AUTHOR=Rublev Alexey N. , Gorbarenko Ekaterina V. , Golomolzin Vladimir V. , Borisov Evgeny Y. , Kiseleva Julia V. , Gektin Yuriy M. , Zaitsev Alexander A. TITLE=Inter-calibration of Infrared Channels of Geostationary Meteorological Satellite Imagers JOURNAL=Frontiers in Environmental Science VOLUME=6 YEAR=2018 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2018.00142 DOI=10.3389/fenvs.2018.00142 ISSN=2296-665X ABSTRACT=

This article examines a method of inter-calibration for MSU-GS imager of the Russian Geostationary Earth Orbit (GEO) satellite Elektro-L No. 2. Since the launch (December 11, 2015), the satellite's radiation cooler has been operating in an abnormal mode, so the calibration of the IR channels of the MSU-GS imager differed from that pre-flight and, in general, could have a daily variability. To ensure the satellite's further operation in orbit, it was necessary to calibrate imager channels at a frequency that would allow to identify daily calibration course to detect and compensate its sources. In order to do this, we have developed a special method of GEO-GEO inter-calibration. The calibration of MSU-GS was performed using SEVIRI imager installed on the GEO satellite Meteosat-10. SEVIRI was chosen as a reference instrument because its spectral channels are similar to those of MSU-GS. The MSU-GS was calibrated according to the regressions calculated from the simultaneous images of the field of regard selected between the sub-satellite points. The dynamic brightness temperature range was determined by deep convective clouds in high troposphere and warm ocean surface. Using the proposed method of inter-calibration, it was possible to confirm the absence of a significant daily variation of the calibration since November 2017. The amplitude of the variation smoothly increases from ~0.2 K at high (~300 K) BTs to ~1.0 K when the brightness temperature decreased to 200 K. These estimates allow the use of the Fourier spectrometer IKFS-2 installed on the Russian Low-Earth-Orbit (LEO) satellite Meteor-M No. 2 to verify the developed GEO-GEO scheme of inter-calibration. Despite the specifics of the situation on board Elektro-L No. 2, the proposed method of GEO-GEO inter-calibration can be applied to radiometers of other neighboring satellites that differ in SSP and spatial resolution.