et al., 2012). Models of
salt marsh elevation change may be divided into point-based
models (0-D), profile models (1-D) or spatially distributed
models (2-D). Whereas 2-D models are effective at predicting
the evolution of topographic or ecological patterns on the
marsh surface (D’Alpaos et al., 2005; Temmerman et al.,
2007; Belliard et al., 2016), their high computational cost
often precludes their use for long-term simulations or large
regions. 1-D models are often used to represent the marsh
scarp and simulate salt marsh and mudflat interactions
(Mariotti and Fagherazzi, 2010) and lateral erosion processes
(Tonelli et al., 2010).

Contrary to these approaches, 0-D models do not take into
account the propagation of hydrodynamic forcing, nor do they
account for the spatial heterogeneity of marsh topography.
These models often use synthetic elevations, simplified tidal
forcings and assume constant suspended sediment concentration
and median grain size. With these assumptions, they have
been used to explore the response of marshes to various sea
level rise scenarios (D’Alpaos et al., 2011) or the variations
in vegetation productivity (Morris et al., 2002; Mudd et al.,
2010; Marani et al., 2013). More recently, Schuerch et al.
(2018) used a 0-D model to assess the potential of salt
marshes to adapt to projected sea level rise over the twenty-
first century, assuming that all coastal wetlands occupy the
same continuous vertical space between Mean Sea Level
(MSL) and Mean High Water Spring (MHWS). However,
due to the scarcity of local sediment size and concentration
data, few studies using 0-D models consider variability in
sediment supply.

Simulations of salt marsh behavior may be compared with
observations of salt marsh elevation change, measured in the field
or via remote sensing. Sediment Elevation Tables (SET) allow
for highly accurate measurements (Cahoon, 2015; Anisfeld et al.,
2016), but lack the spatial coverage provided by less accurate lidar
surveys (Nolte et al., 2013; Webb et al., 2013). While they are
affected by false ground returns due to vegetation (Schmid et al.,
2011; Hladik and Alber, 2012; Rogers et al., 2016, 2018), their
large footprint enables lidar surveys to account for the variability
of salt marsh elevation in a way that would be too costly to
implement on the field.

In this contribution, we use lidar-derived marsh platform
elevations and local tidal records to simulate yearly settling fluxes
for 8 salt marshes in the United Kingdom and the United States
of America. We then compare the calculated settling rates under
various sediment size and concentration conditions to various
rates of sea level rise. Finally, we investigate the potential of
pioneer platforms for rapid accretion. Our aim is not to perfectly
simulate sediment settling on these marshes, but rather to use
observed marsh elevations and tide records to constrain some of
the conditions of sedimentation.

2. MATERIALS AND METHODS

2.1. Numerical Framework for Settling
Fluxes
Following Exner’s equation, 0-dimensional numerical models
describe the change in elevation of a point on the marsh surface
as the sum of deposition and erosion fluxes (Marani et al.,
2007, 2013; Kirwan and Temmerman, 2009; D’Alpaos et al.,
2011). Over a given period of time 1t, the average variation of
elevation relative to sea level 1z is the sum of positive deposition
fluxes Qdep,1t and belowground organic production Qorg,1t , and
negative erosion fluxes Qeros,1t on the platform surface, minus
the relative sea level rise R1t , which includes eustatic sea level
variations and local subsidence. If dt is an infinitesimal time
period, the change in elevation dz over dt is therefore expressed
by Equation (1):

dz

dt
= Qdep,dt + Qorg,dt + Qeros,dt − Rdt (1)

where it is assumed that Qeros,dt = 0 m yr−1, as the dampened
currents and waves on elevated platforms are unlikely to erode a
vegetated surface (Carniello et al., 2005; Möller et al., 2014).

Deposition fluxes on vegetated surfaces are expressed as the
sum of particle settling and capture by stems and leaves. Here,
capture fluxes are considered significantly smaller than settling
fluxes (Marani et al., 2010; Mudd et al., 2010). Over a tidal cycle
of period T, we therefore expressQdep,T according to equation (2)
(D’Alpaos et al., 2011):

Qdep,T =
1

T

∫

T

ws · C(z, t)

ρb
dt (2)

ws =
2

9
(
ρs − ρw

µ
) g (

D50

2
)2 (3)

where ws is the terminal settling velocity calculated using Stoke’s
law for a spherical particle of diameter D50 and volumetric
mass ρs = 2650 kg m−3 in unagitated water of volumetric
mass ρs = 1000 kg m−3 and dynamic viscosity µ =

0.0010518 kg s m−1. The assumption of low turbulence on the
marsh surface implicitly assumes low velocities, as vegetation
increases turbulence on the surface (Nepf, 1999). We therefore
anticipate settling fluxes obtained through this model to
overestimate real settling. ρb = ρs(1 − λ) is the bulk density
where λ = 0.5 is a parameter accounting for compaction (Marani
et al., 2010; D’Alpaos et al., 2011).

The depth-averaged instantaneous suspended sediment
concentration C(z, t) is the solution of the first order differential
Equation (4):

d(DC)

dt
= −ws · C + C̃ ·

dh

dt
(4)

with

C̃(z, t) =

{

C(z, t), if dh
dt

< 0.

C0, if dh
dt

> 0.
(5)
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FIGURE 1 | Schematic diagrams of the inputs of a 0-dimensional accretion

model. (A) Simplified model with time-invariant maritime forcing (left) and

uniform topography and vegetation (right). (B) Model with more realistic,

time-dependent maritime forcing and variable topography and plant

associations. R is the rate of sea level rise, C0 is the suspended sediment

concentration, D50 is the median sediment grain size, H is the maximum tidal

elevation for a given tidal cycle, B is the biomass of a given species, and F is

the fitness function for that species.

where the instantaneous water depth D(z, t) is the difference
between the water level h(t) and the elevation z(t). In Equation
(5), C(z, t) is dependent on flooding conditions during ebb ( dh

dt
<

0), but is forced by the boundary sediment concentration C0

during flood ( dh
dt

> 0). Equation (4) is solved for positive values
of D(z, t) under the assumption that at any given time t, either
dz
dt

is negligible in front of dh
dt

or both are null. The solution of
Equation (4) under these conditions is then:

C(z, t) =

{

C0 · e
D(z,t)−Dmax , if dh

dt
< 0.

C0, if dh
dt

> 0.
(6)

whereDmax is the maximum flooded depth for a given tidal cycle.
Since dry areas cannot accrete through deposition, we consider
ws·C(z,t)

ρb
= 0 for negative values of D(z, t).

2.2. Modified Forcing and Representation
of Elevations
Due to their exploratory nature, 0-D models seldom represent
any particular marsh platform elevation or vegetation
association. Likewise, maritime forcing parameters are often
synthetic, using a sine wave of amplitude H = MHT −MSL as a
tidal signal, and considering the forcing sediment concentration
C0 or the median grain size D50 as time-invariant (D’Alpaos
et al., 2011) (Figure 1A). Figure 1B illustrates the parameters
required to force a more realistic model. Such models are usually
implemented for a particular marsh platform (e.g., D’Alpaos
et al., 2007; Temmerman et al., 2007) and successfully simulate
observed accretion values.

We examine the effects of using observed rather than
sinusoidal or predicted tidal forcing to simulate the vertical
accretion on marsh platforms extracted from lidar topographic
data. This approach is implemented in the model by describing
the mineral accretion flux over a period 1t, Qdep,1t , as the sum
of settling fluxes over each of the N1t tidal cycles in 1t (7).

Qtotal,1t =

i=N1t
∑

i=0

Qdep,Ti (7)

We initially consider fixed values for C0 and D50, as detailed in
section 2.3. Our aim is to determine whether these parameters
can be used to explain observed marsh elevations and accretion
rates, as well as the conditions necessary for platform elevations
to match rising sea levels. Later in this contribution, we relax
our assumptions about C0 and D50 and allow them to vary as
free parameters.

2.3. Site Description and Sediment Supply
Conditions
In this study, we examine 8 marsh sites where two lidar
topographic surveys acquired at least 4 years apart are located
in close proximity to a tidal gauge with a long-term record of
hourly data. For each site, we obtain total suspended matter
(TSM) using the GlobColour MERIS product (Barrot et al.,
2007), which contains monthly values TSM in the Earth’s oceans
and lakes between 2002 and 2012. Monthly coverage of MERIS,
however, is incomplete. Consequently, we use the averaged TSM
between 2002 and 2012 in order to cover our sites. The angular
resolution of MERIS products is 1/24◦ at the equator. While
this is insufficient to observe the exact TSM value at our sites,
MERIS data has already been used to calculate local sediment
availability in global estimates of wetland response to sea level rise
(Schuerch et al., 2018). In this study, we therefore useMERIS data
in combination with field data on sediment supply conditions
sourced from the literature, as described below. The location of
each site is given in Figure 2 and the Supplementary Material.

2.3.1. Boston Harbor
The marsh studied in Boston Harbor is located in Squantum,
MA, and borders Quincy Bay, approximately 6 km from Boston
Harbor tide gauge. Flume experiments conducted by Ravens and
Gschwend (1999) show tidal flat sediments to range between 30
and 60µm in D50, and to contain 3 − 4.5% of organic matter.
Under stresses of 0.05 Pa, TSM oscillates around 25 g m−3,
peaking around 160 g m−3 under stresses of 0.5 Pa. These values
are slightly greater to those found by Hopkinson et al. (2018) in
the nearby Plum Island Sound (median SSC around 15.6 g m−3

and peaks around 40 g m−3), however organic content is much
lower than the 30% assumed in Plum Island.

2.3.2. Morro Bay
The marsh studied in Morro bay is located North of Morro
Bay State Marine Reserve, CA, on the Chorro Creek estuary,
approximately 20 km from Port San Luis tide gauge. Few data
on sediment size, concentration and organic content was found
for Morro Bay. Instead, we use data for San Francisco Bay,
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FIGURE 2 | Location of the selected tidal stations over a map of averaged monthly Total Suspended Matter concentration between 2002 and 2012. In the United

States, the stations are Port San Luis for the Morro Bay marsh (California) and Boston for the Boston Harbor marsh (Massachusetts). In the United Kingdom, the

stations are: Heysham for the Morecambe Bay marsh, Gladstone for the Mersey Estuary marsh, Bournemouth for the Poole Harbour Shell Bay, Wych Lake and Arne

Bay marshes, and Sheerness for the Swale Estuary marsh.

CA. There, acoustic backscatter was used to estimate sediment
grain size between 50 and 90 µm and suspended solids to
20 − 300 g m−3 (Gartner, 2004).

2.3.3. Morecambe Bay
The marsh studied in Morecambe Bay is located South of Jenny’s
point, Lancashire, approximately 15 km from Heysham tide
gauge. Few data were found for sediment concentrations. Instead
we use data for the Mersey estuary. Aldridge (1997) finds sandy
sediments around 150µm and Pringle (1995) finds silts of around
31 µm. Gray and Scott (1977) mention loss on ignition of 8%.

2.3.4. Mersey Estuary
The marsh studied in the Mersey Estuary is located in Ellesmere
Port, Cheshire, approximately 15 km from Gladstone tide gauge.
Acoustic Doppler Current Profiler (ADCP) measurements in the
Mersey river near Liverpool found D50 in the channel to be
approximately 9µm, and were found up to approximately 50µm.
Suspended solids concentrations vary between 10 and 650 g m−3

(Holdaway et al., 1999).

2.3.5. Poole Harbour
The three marshes studied in the Poole Harbour, Dorset, are
all under 7 km from the Bournemouth tide gauge. Gao and
Collins (1994) show in the neighboring Christchurch Harbour
that sediment grain sizes vary between 65 and 250 µm in the
proximity of marshes, with concentrations measured around
120 g m−3 but known to reach 600 g m−3 during storm events
(Green, 1940).

2.3.6. Sheerness
The marsh studied in the Swale Estuary, Kent, is approximately
16 km from the Sheerness tide gauge. Wharfe (1977) reports D50

values ranging from 50 to 90 µm, while Zhou and Broodbank
(2013) report concentrations ranging from 100 to 2, 000 g m−3.

2.4. Collection and Processing of
Topographic Data
Topographic survey are sourced from either the NOAA Digital
Coast archive or the United Kingdom Environment Agency. All
datasets are referenced to their respective national topographic
datum: the North American Vertical Datum 1988 in the USA and
Ordnance Datum at Newlyn in the UK.

Errors in elevation measurements may stem from the
georeferencing of the lidar point clouds. Vertical error margins
are determined by comparing lidar elevations to the elevation
of multiple ground control points. The root mean square
error (RMSE) of this comparison is given by both data
providers (Tables 1–3). Vegetation is another factor of error
whenmeasuring salt marsh ground elevation (Schmid et al., 2011;
Parrish et al., 2014; Rogers et al., 2018). On Sapelo Island, GA,
Hladik and Alber (2012) found that low plants such as short
Spartina alterniflora and Batis maritima yielded positive errors of
less than+0.05m. Conversely, Chassereau et al. (2011) compared
RTK-GPS and lidar elevations on Maddieanna Island, SC, a
marsh dominated by Spartina alterniflora, with stem heights of
0.15–0.55 m on the platform and levees and up to 1.70 m on the
lower marsh and creek banks. The study found positively skewed
histograms of signed error, with the lowest positive errors (under
+0.15 m) being far from creek banks, confirming the influence
of stem height on the error in lidar elevation. To minimize the
error due to vegetation, our selection of marshes excludes sites
with dominant tall vegetation species (Table 1).

From the downloaded point clouds, we use CloudCompare
(https://www.cloudcompare.org/) to generate rasters of
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TABLE 1 | Dominant plant species for the selected sites, sourced from literature

on regional marsh systems and analog marshes.

Site Dominant plant species References

Boston Harbor S. patens, S. alterniflora, Distichlis

spicata

Buynevich et al.,

2001

Morecambe Bay Puccinellia maritima, Festuca rubra Gray and Scott, 1977

Morro Bay Spartina sp,Salicornia subterminalis Kuhn and Zedler,

1997

Mersey Estuary F. maritima, Suaeda maritima,

Obione portaculoides

Stopford, 1951

Arne Bay Spartina sp. Hubbard, 1965

Shell Bay Spartina sp. Hubbard, 1965

Wych Lake Spartina sp. Hubbard, 1965

Swale Estuary Spartina sp. Cundy et al., 2005

TABLE 2 | Date of surveys and elevation offset for a stable structure between S2

and S1. Column 3 shows the offset in elevation between reference structures.

Site Survey 1 Survey 2 Offset (m)

Boston Harbor 2010-12 2014-12 0.094

Morecambe Bay 2008-01 2017-01 -0.226

Morro Bay 2011-03 2015-09 -0.034

Mersey Estuary 2006-01 2011-01 0.197

Arne Bay 2006-01 2013-01 -0.119

Shell Bay 2007-01 2011-01 0.038

Wych Lake 2007-01 2016-01 0.052

Swale Estuary 2007-01 2016-01 -0.122

TABLE 3 | Sediment conditions used for the production of Figures 6, 7.

Site Field

SSC bounds (g m−3)

Field

D50 (µm)

MERIS

SSC (g m−3)

Boston Harbor 25–160 30–60 25.2

Morecambe Bay 10–650 31–150 25.7

Morro Bay 20–300 50–90 6.8

Mersey Estuary 10–650 9–50 28.9

Arne Bay 120–600 65–250 10.5

Shell Bay 120–600 65–250 10.5

Wych Lake 120–600 65–250 10.5

Swale Estuary 100–2,000 50–90 33.3

minimum and maximum elevations within a grid cell,
respectively, Zmin and Zmax. Grid cell size is determined to
fit a minimum of 6 points per cell, up to a maximum of 3m. The
marsh platform elevation is then extracted from Zmin using the
Topographic Identification of Platforms (TIP), which accurately
delineates marsh platforms for grids of up to 3 m in horizontal
resolution (Goodwin et al., 2018). For each survey, we select
a low-relief, non-vegetated structure (road, car park, etc.) for
which we calculate the 1st, 2nd and 3rd quartile of the difference
Zmax − Zmin. Two subsampling methods are then applied to
the marsh platform. First, pixels classified as marsh platforms

for which Zmax − Zmin is less than the median of Zmax − Zmin

of the reference structure are preserved, as shown for the
Mersey Estuary in Figures 3A–C (red pixels). Similar figures
for other sites are available in the Supplementary Material.
This subsampling ensures that high elevation gradients do not
exist within the pixel, whether they are due to topographic
features (hummocks or pools) or locally high vegetation. Pixels
classified as marsh platforms that are also levee points are
selected by the second method (green pixels). Due to the larger
spread of elevation and the potentially large errors in elevation
associated with levee pixels, we do not use them further in this
study (Figure 3D).

Vertical offset between the two selected surveys is accounted
for as the average difference of Zmin for the reference structure,
the first survey being taken as reference by default. The values of
vertical offset are given in Table 2.

2.5. Collection and Processing of Sea Level
Data
Each selected marsh site is associated with a tidal station in
its close vicinity. For these stations, we download sea level
observations from the GESLA-2 dataset, a global collection of
hourly sea level data up to the year 2015 (Woodworth et al.,
2016), or the British Oceanographic Data Centre (BODC) data
repository. From these records we extract the monthly mean
high and low tides MHTm and MLTm. We fit a linear trend to
each of these times series, the difference of which constitutes the
mean tidal rangeMTR. The same process is applied to determine
the trend of monthly observed highest high tide OHHT. Time
series of monthly mean sea levels (MSLm) were collected from
the NOAA sea level trend dataset. For stations in the United
Kingdom that do not have a long-term record of MSLm, we
choose the closest long-term tide gauge as a substitute. From
this record we extract the linear trend of MSLm, named MSL,
the slope of which constitutes the rate of relative sea level rise
RSLR. Figure 4a shows the tidal records with their associated
metrics, as well as the 1-year subset of data used to calculate yearly
deposition fluxes (see section 3). Figure 4b shows the cumulative
distribution function of flooding time at each station, for both the
whole record and the selected subset.

3. RESULTS AND DISCUSSION

3.1. High Platform Elevations Cannot Be
Explained by Sinusoidal Tidal Forcing
For each of the 8 selectedmarshes, Figure 5 shows the probability
distribution function of elevation fz of the marsh platform at the
dates S1 (left of bar) and S2 (right of bar). Gray filled areas fz
represent the subsampled marsh platform (see Figure 3C). Gray
lines represent the same pixel sets plus or minus half the RMSE
reported by ground truthing reports. For each survey, marsh
elevation is relative to its contemporary sea level. In all of the sites,
irrespective of measurement error, the major part of the marsh
platform lies within the upper tidal frame, defined as the range of
elevations between MHT and OHHT. While megatidal marshes
show a wider distribution, no platform occupies more than half
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FIGURE 3 | Marsh platform subsampling results for the Mersey Estuary Marsh. (A,B) Show the marsh hillshade (respectively for S1 and S2) overlayed with

subsampled pixels (red) and levee pixels (green). (C) Boxplot of differences Zmax − Zmin for the reference infrastructure and the marsh platform. (D) Probability

distribution functions for the entire marsh platform (gray), levee pixels (green), and subsample pixels (red).

of the upper tidal frame. This observation is supported by surveys
of vegetation populations relative to tidal levels (Belliard et al.,
2017) and refines the approach of Schuerch et al. (2018), where
marshes are assumed to occupy the entire range of elevations
betweenMSL andMHT.

In models using a sinusoidal tidal forcing of amplitude
H = MHT − MSL, the equilibrium elevation zeq relative to
MSL is given by Equation (8) (D’Alpaos et al., 2011):

zeq = H · (1−
R

k
) (8)

where k = Qdep,y + Qorg,y [mm yr−1] is the sum of yearly
deposition and below-ground production rates. While zeq is

seldom truly reached, it gives an indication of the elevation
toward which marsh platforms converge. Equation (8) suggests
that, under sinusoidal forcing, no part of any marsh platform
may reach elevations higher thanMHT. This constraint is relaxed
by the fact that platform elevation tends to lag behind sea
level variations (Kirwan and Temmerman, 2009): salt marshes
that have experienced higher sea levels may then be found at
higher elevations.

All of the marshes examined in this study are higher than both
their equilibrium elevations and their maximum elevation H +

MSL. However, no stations other than Gladstone and Heysham
have experienced late quaternary uplift (Shennan and Horton,
2002; Donnelly, 2006; Bromirski et al., 2011; Shennan et al., 2012)
and no stations show significant negative modern variations in
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FIGURE 4 | left: Hourly sea level record (pink) and monthly Mean Sea Level MSL (blue) for each station between 1950 and 2017. Black lines are, respectively, the

monthly Mean High Tide MHT and Mean Low TIde MLT. Thicker pink lines are monthly Observed Highest High Tide OHHT. Straight lines are monthly linear trends for

each metric. Green areas represent the most recent complete year of record. Right: Cumulative distribution function of flooded time for a given elevation for the whole

tidal record (pink), and for the chosen representative year (dashed green). Horizontal lines are the most recent value of the linear monthly trends. (a–f) Tide gauges

neighboring the examined marshes. Black stars indicate the dates of lidar surveys.

monthly MSL (see Figure 4). Hence, the high elevation of the
examined marsh platforms cannot be explained by a sinusoidal
forcing of amplitude H, notwithstanding the use of this forcing
by several studies on marsh elevation change for lower marshes
(e.g., Morris et al., 2002; Marani et al., 2007; D’Alpaos et al., 2011;
Tambroni and Seminara, 2012; Da Lio et al., 2013).

Furthermore, platforms that are higher than zeq are predicted
by Equation (8) to lose elevation, as they are not flooded
frequently enough to allow accretion rates that match sea level
rise. However, Figure 5 shows that in all but two sites, platforms
are gaining elevation on MSL. This affirmation stands for all
but when extreme positive error in S1 and extreme negative
error in S2 are considered. All the examined platforms therefore

experience deposition, and may be considered active, rather
than relics of higher sea levels. This result strongly suggests
that the marsh platforms in our study depend on deposition
of concentrated coarse sediment to maintain their position in
the tidal frame, typically provided by spring tides and storms.
The latter are shown by Castagno et al. (2018) to positively
influence sediment import into back-barrier bays. This effect,
however, is less important for fine sands (D50 ≥ 125 µm),
which hints at a potential depletion in this size fraction, which
may in turn lead to marshes failing to keep pace with RSLR.
Dependance on infrequent deposition events is also consistent
with the findings of Mariotti et al. (2010) in micro-tidal back-
barrier marshes, who showed that storm surges contribute to the
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FIGURE 5 | Probability distribution functions of marsh platform elevations relative to MSL for each examined marsh at the dates S1 (left - gray fill) and S2 (right - gray

fill); Black lines indicate the possible vertical offset of the probability distribution functions due to lidar vertical error; Blue lines show the monthly trend for MHT and

OHHT a the dates S1 (full) and S2 (dashed); (A) Marsh sites organized by Mean Tidal Range. (B) Detail of micro-tidal sites.

erosion of scarps as well as to the recycling of eroded marsh
sediment onto the platform.

3.2. Modeling Accretion Rates With Real
Tidal Forcing Highlights the Influence of
Elevation, Grain Size and Concentration
Following the observations of section 3.1, we examine the effect
of using a realistic tidal forcing by simulating deposition fluxes
over a year for each marsh site. The sea level record used to force
accretion is a subset of the full tidal record for each station, shown
as the green highlighted data in Figure 4. In this experiment,
we use three sets of values for C0 and D50. Lower values for C0

and D50 referenced in Section 2.3 are the first set. The second
set is D50 = 50 µm, which is within the higher range of values
used in long-termmodeling studies (Marani et al., 2007; D’Alpaos
et al., 2011). C0 is determined by the values obtained from the
MERIS Total Suspended Sediment (TSM) dataset at the location
of the tidal station. In the third set, higher values for C0 and

D50 referenced in section 2.3 are selected. Table 3 summarizes
sediment supply conditions used in the simulations.

Figure 6 compares the observed and modeled elevation

change of the dominant platform elevation zmax(fZ) relative to

the terrestrial datum, with relative sea level rise as a reference.

Despite the precautions taken to reduce error in the elevation

samples, observed accretion rates (red bars) are visibly unreliable.

For instance, Arne Bay exhibits negative accretion rates while

Wych Lake and Shell Bay, located less than 5 km away, exhibit
accretion rates close to those recorded at Wax Lake Delta, one of
the fastest accreting marshes in the world. Morro Bay and Boston
Harbor also exhibit unrealistic accretion rates, particularly in
regard to the low rates of associated sea level rise. While
such rapid elevation variations have been observed using SETs
(Kirwan et al., 2016), they may also be the product of uncertainty
in elevation values. Indeed, errors in the measurement of
elevation for both S1 and S2 lead to considerable error in rates
of accretion, as shown by the error bars in Figure 6.
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FIGURE 6 | Magnitude of deposition rates (red and brown bars), with relative sea level rise RSLR for reference, for each site; the initial elevation is the normalized

dominant elevation of the platform zmax(fZ ). Black lines indicate vertical error.

However, the elevation error in S1 typically leads to errors of
5% or less on the modeled accretion rate (brown bars). Although
variations in sediment supply and flooding patterns prevent a
direct comparison between sites, we observe an overall decrease
in modeled deposition rates with increasing tidal range and
platform elevation. Conversely, we note a significant positive
response of accretion rates to the combined increase in sediment
size and concentration, as shown by the differences in accretion
rates between lowC0 andD50 and highC0 andD50. This response
leads us to postulate that the low values of C0 are the cause
for the low modeled accretion rates when using MERIS data.
Indeed, the MERIS dataset has a spatial resolution of 300 m and
is primarily an oceanic dataset. It does not account for complex
coastal inlets, estuaries and bays where salt marshes are found,
and where higher concentrations are likely to be found (Amos
and Alfoldi, 1979). Furthermore, Fagherazzi et al. (2014) find
strong spatial variations in sediment size within the tidal creeks of
a single site at Plum Island Sound. In this respect, the site-specific
data collected in section 2.3 is likely representative of the spatial
variability of sediment supply found in the sites examined. The
relative influence of C0 and D50, however, is not discernable at
this point.

3.3. Constraints on Sediment Supply and
Consequences for Platform Equilibrium
Whether a marsh keeps pace with sea levels has been suggested to
depend on forcing sediment concentration (Kirwan et al., 2010;
D’Alpaos et al., 2011; Kirwan andMegonigal, 2013). We establish
in Section 3.2 that deposition is also conditioned by the initial
platform elevation, as suggested by Cahoon and Reed (1995),

and the grain size of the deposited sediment. We calculate Qdep

for a range of C0 and D50, assuming a contribution of 6% from
below-ground productionQorg . This value is the lower bound of a
range estimated from loss on ignition organic matter contents for
several marshes around the world (Crooks et al., 2002; Neubauer,
2008; Roner et al., 2016), and approximates to local data in
Boston Harbor and Morro Bay (see section 2.3). For each site,
Figure 7 shows the contour lines of C0 and D50 values that yield
given values of k = Qdep+Qorg . The dashed blue line corresponds
to conditions on C0 and D50 for marsh accretion to match the
current RSLR. Dashed red lines indicate the observed accretion
rates, but do not represent the associated error. Sediment supply
conditions corresponding to low and high C0 and D50 bound
the gray box, and the black star represents the concentration
determined using the MERIS data andD50 = 50 µm. We remind
the reader that due to the assumption of negligible turbulence
on the marsh surface, Qdep is likely overestimated and therefore
the required sediment supply to match a given RSLR is likely
under estimated.

In all cases, the contours follow a hyperbolic curve. This
behavior implies that at high sediment concentrations, variations
in C0 have less impact on Qdep than variations in D50, and vice
versa. Conversely, the point of the contour line that is closest
to graph origin represents the conditions where variations in
each parameters exert an equal influence on accretion rates. This
behavior is preserved along the 1:1 diagonal. High sediment
concentrations require high shear stress at the bed to mobilize
sediment (Fagherazzi et al., 2006) if generated in situ. If
the sediment is sourced from either offshore or rivers, high
turbulence is needed to keep sediment in suspension. High
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FIGURE 7 | Contour lines representing conditions on C0 and D50 for total accretion k = Qdep +Qorg to reach the indicated values. Here, Qorg = 0.06 · Qdep; Gray

boxes bound sediment supply conditions from low C0 and D50 to high C0 and D50. Black stars represent C0 conditions obtained from MERIS data, with

D50 = 50 µm. Blue dashed lines represent the conditions required to match RSLR, and red dashed lines the conditions to match observed accretion rates. (A–H)

Marsh sites examined, ordered by Mean Tidal Range.

suspended sediment concentrations are associated with strong
currents or high waves, increasingly so for large particle sizes
(Yang et al., 2008). Consequently, we may expect higher sediment
concentrations to be associated with larger particle sizes. Such
conditions are typical of storm events, spring tides or fluvial
flood discharges. They may be observed on the field, for instance
when gravel is backed-up against marsh scarps after storm events,
or when strong tides leave sandy trail bars on the lee side of
pioneer plants.

Figures 7A–C represent three neighboring marshes in Poole
Harbour, Dorset, UK, for which tidal and sediment conditions
are considered identical. Wych Lake (Figure 7C) is higher in the
tidal frame than the other sites, and as a consequence, the contour
lines are both further from the origin and further apart. Hence,
for equal sediment supplies and tidal forcing, increasing elevation
reduces deposition rates and increases the demand in sediment to
maintain elevation within the tidal frame. For example, platforms

in Morecambe Bay and the Mersey Estuary (Figures 7G–H) are
close to OHHT, and are seldom flooded. As a consequence, not
only do these sites require more sediment to match current rates
of sea level rise, but they would also require a greater increase in
C0 orD50 if RSLR increased. This situation is hinted at by Pringle
(1995), who finds medium to coarse silts (31 µm) and very fine
sands of up to 100 µm in Morecambe Bay marshes. Conversely,
ranges of 20 − 40 µm were observed by Roner et al. (2016) in
the Venice Lagoon, where salt marshes are notoriously low in the
tidal frame (Da Lio et al., 2013).

We show the conditions necessary to match observed positive
accretion rates (dashed red lines), but recommend caution
when considering these data (see section 3.2). Indeed, though
it seems that most sediment supply condition boxes (gray
boxes) contain the dashed red lines, the existence of negative
accretion when conditions predict more than 10 mm y−1 of
accretion demands a critical view of the observed accretion
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values. Regardless, all field-measured sediment supply conditions
generate enough accretion in all sites, except the Mersey Estuary
and Morecambe Bay (Figures 7G–H), for the platform to keep
up with current RSLR (dashed blue lines). Aside from Boston
Harbour (Figure 7E), even the lower bounds of measured
sediment supply are sufficient to match more than 10 mm y−1

of sea level rise. Our application of Stokes’ law with negligible
current and turbulence may explain this overestimation of
k. However, we must also consider that field measurements
provide only a snapshot of sediment supply conditions at any
given location.

Leroux (2013) highlighted the high temporal variability of
sediment supply; he measured peak concentrations of up to
5, 000 g m−3 during a spring tide, while base concentrations were
500 g m−3 in tidal creeks of the Mont-Saint-Michel Bay, France.
The high shear stresses caused by storms also generate peaks in
sediment concentrations (Fagherazzi and Priestas, 2010). In this
respect, averaged MERIS data (black stars) may better represent
the temporal variability of sediment supply. To further improve
our understanding of sediment supply, we suggest that k contour
lines may be combined with accretion monitoring through
marker horizons and grain size distribution (GSD) analyses to
determine average sediment concentrations during deposition
events. While our 0-D model does not account for distance to
creeks, the results of Zhang et al. (2019) show that it is an
important factor of marsh deposition, and we suggest that these
results should orient future methods of deposition measures.

3.4. Insight on the Roles of Elevation and
Tidal Range
In this section, we compare the 8 marsh sites to better understand
the interaction between platform elevation and tidal records.
In Figure 8, we calculate k for the same range of sediment
supply conditions as in section 3.3 and represent the conditions
leading to k = 2.5 mm y−1. Each subplot shows the accretion
contour lines for each site for various initial elevations z0. Indeed,
elevation within the tidal frame determines the (1) proportion
of N1t tidal cycles for which the platform floods (Equation 6),
and (2) the maximum depth Dmax of each flooding event, thus
influencing deposition within each cycle (Equation 7). Although
below-ground production is known to vary with elevation, these
variations are not well quantified above elevations of MHT
(Morris et al., 2002), andwe thereforemaintainQorg = 0.06·Qdep.

In Figure 8A, the initial elevation is the observed main
platform elevation zmax(fZ). Regardless of mean tidal range, the
normalized elevation in the upper tidal frame, defined as z∗ in
Equation (9), exerts a positive influence on the sediment supply
necessary to meet k = 2.5mm y−1.

z∗ =
z −MHT

OHHT −MHT
(9)

We note that for z0 = OHHT (Figure 8B), sediment
requirements are so high that for Boston Harbor and the Swale
Estuary, sediment larger than fine sand would be needed for
marshes to be at equilibrium of moderate sea level rise rates.
Such conditions are typical of beaches and sand dunes rather than

marshes (Hayden et al., 1995), suggesting that flooding patterns
at these sites do not allow marshes to reach these elevations.

Conversely, if z0 = MHT, very little variation between sites
of different tidal ranges is observed, suggesting that the effect of
tidal range on accretion rates increases with platform elevation.
Hence, similar sediment supply conditions shown (Figure 8C)
may allow low marsh platforms around the world to withstand
moderate sea level rise rates ofRSLR = 2.5mmy−1, whereas local
tidal regimes would affect high platforms more strongly. This
low sediment demand is similar to that observed in Figure 8D,
where initial elevations are z0 = MSL. For these low elevations,
mean tidal range also exerts a weak influence on accretion rates.
More importantly, the little difference in accretion rates between
z0 = MSL and z0 = MHT imply that pioneer platforms are likely
to reach MHT, thus ensuring the regeneration of marsh surface
area after lateral erosion events. We note that our model does not
account for variable sediment concentrations on the platform,
and is likely to overestimate deposition on parts of the platform
that are far from creeks or scarps. Indeed, Temmerman et al.
(2005) show that deposition rates decrease with distance from
creeks and marsh edges. Pioneer platforms with different creek
network properties, due for example to vegetation development
(Kearney and Fagherazzi, 2016), may grow at different rates.

4. CONCLUSIONS

In this contribution, we test a 0-dimensional settling model
to estimate elevation change on real salt marsh platforms, and
compare these results with accretion fluxes derived from DEM
surveys taken at least four years apart. While elevation changes
observed through lidar have too high errors to yield accurate
results, initial elevation measurements are sufficiently accurate
to examine model results and their sensitivity to sediment
supply conditions. We find that using a sinusoidal tidal forcing
to simulate elevation evolution cannot explain the current
elevation of the marshes we examined, which were located
between MHT and OHHT. While we did not examine enough
sites to draw general conclusions on the distribution of salt
marsh platforms within the tidal frame, our results suggest that
simplified sinusoidal tides cannot account for the full evolution
of salt marshes.

Using a representative subset of real tidal forcing, we calculate
settling fluxes that better explain current platform elevations.
When accounting for a 6% contribution of belowground organic
production to accretion fluxes, modeled accretion rates for
marshes that are low in the upper tidal frame (but still above
MHT) are mostly sufficient to keep pace with current rates
of relative sea level rise under most observed sediment supply
conditions determined by MERIS. Conversely, sites that are
closer to OHHT require coarser or more concentrated sediment.
The low hydroperiod associated with such high platforms
suggests that small or light flocs do not have time to settle in
sufficient quantity for the platform to maintain its elevation.
Under storm surge conditions, however, advection of highly
concentrated fine material and prolonged hydroperiod may
counteract the effect of elevation.
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FIGURE 8 | Necessary values of C0 and D50 for total accretion to reach k = 2.5 mm y−1; (A) initial elevation z0 = zmax(fZ ), colored by increasing z∗. (B) z0 = OHHT.

(C) z0 = MHT. (D) z0 = MSL; the last three subplots are colored by mean tidal range.

It follows that marshes that reach a high position in
tidal frame should contain coarser sediment than platforms
that do not attain this elevation, unless they are subject to
frequent storms. The existence of such high platforms is
therefore conditioned by the availability of coarse sediment
or finer material in high volumes (or very high organic
matter contents), typically mobilized during storms, floods
and spring tides. Conversely, we find that low platforms
require a weaker sediment supply conditions to keep pace
with RSLR. Further investigation into accretion rates with
low starting elevations (MHT and MSL) suggests that
established low platforms are likely to contribute to long-
term marsh regeneration regardless of tidal regimes, but also
that plant establishment is likely the bottleneck of marsh
progradation processes.

To add weight to the conclusions drawn above, further
research may investigate the relationship between marsh
elevation and tidal records over a larger dataset. Furthermore,
measuring sedimentation and back-calculating sediment
concentration from field samples in different sites would allow
to confirm the behavior suggested by the model. Future work
may also investigate the size of deposited particles at various
distances from scarps and tidal creeks to determine the detailed
mechanisms of settling on wide vegetated platforms.
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