AUTHOR=Guo Yi-Syuan , Furrer Jessica M. , Kadilak Andrea L. , Hinestroza Hector F. , Gage Daniel J. , Cho Yong Ku , Shor Leslie M. TITLE=Bacterial Extracellular Polymeric Substances Amplify Water Content Variability at the Pore Scale JOURNAL=Frontiers in Environmental Science VOLUME=6 YEAR=2018 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2018.00093 DOI=10.3389/fenvs.2018.00093 ISSN=2296-665X ABSTRACT=
The function of microbial communities in soil is inextricably linked with the complex physical, chemical, and biological structure of the soil itself. Pore-scale water content controls the hydraulic connectivity of microbial communities and microbes' access to aqueous and gaseous substrates. In turn, soil bacteria directly influence local moisture conditions through the secretion of extracellular polymeric substances (EPS). However, the effect of a soil's physical geometry on EPS-mediated water retention is not well understood. In this study, we systematically measured the rate and extent of water evaporation from pore structures as a function of both EPS concentration and pore size. Three different chamber types were employed: (i) glass capillary tubes (1.2 mm pore diameter) to represent a uniform macropore geometry; (ii) emulated soil micromodels (pore widths ~10 to >300 μm) to represent an aggregated sandy loam pore geometry; and (iii) microfluidic capillary arrays (uniform channels 20 μm wide) to represent a uniform micropore geometry. All chambers were initially saturated with dilute EPS solutions collected from stationary-phase