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The English polymath Lewis Fry Richardson (1881–1953) made important contributions

to many fields, including numerical weather prediction, finite difference solutions of partial

differential equations, turbulent flow and diffusion, fractals, and the cause and evolution

of conflicts. His first papers in 1908 concerned unconfined flow of water in saturated soil,

arising in the design of required ditch spacing for draining peat. He developed and used

a graphical method to solve this problem. This and other practical problems stimulated

his interest in numerical methods and soon led him to the challenge of numerical weather

prediction. In 1922 he published the bookWeather Prediction by Numerical Process. He

did the research for this book under difficult circumstances just before, during, and right

after World War I. The book was received positively, but methods like those proposed

in it were not successfully implemented until the invention of fast digital computers

around 1950. Posthumously, most of Richardson′s contributions in various fields received

considerable attention. Important exceptions are his contributions to soil science and

hydrology, on which we focus in this paper. In his 1922 book, Richardson formulated

an elaborate model for transport processes in the atmosphere. For the lower boundary

of his atmospheric model, he needed to understand the movement of liquid water,

water vapor, and heat in the upper layer of the soil, and at the soil-atmosphere and

plant-atmosphere interfaces. Finding little previous work on this, he first of all formulated

the partial differential equation for transient, vertical flow of liquid water in soil. We argue

that the resulting equation can rightly be called the Richardson-Richards equation. In

addition he formulated equations for simultaneous transfer of liquid water and water

vapor, for transfer of heat in soil, and for the balances of water and energy at the

soil-atmosphere and plant-atmosphere interfaces. Finite difference versions of all the

equations were incorporated in the numerical weather forecasting model. Unfortunately,

his results were hardly noticed by soil physicists and hydrologists, likely because they

were too effectively buried in an intimidating book on weather prediction.
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1. INTRODUCTION

There are already several published articles in journals and
chapters in books about the scientific work of Lewis Fry
Richardson. In the following brief biography we explain why
the world of science needs this article (Ashford et al., 1993a;
Charnock, 1993; Drazin, 1993; Hunt, 1998; Lynch, 2006, 2007).
We conclude this introduction with an outline of this paper.

Lewis Fry Richardson (Figure 1) was born on October 11,
1881 at Newcastle, as the youngest of the seven children of
his Quaker parents David and Catherine Richardson (Ashford,
1985; Drazin, 1986; Hunt, 1993). LFR (throughout this paper
we will frequently use this abbreviation of L. F. Richardson’s
name) attended Newcastle Preparatory School. Next he was sent
to Bootham School, a Quaker boarding school at York, where
his interest in science was fostered and his high moral standards
were formed. In 1898 he entered Newcastle University, where
he took courses in mathematical physics, chemistry, botany, and
zoology. In 1900 he moved on to King’s College at the University
of Cambridge, where he graduated as physicist in 1903.

In the following 10 years he held numerous successive
research posts at government and industrial laboratories, and at

FIGURE 1 | Lewis Fry Richardson (1881–1953), after a photograph taken in

1931 by Walter Stoneman, reproduced with permission from the National

Portrait Gallery in London.

universities. In 1906–1907 he held an appointment as chemist
at the National Peat Industry Ltd. His responsibility was to
design a layout of ditches that would drain the peat in a
predictable manner. To find answers, he formulated a theory
describing the flow of water in peat, involving the Laplace
equation (Richardson, 1908b). To solve this equation, he first
devised a graphic method for determining the stream lines and
equipotential lines (Richardson, 1908a). The two 1908 papers
showed that he could handle flows in complicated geometries,
for which it would be difficult or impossible to find analytical
solutions.

Following this early success, he set out to solve computational
problems by a more versatile finite difference method. In a
pioneering paper in numerical analysis (Richardson, 1910), he
used as illustration the determination of stresses in a masonry
dam. Hunt (1998) describes the difficulty Richardson had in
getting this work published in The Philosophical Transactions
of the Royal Society and that it was also not appreciated at
Cambridge, where he unsuccessfully sought a Fellowship to allow
him to do research and teach.

During a brief period in 1912–1913, he was Demonstrator
and Lecturer at Manchester College of Technology. That College
was later incorporated in the University of Manchester, where
the School of Mathematics lists LFR among its fourteen
“Distinguished minds.” In 1913 LFR joined the Meteorological
Office as Superintendent of Eskdalemuir Observatory at a remote
location in Scotland. It is there that he started his work in
meteorology, initially as a proving ground for his finite difference
method (cf. item 7 in Richardson, 1949). A first draft of a book
entitledWeather Prediction by Arithmetical Finite Differenceswas
communicated in May 1916 by Sir Napier Shaw to the Royal
Society, which voted 100 pounds toward its publication (see
Hunt, 1998 and also the Preface of Richardson, 1922). But then
World War I interfered. In May 1916 LFR resigned from the
Meteorological Office to offer his services by joining the Society
of Friends’ Ambulance Unit, thus remaining true to his pacifist
principles (Hunt, 1998). At the Western Front in France, he
became a driver for the Section Sanitaire Anglaise attached to a
French infantry division.

In his spare time in France, LFR performed meteorological
experiments and continued working on his book. He also
became deeply interested in the psychology of war. To
understand initiation, development, and resolution of conflicts,
he formulated mathematical models. Much of his motivation can
be found inMathematical Psychology of War (Richardson, 1919),
which he dedicated to “my Comrades of the motor ambulance
convoy known as S.S. Anglaise 13, in whose company this essay
was mainly written.” This and many of his other publications on
war and peace are good reading, also for the not mathematically
inclined. Volume 2 of the Collected Works of LFR is devoted
entirely to quantitative psychology, especially studies of conflict
(Ashford et al., 1993b). At the centennial of the start of World
War I, Berreby (2014) fluently described LFR’s simultaneous
interest in prediction of the weather and of conflicts.

In 1919 LFR rejoined the Meteorological Office, then at
Benson, Oxfordshire, “nominally in charge of experiments in the
computation of the sequence of weather by numerical processes.”
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A new, final draft of the book resulted, with the title Weather
Prediction by Numerical Process (Richardson, 1922). The 1922
book concerns mainly atmospheric transport processes, but
our interest here is the brief treatment of four subsurface and
surface processes that served as boundary conditions for the
atmospheric model. Two of those processes are soil related, one
soil-atmosphere related, and one plant-atmosphere related:

• water movement in unsaturated soil;
• heat transfer in soil;
• the balances of water and energy at the soil-atmosphere
interface;

• the balances of water and energy at the plant-atmosphere
interface.

The book was published in 1922 by Cambridge University Press.
The book received widespread attention from reviewers, not
only from British reviewers, but also inMonthly Weather Review
by Woolard (1922) from the Weather Bureau, Washington, D.C.
and in Geographical Review by the Harvard meteorologist
McAdie (1923). The latter wrote prophetically: “[it] is
a remarkable book, perhaps the most remarkable of all
meteorological treatises. It can have but a limited number of
readers and will probably be quickly placed upon a library shelf
and allowed to rest undisturbed by most of those who purchase
a copy. It is a strikingly bold attempt to wake up weather
forecasters; indeed, to make forecasting a science rather than
an art.” Following the initial attention, it became very quiet.
A recent search in Web of Science reveals only 12 citations of
Richardson (1922) in the three decades after its publication.

Post-World War II developments in numerical weather
prediction eventually led to serious interest (Platzman, 1967)
and a reprint of the 1922 book was published by Dover, with a
new introduction by the British mathematician and geophysicist
Sydney Chapman. Also in the last two decades the interest
has been intense. A second edition, with a new introduction
by Peter Lynch, was again published by Cambridge University
Press. Since LFR died in 1953 at age 71, the importance of
his contributions has been recognized widely: Richardson Peace
Institute at Lancaster University, founded in 1959; Richardson
Wing of the Meteorological Office at Bracknell, opened in 1972;
Annual LF Richardson Prize for early-career members of the
Royal Meteorological Society, since late 1970s; Annual Lewis
Fry Richardson medal of European Geosciences Union (EGU)
Division of Nonlinear Processes in Geophysics, since late 1990s.
Yet, despite all this attention, the contributions by LFR to soil
physics and hydrology practically remained unnoticed, very likely
because they were too effectively buried in an intimidating book
on weather prediction.

In this paper we do describe in detail the contributions by
Richardson to soil physics and hydrology. Throughout the paper
we comment on inspiration from earlier work and for later
developments. Section 2 deals with his study of ditch drainage
of peat for the National Peat Industry Ltd. In section 3 it will
be shown in considerable detail how Richardson in his 1922
book dealt with movement of water in unsaturated soil, heat
transfer in soil, and the balances of water and energy at the
soil-atmosphere and plant-atmosphere interfaces. In section 4 we

briefly discuss Richardson’s contributions to numerical analysis,
with emphasis on their direct and indirect influence in soil
physics.

2. FLOW TO DITCHES IN SATURATED
PEAT

2.1. Introductory Remarks
In 1906 and 1907, LFR was employed by the young, small
company National Peat Industries Ltd at Newcastle upon Tyne
(see Ashford, 1985, p. 21). According to the company prospectus
issued in August 1905, the purpose was “to deal in a scientific
way with peat and its various products and uses, and for that
purpose to acquire, combine, and consolidate certain businesses,
properties and interests, and to acquire peat mosses, patent
rights, licenses, plant and machinery.” LFR and his father were
shareholders in the company. Several years after LFR had left,
the company suffered losses related to property in Ireland and
defalcations by the management team. As a result the company
failed and in 1916 was taken over by Umeras Peat Ltd. For LFR
the company brought financial loss, but also early experience
with a practical problem requiring both the formulation of a
new physico-mathematical model and the development of new
methods to solve the equations.

At the National Peat Industry Ltd., Richardson was faced with
the questions (Richardson, 1908b):

Given the annual rainfall, how must the drains be cut in order to
remove just the right amount of water? Or conversely, What will
be the effect of any given cutting?

In his analysis of the drainage of peat, LFR decided to treat
the peat as a continuous medium and to explicitly disregard
complications from presence of air, heterogeneity, anisotropy,
and swelling. As LFR writes: “In this present imperfect stage of
the theory of drainage, there is no need to apologize for taking a
simplified case.”

In Richardson (1908b), the bibliography sheds some light on
the sources of inspiration. The earliest reference is a 1889 book
on irrigation and drainage by Franklin Hiram King, Professor
of Agricultural Physics at the University of Wisconsin (Tanner
and Simonson, 1993). We have only seen the 1907, fifth edition
of this book (King, 1907), which seemingly was the same as the
1889 first edition, except for some corrections. King’s Figure 134,
which also appears as Figure 14 in King (1899), shows a “Diagram
of lines of flow of water in the drainage of a river valley,” with
strictly vertical flow above the water table and a realistic pattern of
streamlines below the water table. The diagram is perhaps based
on discussions of King with Charles Slichter.

Another source of inspiration was a paper by Pennink
(1905). Pennink’s Figure 8, reproduced here as Figure 2A, was
based on streamlines and equipotentials inferred, respectively,
from injected dyes and piezometer data. The flow pattern is
comparable to that in the diagram of King for the drainage of
a river valley. Pennink’s Figure 12, reproduced here as Figure 2B,
shows clear evidence of lateral flow in the capillary fringe. In fact,
that figure may well be the first documentation of lateral flow
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FIGURE 2 | (A) Flow pattern based on observed total head in a field, and (B) streamlines made visible with Indian ink in a sand tank model, both copied from Pennink

(1905), with permission from the Royal Netherlands Society of Engineers (KIVI).

in the capillary fringe. It appears that this was not noticed by
Richardson who, like King, appears to regard the flow above the
water table as strictly vertical.

Perhaps most important for Richardson were recent papers
by Joseph Valentin Boussinesq (1842–1929). He cites seven

contributions in the Comptes Rendues, Acad. Sci., Paris and also
two in the Journal de Mathematiques, Paris covering more or less
the same material. Boussinesq (1904) made use of the so-called
Dupuit-Forchheimer assumption, allowing him to treat flows as
horizontal in either one dimension or two dimensions. As a result
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of this simplification, Boussinesq could only deal with relatively
shallow flows.

2.2. Formulation of the Problem
Richardson (1908b) starts with an experiment intended to
demonstrate the validity of Darcy’s law for peat. To determine
the hydraulic conductivity, he used the falling head method, first
proposed by Darcy (1856). Unfortunately, the variable diameter
of the small sample used by Richardson and his incorrect
identification of the driving force make the execution and
interpretation of the experiment problematical. But apart from
this, he realized that the disturbed sample was not representative
“of the peat as it lies in the bog.” Later, we will see how he resolved
this problem.

Richardson felt that the Dupuit-Forchheimer shallow flow
assumption was not justified for the situations he wished to
consider. Therefore, he formulated a fully three-dimensional
theory by applying the principles of balance of mass and balance
of forces to the water at any point in the peat (Figure 3, left
column). Assuming the pore volume fraction and the density of
the water to be uniform and constant, he expressed the balance of

mass by the divergence of the velocity of the water v being zero. In
the balance of forces for the water, he neglected the acceleration
and equated the total force exerted on the water to the resistance
force exerted by the peat. The total force exerted is the sum of the
pressure gradient force and the gravitational force. AssumingK—
which Richardson calls “porosity”—to be constant, he defined
the velocity potential φ by φ = K(gρz − p), and showed that
the velocity v is equal to the gradient of φ and that, hence, the
motion of the water is irrotational. Combining the mass balance
and the force balance, he found that φ satisfies the Laplace
equation. Note that p/(gρ) and Kgρ correspond to what are
now called “pressure head” and “hydraulic conductivity.” The
handling of the forces driving the flow of the water by LFR is
better than that given earlier by King (1899) and Slichter (1899).
LFR also formulated appropriate boundary conditions, namely
the no-flow, free surface, and seepage surface conditions given,
respectively, by Equations (6–8) in the right column of Figure 3.

2.3. Graphical Solution of the Problem
Prompted by the drainage problem at the National Peat Industry
Ltd, in a separate paper Richardson (1908a) explored the

FIGURE 3 | Differential equations (Left column) and boundary conditions (Right column) for flow of water in saturated soil, copied from Richardson (1908b), with

permission from the Royal Dublin Society (RDS).
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potential of graphical methods for solving partial differential
equations. He was pessimistic about using available analytical
methods to deal with the equations, boundary conditions, and
geometries arising in practice. He motivated exploring graphical
methods for such problems as follows (Richardson, 1908a, p. 89):

... the time required to arrive at the desired result by analytical
methods cannot be foreseen with any certainty. It may come out
in a morning, it may be unfinished at the end of a month. It is no
wonder that the practical engineer is shy of anything so risky.

With regard to the origin of his graphical method, Richardson
(1908a, p. 90), wrote:

Maxwell in section 92 of his “Elementary Treatise on Electricity
and Magnetism” speaks of tentative methods of altering known
solutions of the Laplacian equation by drawing diagrams on paper
and selecting the least improbable. The object of the present thesis
is to point out that this method can do far more than merely alter
known results, and that it may be so far from tentative as to yield
an accuracy at one percent of the range.

It appears that Richardson was not aware of the fact that, already
two decades earlier, Forchheimer (1886) proposed the graphical
method to solve the Dupuit-Forchheimer equation for horizontal
flow. This may be related to the fairly low profile German journal
and to the relatively remote location where LFR worked.

Richardson (1908a) went on to develop a graphical method
for solving the Laplace equation for geometries and boundary
conditions of interest. Specifically, for the plane flow version
of a theory such as described above, he proved that for the
network—or checkerboard as he calls it—formed by streamlines
and equipotentials, each drawn at equal intervals, all checkers
are curvilinear rectangles and have the same checker ratio, i.e.,
the same ratio of length in the direction of the flow and width
perpendicular to the flow.

Richardson (1908b) used these orthogonality and constant
checker ratio properties to construct by freehand drawing flow
patterns for drainage problems with realistic geometries and
boundary conditions, including a seepage surface. For a peat
with a particular value of K, Figures 4A,C show the results for
flow to a “drain” for, respectively, low rainfall with W/(Kgρ) =
0.085 and high rainfall with W/(Kgρ) =0.96. Presumably, by
“drain” he means free outflow into a vertical boundary reaching
an impermeable bottom. For low rainfall, Figure 4A shows a
water table separating the saturated and unsaturated peat and
outflow at a seepage surface. Figure 4B shows flow to a drain
as in Figure 4A, calculated by a modern variational method
(Knight, 1984; Van der Hoek et al., 1984). For high rainfall,
Figure 4C shows a seepage face reaching to nearly the top of the
peat; Richardson remarks that “the form of the water surface is
indeterminate by this method in this instance.”

Again for peat with a particular value ofK, Figures 5A,B show
the results for flow to a ditch for, respectively, low rainfall with
W/(Kgρ) = 0.068 and high rainfallW/(Kgρ) = 0.226. For high
rainfall a much larger fraction of the water enters the ditch via the
seepage surface along the vertical boundary of the ditch.

Recall that in connection with his not too satisfactory attempt
to measure the hydraulic conductivity, Richardson had remarked
that the disturbed sample used was a problem. Near the end of
his paper, he presents an imaginative method for determining the
hydraulic conductivity of a large sample “of the peat, as it lies in
the bog”: see Figure 6. In the separate paper, Richardson (1908a)
already had worked out for this axisymmetric case the necessary
adjustment of the dependence of the checker ratio as function of
the distance from the axis.

Concerning LFR’s drainage research, Ashford (1985, p. 23)
wrote: “By a simple experiment he confirmed that some
already known equations could be applied with appropriate
modifications, and he then went on to solve the equations
approximately by a freehand graphic method.” It appears
that by referring to “some already known equations,” Ashford
underestimates the difference between the shallow flow approach
of Boussinesq and the approach of LFR described above involving
a three dimensional Laplace equation with a combination of no-
flow, free surface, and seepage surface boundary conditions. A
complete history of the use of such boundary conditions in the
first half of the twentieth century remains to be written.

3. WATER MOVEMENT AND HEAT
TRANSFER IN UNSATURATED SOIL

3.1. Introductory Remarks
In his book Weather Prediction by Numerical Process
(Richardson, 1922), the primary interest of LFR is the
atmosphere. But in view of the large capacity of the soil
and the seas for water and heat, he also believes that “The
atmosphere and the upper layers of the soil or sea form together
a united system.” He points out that two approaches present
themselves:

• directly estimate the earth-atmosphere interface conditions as
function of time of the day and year;

• derive the interface conditions needed from a detailed analysis
of transfer processes below the surface of the earth.

LFR considers, successively, four types of lower boundaries of
the atmosphere: sea, bare soil, earth covered with vegetation, and
snow and ice. With regard to the sea-atmosphere interface, he
believes that the first approach—i.e., direct use of measured sea-
atmosphere interface temperature as function of time of the day
in the course of the year—is the practical choice. Nevertheless,
he leaves open the possibility that some day a prediction of
the sea surface temperature on the basis of long-wave and solar
radiation, turbulence in the sea and the air, and atmospheric
and ocean currents might be considered. For the snow- and
ice-atmosphere interface, he refers to observations on specific
radiative and thermal conductive properties of snow.

Our chief interest is in LFR’s treatment of bare soil and
of earth covered with vegetation. Although LFR was certainly
not frightened by the prospect of elaborate computations, he
closed the subsection “General” with a proposal to use a spatial
discretization grid that becomes coarser with depth in the soil.
On the basis of estimated damping of thermal fluctuations, he
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FIGURE 4 | Flow nets (A) for flow to drain withW/(Kgρ) = 0.085, (B) for flow to drain, calculated by a variational method (Knight, 1984; Van der Hoek et al., 1984), (C)

for flow to drain with W/(Kgρ) = 0.96. Parts (A,C) copied from, respectively, Figures 3, 4 in Richardson (1908b), with permission from the Royal Dublin Society (RDS).
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FIGURE 5 | Flow nets (A) for flow to ditch with W/(Kgρ) = 0.068, (B) for flow to drain with W/(Kgρ) = 0.226. Parts (A,B) copied, respectively, from Figures 5, 6 in

Richardson (1908b), with permission from the Royal Dublin Society (RDS).

proposed to transform the depth as:

j = loge(z+ 1), (1)

and thus later for computational purposes to use the
substitutions:

1

(z + 1)

d

dj
for

d

dz
(2)

and 1

(z + 1)2
{
d2

dj2
−

d

dj
}for

d2

dz2
. (3)

3.2. Movement of Water in Bare Soil
In Chapter 4 of Weather Prediction by Numerical Process
(Richardson, 1922), at the beginning of section 10.2
on “The bare soil,” LFR clearly states his objective in
developing a theory for the motion of water and heat in soil
(page 107):
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FIGURE 6 | Determination of hydraulic conductivity, using a cylindrical sample with water delivery hole. Copied from text and Figure 7 in Richardson (1908b), with

permission from the Royal Dublin Society (RDS).

In winter great areas of arable land are bare. As in the case of the
sea, we require to forecast the temperature and humidity of the air
in immediate contact with the surface of the soil.

To the second sentence he could have added, “as lower boundary
conditions for the atmosphere.” The main source of inspiration
he cites is the book Lectures on Some of the Physical Properties of
Soil (Warington, 1900).

LFR starts by noting that lysimeter observations at
Rothamsted have shown that in the six winter months,
October to March, evaporation is practically identical with
that from a water surface (see page 108 in Warington,
1900), so that presumably in that period the bare soil
surface is so wet that the air in contact with it is saturated.
Nevertheless LFR proceeds to develop an equation for the
motion of water in soil that is applicable in summer as well
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as winter. He aims at a description at the macroscopic level
(page 107):

In this equation it will be convenient to regard the soil as a
continuous medium, that is to say the “infinitesimal” differences
of the coordinates must be large compared with the soil particles
and yet small enough to give a good representation of the
variation of moisture with position.

LFR notes that the theory of percolation in saturated soils
had already been put in mathematical form by Boussinesq, as
discussed in section 2 above. In a footnote (page 107) he refers
to his own Dublin paper on drainage (Richardson, 1908b) and to
the sources of inspiration for that paper (King, 1899; Boussinesq,
1904; Pennink, 1905). LFR continues (page 107):

For unsaturated soil, such as is often found near the surface, I have
not found the equation anywhere. It may be developed from the
ideas of Briggs, according to whom the water in unsaturated soil
may be typified by a waist-shaped piece partly filling the crevice
between two soil spherical particles. If the amount of water in
the waist decreases, the curvature of its surface becomes more
strongly concave, and the negative pressure in the water is thereby
decreased. If the water in all the crevices is continuous with itself,
the pressure will tend to become everywhere equal, in the absence
of gravity.

The reference to Briggs in this quote can be traced to pages 93–
94 in Warington (1900) and from there to a report published at
age 23 by the American physicist Lyman J. Briggs (1874–1963) as
a bulletin of the USDA Bureau of Soils (Briggs, 1897; Landa and
Nimmo, 2003). Briggs discusses in great detail the relationships
between distribution of water in soil, surface tension of air-water
interfaces, and water pressure. Briggs on the whole takes a pore
scale point of view.

After having mentioned his sources of inspiration, LFR
immediately switches from the pore scale point of view to the
porous medium point of view. He writes (pages 107–108):

Denote the mass of water per volume of soil by w. From the
point of view of our large infinitesimals, the pressure in the water
will be a single valued continuous function of position, and will
depend on w. Denote the pressure of the water by ψ(w). The
form of the function ψ can be determined, for any particular
soil, by experiments similar to those of Loughridge. He put air-
dried soil into vertical metal pipes closed at their lower ends
by muslin.Water was supplied through the muslin and rose by
capillarity. From the mode of its entry this water was probably all
continuous. When the steady state was established, samples taken
at different heights were weighed, dried and reweighed. This gave
w. At the same time ψ(w) is equal to g times the height of the
sample above the free water level outside the tube, as the density
of the water is unity.

This is a clear definition of the soil water retention characteristic,
as we now call it, and the description of a method to determine
this characteristic. From pages 97–100 of Warington (1900), the
original source of the data on the equilibrium distribution of
water following capillary rise can be traced to Loughridge (Report

Agricultural Experiment Stations 1892-3-4, p. 91). Note that LFR
seems aware of the fact that “the mode of its entry” may affect
the distribution of the water at the pore scale. In view of his
experiences with peat, this is hardly surprising.

After having dealt with the equilibrium of the water in a
vertical tube and having proposed to use it to determine the
ψ(w) relationship, LFR continues (page 108; in Equations 4, 5
and elsewhere I have replaced Richardson’s Coptic letter shai by
k):

In the more general case, when there is not equilibrium, ∂ψ(w)
∂z −

g will be the unbalanced pressure gradient producing a flow
upwards. Since the flow is in very narrow channels it is non-
turbulent. It is therefore proportional to the unbalanced pressure
gradient, and varies inversely as the viscosity. The flow also
depends on the dimensions of the channels. These are bounded
in part by water-air surfaces, with the result that the conductance
of the channels diminishes rapidly with diminishing w. Denote
the conductance of the channels connecting the opposite faces
of a centimeter cube of soil by k, which is the Coptic letter
pronounced “shai.” Then the flow of water upwards is, in cm3 s−1

per horizontal cm2,

k{
∂ψ

∂z
− g}. (4)

So the rate at which water accumulates to any point by creeping is

∂w

∂t
=

∂

∂z
[k{
∂ψ

∂z
− g}]. (5)

Note that the coordinate z is positive in the downward direction
and that therefore an upward flux is negative. Equation (5)
describing flow of water in the vertical direction is obtained
by inserting the expression for the volumetric flux given by
Equation (4), obtained from the force balance for the water,
in the volumetric mass balance for the water. Thus, as in his
Dublin paper for flow of water in saturated peat, LFR’s theory
for flow of water in unsaturated soils is based on the balance
of mass and the balance of forces for the water. Note that the
“unbalanced pressure gradient” corresponds, in now commonly
used terminology in soil physics, to the “gradient of the total
head.”

Next LFR proposes an experiment to determine the
dependence of the conductivity k upon the volumetric water
content w (page 108):

The conductivity k could, I think, be determined experimentally
as a function of w by means of apparatus similar to that which
gives the pressure ψ . For let a uniform slow current of water
be established, either down the tube by dropping water on the
top, or up the tube by promoting evaporation at the top. Let the
current be measured and be maintained constant until a steady
state has become established throughout the tube; and then let w
be determined at a series of heights by drying samples. From the
distribution of w, that of the pressure ψ(w) could be found, since
the form of ψ is known from the previous experiment. Taking
the gradient of the pressure ψ(w) and inserting it along with the
constant flow in (4) we should have the conductivity k for a series
of values of w.
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LFR is aware of its possible complications and limitations, for he
writes (page 108):

ψ and k depend on the temperature in known ways; if, as usually
happens, the soil is not uniform, they also depend on the depth.
The possibility of the existence of isolated water must not be
forgotten, although no way of treating it mathematically may be at
hand. Nor must the loss of water by surface drainage, root-holes
and fissures be overlooked.

LFR’s theory for movement of liquid water in unsaturated
soil has much in common with Buckingham (1907), who also
describes how the hydrostatic vertical equilibrium can be used to
obtain the water retention characteristic, extends Darcy’s law to
unsaturated soils, and verbally introduces the principle of mass
balance. Buckingham calculated the diffusivity, the hydraulic
conductivity, and the water capacity as a function of the water
content. Buckingham’s inspiration came, on the one hand, from
Poiseuille flow in tubes, Fourier’s law for flow of heat, and Ohm’s
law for electric currents, and on the other hand from his thorough
familiarity with thermodynamics. Especially the latter enabled
him to devise the concept of capillary potential.

Despite all this, Buckingham (1907) did not manage to
formulate a clearcut physical-mathematical flow theory that
quickly inspired other soil physicists. Gardner (1919) and
Gardner and Widtsoe (1921) gave it another try, but got bogged
down in details and ended up with something very special. It took
a person like Richardson, with wide experience of continuum
mechanical theories (fluid mechanics, theory of elasticity) to
formulate a clearcut theory in a very direct manner. But, as it has
turned out, Richardson’s formulation was never noticed by soil
physicists.

This completes the discussion of LFR’s theory for the
vertical movement of liquid water in unsaturated soils and the
description of associated experimental methods. LFR in essence
formulates the rudiments of the Surface Tension-Viscous Flow
(STVF)-theory of Miller and Miller (1956). The equation for
movement of water in unsaturated soil of Richardson (1922)
is comparable to the well known equation of Richards (1931).
Based on this, for several years we have been suggesting that the
Richards equation for movement of water in unsaturated soil
might also be called the Richardson equation. But a reviewer
has pointed out that another British physicist named Owen
Richardson (1929 Nobel Prize in Physics) in the early twentieth
century studied thermionic emission and that in connection with
that there already exists a Richardson equation. This proves once
more that naming laws, equations, and principles after persons
is risky! A sustainable alternative is to speak from now on of the
Richardson-Richards equation.

Next LFR turns his attention to the diffusion of water vapor,
the “distillation of vapor” as he calls it. He argues that the vapor
density ρv, for which Richardson uses the symbol F, depends on
the temperature θ and the volumetric water content w, for liquid
water as well as adsorbed water. The “mass of water distilling

upwards per unit of time and of horizontal area” he writes as

D
∂ρv

∂z
, (6)

where D denotes the vapor diffusivity, which LFR calls “the
porosity to water vapor” and for which he uses the Coptic letter
janja pronounced “janja.” Note again that the coordinate z is
positive in the downward direction and that therefore an upward
flux is negative. For peat dust, LFR determined the dependence
ofD on the volumetric water content w. Quite surprisingly, LFR’s
attention for vapor diffusion was noticed by Danderon (1969).
But he merely writes “According to Richardson’s experimental
data, the coefficient of water vapor diffusion (D) in soil is
approximately the same as in motionless air.” To obtain the total
water flux, LFR simply adds the fluxes for liquid water and water
vapor. Substitution of this total flux in the mass balance gives
the final equation for combined flow of water in the liquid and
gaseous phases:

∂w

∂t
=
∂

∂z
[k(w){

∂ψ(w)

∂z
− g} + D(w)

∂ρv(w)

∂z
]. (7)

In subsection 8/2/12 on page 169 on evaporation from bare
soil, Richardson (1922) transforms the gradients of ψ and ρv to
gradients of the vapor concentration µ, giving for the total flux
4soil of liquid water and water vapor:

4soil = [k(w)
dψ(w)

dµ
+ D(w)

dρv(w)

dµ
]
∂µ(w)

∂z
− k(w)g. (8)

Next LFR observes that since the water content w and the
humidity µ are functionally related, Equation (8) can be written
as:

4soil = f (µ)
∂µ(w)

∂z
− k(µ)g, (9)

where

f (µ) = k(µ)
dψ(µ)

dµ
+ D(µ)

dρv(µ)

dµ
. (10)

Richardson stopped short of also transforming w on the left hand
side of Equation (7) to µ so as to obtain a flow equation fully in
terms of µ. But apart from that, the treatment of simultaneous
flow of liquid water and water vapor by is quite comparable to
that by Philip (1955b). We return to the expression (9) for the
total flux4soil in section 3.4 on flux of water from vegetation and
from bare soil to the atmosphere.

LFW closes the subsubsection on the motion of water in soils
as follows (page 110):

The flow of water across the surface z=0 depends on precipitation
and evaporation, and can be calculated at the initial instant, at
which w is given, according to the methods of Ch 4/6, Ch 4/8/5,
Ch 4/9/6. Then the appropriate distribution of w after δt can be
found from (7).
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3.3. Transfer of Heat in Soil
In LFR’s subsubsection on the motion of heat in soil on
pages 110–111 of Richardson (1922), the main novelty is
the comprehensibility of the processes considered: conductive
transfer and convective heat transfer associated with the flux of
liquid water and water vapor. Conductive transfer of heat was
intensely studied throughout the nineteenth century, also in soil.

LFR derives the following expression for the time rate of
change of the temperature:

∂θ

∂t
=

1

u

∂

∂z
(κ
∂θ

∂z
)+

latent heat of evaporation

u

∂

∂z
[D
∂ρv

∂z
]

+
4.2× 107

u

∂

∂z
[θk{

∂ψ

∂z
− g}], (11)

where u is the thermal capacity of the soil per unit volume, κ is
the thermal conductivity, and 4.7 × 107 in the last term on the
right hand side is the specific heat of liquid water in ergs gram−1

degree−1. On the right hand side, the three terms reflect the three
causes of the temporal change in temperature θ : (1) the first term
reflects the contribution from the divergence of the heat flux by
conduction; (2) the second term reflects the contribution from
the divergence of the latent heat associated with the vapor flux;
(3) the third term reflects the contribution from the divergence
of the latent heat associated with the liquid water flux. LFR notes
that, in addition to the processes accounted for in Equation (11),
“The latent heat of fusion of ice in the soil may be regarded as
a very large increase in the thermal capacity in the immediate
neighborhood of the freezing point.”

At the end of the discussion of the motion of water and heat,
LFR emphasizes that in order to calculate the radiation and the
evaporation from bare soil, it is desirable that values of θ and w
at the soil surface should be tabulated, rather than mean values
for the upper layer in the numerical model, which is 1.7 cm thick;
note that in Equation (1) depth z = 1.7 cm corresponds to j = 1.

3.4. Flux of Water From Vegetation and
From Bare Soil to the Atmosphere
After having treated the movement of water and transfer of heat
in bare soil, Richardson (1922) turned in subsection 4/10/3 (pages
111–114) his attention to earth covered by vegetation. He did
not attempt to generalize the partial differential Equations (5)
and (7) for movement of water by including a sink term for the
uptake of water by plant roots. Instead he seems to tacitly assume
that such uptake occurs right at the soil surface and focuses
on the water and heat balances at the soil surface and in the
plant canopy, making use of earlier work by Brown and Escombe
(1900, 1905a,b,c) and Brown and Wilson (1905).

LFR points out that there is not much room for water to
accumulate in the air in the stomata and in the canopy space
between the leaves, and that therefore a description of the quasi-
steady flux of water4 in terms resistances in series is appropriate.
The equality of the rates at which water evaporates inside the
stomates, diffuses out of the stomates, and is carried off into the
atmosphere above the plant canopy allows him to express the flux
4plants from the leaves to the canopy and on to the atmosphere

above the plant canopy as:

4plants =
1

A
(µcanopy − µleaves) =

1

B
(µatmosphere − µcanopy)

=
1

(A+ B)
(µatmosphere − µleaves), (12)

where the humidity µ is mass of water substance per unit mass of
moist atmosphere, A is the stomatal resistance, B is the canopy
resistance, and (A + B) is the total resistance. The stomatal
resistance A was studied in great detail by Brown and Escombe
(1900, 1905a,b,c) and Brown and Wilson (1905). For the canopy
resistance LFR relied on his description of turbulent transfer in
other parts of his book.

Richardson (1922) formulated in subsubsection 8/2/12 on
page 169 a similar model for evaporation from bare soil to the
atmosphere. First he writes the expression for the total flux 4soil

near the soil surface in finite difference form as:

4soil = f (µ)
µatsoildepthz11 − µsoilsurface

z11
− k(µ)g. (13)

Assuming continuity of the humidityµ and of the flux of water4
at the soil surface, and using Equation (12), LFR wrote by analogy
with Equation (9) expressions for evaporation 4soil from bare
soil:

4soil =
µatsoildepthz11−µsoilsurface−k(µ)gz11/f (µ)

z11/f (µ)

=
1

B
(µsoilsurface − µatmosphere)

=
µatsoildepthz11−µatmosphere−k(µ)gz11/f (µ)

z11/f (µ)+ B
, (14)

where f (µ) is given by Equation (10) and z11/f (µ) is the analog
of the stomatal resistance in Equation (12). Richardson points
out that in Equation (14) the gravitational term −k(µ)gz11/f (µ)
“corresponds to the potential difference due to a battery in the
circuit.”

Richardson points out that in saturated soil dψ(µ)/dµ is very
large so that f (µ) defined by Equation (10) is also very large
and the soil resistance z11/f (µ) in Equation (14) is very small.
Equation (14) then simplifies to:

4soil =
1

B
(µsoil − µatmosphere). (15)

The main subject of Richardson (1922) is the dynamics of the
atmosphere. Equations (12)–(15) allowed him to account for
inputs from vegetated soil and bare soil. Richardson’s description
of the flux of water from vegetation to the atmosphere may
well the earliest version of such a model with stomatal and
canopy resistances in series. In essence Richardson formulated
a forerunner of the Soil-Plant-Atmosphere Continuum (SPAC)
initiated by Philip (1957b). Entekhabi (1995) emphasized
Richardson’s key role in describing the transpirational flux of
water vapor.
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4. RICHARDSON’S CONTRIBUTIONS TO
NUMERICAL ANALYSIS AND THEIR
INDIRECT AND DIRECT INFLUENCE ON
SOLUTIONS OF THE RICHARDS
EQUATION

The experience with the freehand graphical method motivated
Richardson to look for other approximate methods of solving
partial differential equations. In one paper he explored the use of
integration over a surface as a basis for improving a graphic guess
(Richardson, 1911). But around the same time he was switching
to purely numerical methods. Richardson (1910) distinguished
between “marching” and “jury” finite difference methods
for solving partial differential equations. “Marching” methods
are suitable for parabolic equations, e.g., the diffusion and
convection-diffusion equations, and for hyperbolic equations,
e.g., the wave equation. Weather prediction also belongs to the
“marching” class, “at least if you believe that future weather
is determined by present weather together with astronomical
events which are foreknown” (Richardson, 1925). “Jury”methods
are suitable for elliptic equations, e.g., the Laplace and Poisson
equations. The adjective “jury” refers to the requirement that
all values together have to satisfy simultaneously everywhere the
partial differential equation and the boundary conditions, “just as
the verdict has to satisfy all the jurymen seated round the table”
(Richardson, 1925). Instead of the adjective “jury,” the adjective
“relaxation” is most often used nowadays.

The drainage problem, which Richardson (1908b) treated by
a graphical method (see section 2 above), belongs to the “jury”
class. The graphic method for solving the Laplace equation
became rather popular (e.g., Dachler, 1936; Van Deemter, 1950;
Bromhead, 2007), but was eventually superseded by efficient
numerical methods. A method competing with Richardson’s
iterative method was Southwell’s relaxation method. For LFR’s
contact with Southwell see Ashford (1985, pp. 116–117, 244).
Southwell’s relaxation method figures prominently in mid-
twentieth century drainage research (see e.g., Van Deemter, 1950;
Childs, 1969, ch. 15). Scarborough (1950) in his chapter XII
compares the iterative and relaxation methods.

The fundamental paper on “marching” and “jury” methods
(Richardson, 1910) played a key role in later developments in
numerical analysis by Liebmann (1918), Shortley and Weller
(1938), Fox (1993), and Lynch (2007) and others, this despite
the difficulty LFR had to get this paper published. Although
in his 1910 paper LFR concentrated on the “jury” method, in
paragraph 2.2 he gives as an example the “marching” solution of
an initial value problem for the diffusion or heat equation with
time and one space dimension. His solution of this problem was
later found to be numerically unstable by Crank and Nicolson
(1947) and others. Richardson used a central difference in time
to construct a method which was explicit in time and gave
values at any time level in terms of values at the previous two
time levels. To obtain starting values for what he called “the
troublesome first step,” he used a stable central difference method
with two time levels, which required the solution of a system
of linear equations. Richardson carried out calculations only for

five time steps up to a dimensionless time of 0.005, not enough
to show the instability. Fox (1993) pointed out that the highly
successful method of Crank and Nicolson (1947) was identical
to the method of Richardson for the first step, but also used
Richardson’s stable starting method for all later steps. Having
devised his stable starting method, Richardson also could then
have used it for subsequent steps. Unaware of the instability,
he presumably preferred his three step method because it was
explicit and did not require the extra calculation involved in
solving a system of equations at every time step. The stable
method, as used by Richardson for his first step and by Crank
and Nicolson for all steps, could justifiably be called the Crank-
Nicolson-Richardson method.

Hanks and Bowers (1962) and Whisler and Klute (1965,
1967) used modifications of the Crank-Nicolson method in finite
difference solutions of the Richards equation for various cases of
infiltration of water into soil. The paper of Hanks and Bowers
is an early example of users of the Crank-Nicolson method not
actually citing Crank and Nicolson (1947), but Crank (1956),
and spelling “Nicolson” incorrectly. Recent Google searches for
“Crank Nicolson,” “Crank Nicholson,” “Crank Nicolsen” and
“Crank Nicholsen” found 199 k, 520 k, 0.9 k, and 9 k results
respectively, compared to a total of 1,567 citations of Crank and
Nic(h)olson (1947) in Web of Science as of February 2018.

The method of deferred approach to the limit or h2-
extrapolation is another important contribution by Richardson
(1927). The central difference approximation to the derivatives
used by Richardson implies that the difference of the discrete and
continuous solutions is a power series in h2, h being the mesh
size. Using only the first term of the series, a better approximate
solution can be obtained by solving the discrete problem
for two values of h and then eliminate the h2 contribution.
Philip devised semi-analytical, semi-numerical solutions of the
nonlinear diffusion equation (Philip, 1955a) and of the Richards
equation (Philip, 1957a), and used the Richardson (1927) h2-
extrapolation to speed the convergence.

5. CONCLUDING REMARKS

The intent of our paper is to highlight the contributions by Lewis
Fry Richardson to soil science and hydrology. In the past these
contributions have received hardly any attention. Ashford (1985)
wrote a biography for the general reader, emphasizing the life and
connections of LFR, rather than the details of his research. In the
Preface he wrote:

As the biography is intended for a wide variety of readers, I have
refrained from entering into highly technical details and, to the
extent possible, from using mathematics. My aim is not to explain
to professional meteorologists the significance of Richardson’s
contributions to meteorology, nor to psychologists the way in
which he helped to advance their science.

In his fascinating book on numerical weather prediction, Lynch
(2006) on page 30 did take notice of the topics discussed in
section 3:
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Finally, Richardson discusses the interaction between the
atmosphere and the sea and land surfaces beneath it. He
suggests that climatological sea temperatures may suffice, but also
discusses how the sea surface temperature might be predicted.
He considers heat and moisture transports within the soil and
discusses at some length the influence of vegetation: “Leaves,
when present, exert a paramount influence on the interchanges
of moisture and heat” (Richardson, 1922, p. 111). Clearly,
Richardson is thinking far beyond short-range forecasting here,
and has entered the realm of climate modeling.

Richardson was able to pioneer all aspects of a problem:
formulation of a model, graphical and numerical analysis based
on the model, suggestion and to some extent performing related
experiments (Ashford et al., 1993a). The drainage problem
treated in Chapter 2 is not quite as important than the
treatment of the soil-plant-atmosphere continuum in Chapter 3.
Nevertheless, Chapter 2 does reveal the origin of some of the
concepts used in Chapter 3. Comparing the 1908 drainage paper
with the treatment of the soil-plant-atmosphere-continuum in
the 1922 book shows that LFR in the intervening 15 years became
an experienced writer.
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