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Hybrid modeling seeks to address problems associated with the representation of

complex systems using “single-paradigm” models: where traditional models may

represent an entire system as a cellular automaton, for example, the set of submodels

within a hybrid model may mix representations as diverse as individual-based models of

organisms, Markov chain models, fluid dynamics models of regional ocean currents, and

coupled population dynamics models. In this context, hybrid modelers try to choose the

best representations for each component of a model in order to maximize the utility of

the model as a whole. Even with the flexibility afforded by the hybrid approach, the set

of models constituting the whole system and the dynamics associated with interacting

models may be most efficient only in parts of the global state space of the system. The

immediate consequence of this possibility is that we should consider adaptive hybrid

models whose submodels may change their representation based on their own state and

the states of the other submodels within the system. This paper uses a simple example

model of an artificial ecosystem to explore a hybrid model which may change the form of

its component submodels in response to their local conditions and internal state relative

to some putative optimization choices. The example demonstrates the assessment and

actions of a “monitor” agent which adjusts the mix of submodels as the model run

progresses. A simple mathematıcal structure is also described and used as the basis

for a submodel selection strategy, and alternative approaches are briefly discussed.

Keywords: hybrid modeling, adaptive models, environmental modeling, cross-paradigm modeling, agent-based

modeling, adaptive agents

1. Introduction

The case has been made for developing systems with submodels that change their representation
according to their state. Vincenot et al. (2011) identify reference cases describing the major ways
system dynamics models (SD) and individual-based models (IB) can be coupled. Their final case,
SD–IBmodel swapping, is exemplified in the models described by Bobashev et al. (2007) and Gray
andWotherspoon (2012). These papers argue that we can improve on conventional hybrid models,
in terms of efficiency, fidelity, model clarity, or execution speed by using an approach that allows the
submodels themselves to change during a simulation. The last two papers implement simplemodels
which demonstrate the approach, with correspondingly simple mechanisms to control transitions
between different submodels.

Some authors argue that the explicit coupling of SD models and IB models may provide
greater clarity and resolution in modeling (Fulton, 2010; Vincenot et al., 2011): parts of a
model that are most clearly the result of aggregate processes are likely to be better suited
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to modeling with a SD approach. In contrast, the parts of a system
where individuals have a significant influence on their neighbors
(Botkin et al., 1972) are better suited to an IB approach. This
argument is closely tied to the notion of model fidelity. Following
DelSole and Shukla (2010), we take fidelity to be the degree to
which a model’s trajectory is compatible with real trajectories. If
our immediate goal is to maximize the utility of the set of sub-
models within a model as it runs, this must include the fidelity of
the system in the decision process.

Measuring or estimating execution speed and numerical
error are comparatively straight-forward, but determining model
fidelity is not. Models with a high degree of fidelity should
produce results which are consistent with observed data from
real instances of the system they model across both a wide
range of starting conditions and under the influence of ad
hoc perturbations, such as fires through a forested domain.
Model fidelity is addressed by DelSole and Shukla (2010) in
the context of seasonal forecasting models. They explore the
relationship between fidelity and skill using an information-
theoretic approach. They describe skill loosely as the ability
to reproduce actual trajectories, and they describe fidelity as
measuring the difference between the distribution of model
results and the distribution of real world results. They highlight
the attractiveness of mutual information and relative entropy as
measures (or at least indices) of skill and fidelity, but they observe
that in their domain, climate modeling, the necessary probability
distributions are unknown.

The issues of fidelity and the attendant cost/benefit balance are
central to the discussion in Bailey and Kemple (1992). This paper
assesses the costs and benefits of three different upgrades to an
existing model designed to help determine the best mix of types
of radios used in a military context; their objective is to prioritize
implementation of the refinements of their model. The funda-
mental issues they address are substantially the same as issues that
influence dynamic model selection.

The paper by Yip and Marlin (2004) compares three models
used for real-time optimization of a boiler network: simple
linear extrapolation from the system’s current state, quadratic
prediction with the coefficients based on historical data and
updated at every step, and a detailed process model that
corresponds closely with the physical elements of the modeled
system. Their conclusion correlates the fidelity of the model with
its ability to control the real-time optimization of the system.
They explicitly note that there are real costs associated with the
increased fidelity. These costs include model development and
the need for more expensive sensors. They note that increasing
fidelity in the model enabled the system to adapt to changing fuel
more efficiently, and that when there were frequent changes in
fuel characteristics the simpler models performed poorly.

The projects described in Little et al. (2006) and Fulton et al.
(2011) both used hybrid models as a means of decreasing the
run-time, and increasing the fidelity of the modeled contaminant
uptake in simulated organisms. This was accomplished by
mixing individual-based submodels and regional population-
based systems models. Gray and Wotherspoon (2012) explicitly
used changes in the representation of agents to improve the
execution speed of a contamination tracking model, without

losing the fidelity of the individual based uptake model. In this
paper, we will develop a more general strategy which may be
appropriate for more complex systems.

2. Model Organization

For clarity, we will take the term niche to refer to something in
the model which could be modeled in several ways: a “porpoise”
niche could be filled by many instances of an individual-
based model, models of pods, or a regional SD model of the
porpoises. This is essentially the same as the term component in
Vincenot et al. (2011). The motivation for departing from this
convention arose from confusion resulting from inadvertently
using component both in a technical and non-technical sense. The
close analogy between the nature of a niche in an ecosystem and
the nature of a component as discussed in Vincenot et al. (2011)
suggested the choice of niche.

Each of the alternative ways of representing a niche can be
viewed as a submodel, and the word representation will be used to
reflect a particular choice of submodel within a niche. An explicit
instance of a submodel (such as a specific pod or an SD model)
will be referred to as an agent. The configuration of the model at
any moment consists of the particular set of submodels which fill
the niches that comprise the model as a whole. For an adaptive
hybrid model, there may be a large number of possible config-
urations and the selection of a “best” configuration is a complex
matter.

Each agent running in a model must necessarily have data
which can serve to characterize it for these assessments. This
data would typically be some subset of its state variables, but the
data alone may not be enough to base an assessment on: there
may also be extrinsic data which play a role in a particular sub-
model’s or agent’s activity and impinges on its suitability. Then,
the characterization of an agent—its state vector—is an amalgam
of its own state and the state of other niches it interacts with, and
it can be regarded as a point in the state space which the submodel
is defined over.

A corresponding set of data characterizes a niche in the
model; here, it is typically some appropriate aggregation of agent-
level state variables (a biomass-by-size distribution, for example),
relative rankings of the suitability of agents and alternative sub-
models, and indications of what extrinsic support all of the
various alternatives require. This niche-level state vector provides
the data needed for optimizing the configuration globally, and
for managing the configuration when niche-wide effects become
significant, for example, for an incipient epidemic.

Thus, there are three distinct levels of organization which
may influence the considerations regarding the current configur-
ation, and inform any decision about what may need to change,
namely

1. Agent-level data need to be examined to determine how
well-suited each agent is to its current state and the context
provided by the agents it interacts with,

2. A niche-level assessment which compares the utility of each
of its current agents within a niche with their alternative
submodels, and
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3. Amodel-wide assessment which determines whether there are
cross-agent conflicts or unmet needs arising from a particular
configuration.

The state vectors which form the domains of submodels and
niches are loci in appropriate state spaces and can be encoded
as an elements in appropriate vector spaces. The mathemati-
cal tools to manipulate these state vectors can then be applied
to calculate the distances between two states, the similarity of
loci which represent models or niches, or to identify trends or
clusters.

2.1. Implications of Changing Configurations
At a basic level, hybrid models are designed to represent entities
or processes in the real world in a way which brings more clarity,
efficiency, or fidelity that may be possible with more traditional
approaches. Adaptive hybridmodels, implicitly acknowledge that
the appropriate representation may change through time. An
important consequence is that when a submodel in a niche
changes, it may trigger changes in representation elsewhere in the
model.

We might consider an example where an SD submodel
which represents the prey for an SD based predator changes
to IB submodels. It seems reasonable to expect the represen-
tation of the predator might follow suit. This may change the
spatial resolution, the fineness of the “quantities” represented,
and possibly the time steps associated with the predators and
prey. Disparities in either of the first two are simple enough to
deal with: modelers routinely use interpolation as a means of
removing inappropriate edges, or generating subscale data, for
example. Changes in an agent’s time step can have a dramatic
causal influence on the subsequent simulation.

Chivers (2009) discusses how individual-based models are
sensitive to when state variables are updated. In his discussion,
the issue arises as a result of when the probability of a predator–
prey interaction is calculated relative to when the prey are re-
moved from the system, though similar effects are also likely to
occur in other contexts. The temporal sensitivity of submodels’
interactions needs careful examination in order to construct
submodels that proceed through time coherently and interact
correctly.

Multi-agent models must have strategies to manage the agents
as they step from the start of the simulation to its end. The
simplest method is to make everything within the model use the
shortest time step required. This is computationally inefficient in
a heterogeneous model.

A better approach is the technique of variable speed splitting,
such as in Walters and Martell (2004) and many others.
(Figure 1) This approach allows models to step through time
in different intervals by dividing the largest interval required
into smaller steps that are more appropriate for the submodels
with naturally shorter time scales. While models with uniform
time steps are a trivial example of this approach, variable speed
splitting is almost as simple and much more efficient. This
technique can keep the subjective times of a set of agents
moderately consistent, but ad hoc stepping changes would still
seem to be awkward or difficult.

Uni:0

Vss:1

Vss:2

Vss:3

Vss:4

Vss:5

Dyn:6

Dyn:7

Dyn:8

Dyn:9

Dyn:10

Dyn:11

minutes 0 10 20 30 40 50

FIGURE 1 | Time scheduling strategies. Red boxes represent time steps

that have already passed, blue boxes represents scheduled time steps that

have not yet been run. “Uni:” and “Vss:” submodels are members of a uniform

or variable speed splitting submodels and require uniform time steps, and

“Dyn:” submodels have adaptive time steps.

Both of these strategies may be subject to artifacts arising
from the sequence in which agents are given their time step. The
general class of model errors of the sort described in Chivers
(2009) arise as a consequence of structure of the processing
across the set of agents in a simulation. IB models which process
agents species-by-species will be particularly vulnerable to these
sorts of artifacts, since there will be an implicit advantage or
disadvantage to being early in the list. Similarly, advantage or
disadvantage can arise when there is a change in representa-
tion, perhaps from an SD submodel to an IB submodel; a shorter
time step in this situation may introduce a great many small
time steps which agents may exploit. This kind of problem
can be overcome by introducing a randomizing process within
each time step. Early versions of the variable speed splitting
model in Lyne et al. (1994) suffered from predator–prey artifacts
arising from a naïve introduction of predators and prey into
the list of agents, and such randomizing was introduced to
minimize the effects. In situations where the time steps of the
interacting agents differ, implementing a randomization strategy
may require a significant increase in the complexity of the
system to accommodate irregular stepping through the lists of
agents, or a significant change in the basic structure of the
model.

Gray et al. (2006) and Fulton et al. (2009) describe models
that have a well-developed approach to coordinating agents
using adaptive time steps. In these models agents may set
their own time steps to intervals that are suitable for their
current activity or role. This strategy can readily incorporate
submodels with uniform time steps, or collections that employ
a variable speed splitting strategy. When agents interact, they
either explicitly become synchronous before interaction occurs
by setting their time steps appropriately and waiting, or they
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implicitly acknowledge that there is a temporal mismatch
(Figure 1).

While some agents should be given execution priority (such
as an agent which models ocean currents), most agents will have
their execution order within a time step randomized, effectively
preventing a large class of execution order dependent artifacts.
The associated overhead in the most recent work, (Gray et al.,
2006; Gray and Wotherspoon, 2012), is marginally higher than
one would expect from single-stepping or variable speed stepping
systems, but the advantages arising from the ability to ensure
synchrony and change time steps in response to environmental
stimulus outweigh the small computational overhead. This last
approach seems likely to be the most appropriate for a general
hybrid model that supports swapping models.

General adaptive hybrid models must have a mechanism for
scheduling each agent’s execution which keeps the cohort of
agents roughly synchronous, and it should able to handle changes
in an agent’s time step when the agent changes its representation;
where possible, agents should also be designed so that they may
run at other time steps as well as their own preferred time step
so they can become synchronous and interact at the appropriate
temporal scale with other agents.

2.2. Systematically Adjusting the Model
Configuration
A model’s configuration should only change when there is an
overall benefit in the efficiency or fidelity of the system. A
straightforward way of determining this is to have a monitoring
routine that runs periodically, polling the agents, and ranking
likely configurations according to their relative benefit or cost.
This means that each submodel would need a way to provide, to
the monitor, a measure of its current suitability, and to indicate
what it needs from other niches.

The last step in Algorithm 1 is deliberately vague.
Algorithm 1 illustrates a possible assessment pass for a

monitor, though how appropriate it may be is an open question.
Configuration ranking for the example model will be cast in
terms of evaluating an objective function based on elements of
the vector space of tree elements described in the Supplementary
Material.

A monitor may have large number of potential candidate con-
figurations, but we would like to keep the actual number quite
low. The example model described below has a global domain
associated with a particular representation, along with local
domains (subregions of the global domain) which are associated
with finer scale representations of the modeled entities. The set
of potential candidate trees could be quite large; in practice we
reduce the number by casting the candidate trees in a more
general way—including trees representing particularly good rep-
resentations and particularly poor representations: the first to
steer the configuration toward good choices, and the second to
drive it away from poor choices. We can use the hierarchical
organization (whole-model, niche, submodel, agent) to help limit
our search space, as well as the geographic context of the agents
(whole-domain, local cell, immediate-locus).

The sets of candidate trees which are associated with particular
configurations will need to be crafted carefully as a part of the

Algorithm 1 | Basic processing pass for the monitor

for all niches do
for all submodels in the niche do

for all agents in the submodel do
generate agent state vector
generate the submodel state vector

note extrinsic requirements
end for

end for

generate niche state vector
end for

Run niche-level assessment
Flag any whole of model issues
for all candidate configurations do

Deprecate untenable configuration
Adjust for unavoidable extrinsic

requirements
end for

Select best indicated configuration

model design. These trees reflect the modelers understanding of
the strengths and weaknesses of each of the submodels (or sets of
different submodels) which may be employed.

Exactly how a monitoring routine is integrated into the
model framework is a subjective choice best left to the team
implementing the models, but one very attractive option is to
implement the monitor as an agent in the system. This would
allow the monitor to assess its own performance and the needs of
other agents with respect to its own suitability with the option of
swapping itself for a monitor which implements some alternative
strategy.

3. The Example Model

The purpose of the example model described below, is to provide
a context for a discussion of the dynamics associated with
a hypothetical simulation using this model. The ends of the
spectrum between SDmodels and IBmodels are represented, and
the environment is unrealistically simple in order to keep us from
being swamped by detail.

The model consists of a spatially explicit environment that
is partitioned into nine cells (Figure 2). The biotic elements
consist of plants, fruit, seeds, herbivores, and carnivores. The
herbivores feed on the plants and their fruit; and carnivores
prey upon juvenile herbivores. The plants and herbivores are
interdependent: fruit is the sole diet for juvenile herbivores and
the plants need juvenile herbivores to make the seeds viable by
eating the fruit.

The representations are equation-based SD models of the
interactions between the plants and animals and IB models
for plants and animals. The SD submodels model the biomass
with respect to size, for plants and animals, or simply numeric
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cell 7 cell 8 cell 9

cell 4 cell 5 cell 6

cell 1 cell 2 cell 3

FIGURE 2 | The model domain is divided into nine cells. An SD agent is

associated with each of these cells and with the domain as a whole. Any IB

agents which are created during the simulation will be associated with one cell

at any given time.

quantities for fruit and seeds, and they can operate at either the
global or cell-sized scale. Modeling biomass in this way makes
it possible to minimize the loss of fidelity incurred by swapping
from IB agents to SD agents and visa-versa, since we preserve
more of the essential nature of the populations. A more detailed
description of the SD agents is presented in the Supplementary
Material.

Fruit and Seeds
Fruit and seeds are treated somewhat differently to the rest of
the niches. They exist principally as numbers of entities that are
updated as a result of the activities of other, more explicit SD
or IB models. There are explicit routines that deal with uniquely
“fruit” and “seed” processing to handle spoilage and germination,
respectively.
For fruit and seeds we have the following relationships

dNF(t) = Production− Spoilage− FruitEaten

and

dNS(t) = s ∗ FruitEaten

−

(

1−
NP(t)

KP

)

Germ.

where NP(t) is the biomass of plants at time t, and KP is the
carrying capacity of the pertinent domain (either global or cell-
based). The processing for fruit is quite simple and consists only
of applying “spoilage”; no reference to other agents in the system
is required, and only the number of fruit is adjusted as a result
(Algorithm 2). Seed models will adjust their “seed count” as well
as the biomass distribution for plants in their time step, according
to the level of germination. Germination is probabilistic as is the
size of the plant a germinated seed becomes in its pass, though the
distribution of possibly sizes is quite restrained (Algorithm 3).

Algorithm 2 | Basic processing pass for fruit

NF ← NF − (SpoilageF · NF)

Algorithm 3 | Basic processing pass for seeds

NewTreeCount← Germination · SeedCount
SeedCount← SeedCount− (NewTreeCount
+SpoilageS · SeedCount)

generate NewTreeCount new plant agents and introduce them
into the system

SD Representations
Each of the niches has an integral equation expressing the change
in biomass for a given size; an animal’s equation is of the form1

dNA(t, x) =Growth& starve+ Repr

− PredMort− NatMort.

We do not include migration terms in the SD models, since that
will be addressed by the IB forms. The assumption is that the
SD representation is most appropriate when population levels
are moderately high, and there is adequate food; under these
conditions, we will assume that the net migration associated with
a domain will be close to zero.

Plants are represented by similar equations, namely

dNP(t, x) =

(

1−
NP(t)

KP

)

[Growth+ Germ]

− PredMort− NatMort

where NP(t, x) is the biomass of plants of size x at time t.
The important state variables for the SD are, for each domain,

the biomass-by-size distributions for plants, herbivores, and
carnivores, and the raw numbers of fruit and viable seeds.

The system of equations described in the Supplementary
Material is evaluated using a fourth order Runge–Kutta
algorithm; the numbers of fruit and seeds, and both the global
and cell-based biomass distributions for plants and animals are
updated at the end of the calculation. The model will adjust the
values in the global and cell-based models to allow data from
models running with better resolution (usually more localized
models) (Algorithm 4) to take precedence.

Most of the important parameters and many of the functions
associated with the life history of the modeled entities are not
specified. This way we may consider possible trajectories without
being tied to a particular conception or parameterization of the
system.

IB Representations
Individual-based representations for plants, herbivores, and
carnivores follow the pattern in Little et al. (2006); fruit and seeds
are only modeled in the SD representation, though their numbers
aremodified by the activities of the herbivores irrespective of how
those herbivores are represented.

1See the Supplementary Material for a more detailed set of equations.
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Algorithm 4 | Basic processing pass for the SDmodels

for all agents in this domain do

Incorporate quantities that are
controlled in other agents

Run Runge-Kutta4
Update only quantities that are

controlled by this agent
end for

3.1. IB Plants
Plants maintain a reference to their cell, their location, a mass,
and a peak mass. If a plant’s mass drops below a certain
proportion (PM�) of its peak mass, it dies—this provides a
means for the herbivores to drive the plant population to local
extinction.

We will suppose that plants grow according to a sigmoidal
function with some reasonable asymptote and intermediate
sharpness; fruiting occurs probabilistically as in the SD
representation.

The plant agent goes through the steps in Algorithm 5 in each
of its time steps. In the algorithm, ŴP(δt,mass) is an analog of
the probability of a plant growing from one size to another from
the SD representation, PMature is the parameter that indicates the
mass a plant must be before it fruits, PFruits is the probability of
a mature plant fruiting, and Pρ is the amount of fruit relative
to the fruiting area. The routine ADDFRUIT updates the models
representing fruit in the domain.

Algorithm 5 | Basic processing pass for plants

if (Mass ≥ PMature) ∧ (PFruits ≥ rnd0,1 ) then

ADDFRUIT(PρMass
2
3 )

end if

if (Mass ≤ PM� PkMass) ∨ (�indP < rnd0,1 ) then
DIE

else

Mass← ŴP(δt,Mass)
ifMass > PkMass then

PkMass← Mass
end if

end if

3.2. IB Animals
Like the plants, animals maintain a reference to their cell, their
location, and a mass. They also maintain several variables that
are associated with foraging or predation, namely the amount of
time until they need to eat (Sated), and the amount of time they
have been hungry (Hungry).

Animals will grow while they do not need to eat and will only
forage when they are hungry. Reproduction happens in a purely
probabilistic way once the animal is large enough, and the young
are not cared for by the parents.

Animal movement is constrained so that they will tend to stay
within their nominated home cell, only migrating (changing their
home cell to an adjacent cell) when food becomes scarce or if the
population exceeds some nominated value and causes crowding.

The analogs of the mechanisms for growth and starvation
in the SD representation are quite different to those of the IB
version. In the SD models, starvation and growth occur as a
result of the relative population levels of the consumer and the
consumed rather than the local availability of food.

There are no real programmatic differences between the IB
representations of herbivores and carnivores; their differences lie
in their choices of food and the way their “time-to-eat” variable is
initially managed. Individual-based, new-born carnivores begin
with a long time till they need to eat. This reflects a reliance on
some unmodeled foodstuff until they are large enough to prey on
the juvenile herbivores. In contrast, the juvenile herbivores must
begin eating fruit immediately, and only switch to foraging on
plants when they are larger (but before they can reproduce). For
both species, if the amount of time they have been hungry exceeds
a particular value, H� or C�, the individual dies.

So, if we take A to represent either carnivores (C) or herbivores
(H) below, then the processing pass for an animal is shown in
Algorithm 6, where AmoveT is the amount of time an animal can
be hungry before it migrates, A� is the amount of time it takes
for the animal to starve, AEatLimit is the most the animal can
eat as a proportion of its mass, ARepSize is the minimum size an
animal may breed at and ARepP is the probability of reproducing.
The routines PREYPRESENTH and EATH have different cases for
juvenile and adult herbivores, since juveniles prey upon fruit,
and the seeds from the fruit they eat need to be accounted
for in the appropriate places. There is a similar issue with
juvenile carnivores. Their preylist will always be set to a value
that indicates that they may eat as much as they like, and the
corresponding call to EATC will handle this value appropriately.

3.3. The Monitor and Model Dynamics
The following may be typical of the types of situations that could
or should cause changes in the configuration:

• Low population—If, in an SD representation, the number
of individuals filling a niche (either explicitly taken from a
distribution, or estimated using a mean and a biomass) drops
below a nominated value, then the biomass in that niche
should be converted to IB agents representing those individu-
als. This type of change is motivated by the observation that
at low population levels the assumption that we can treat
the population as having uniform access to resources (or be
uniformly available to predators) breaks down;
• High population—If a niche in a cell is represented by IB

agents and the number of individuals exceeds a (higher)
nominated value, the biomass those agents represent should
be subsumed by the distribution in the local SD submodel.
The change in representation is attractive here for two reasons:
an equation-based representation will be much faster, and SD
submodels are arguably simpler to calibrate;
• Starvation risk—If the mean amount of time an animal in a

cell spends hungry in a cell exceeds half of Aω (or some other
nominated time), the prey biomass must convert to IB agents
if it isn’t already so (bearing in mind that this isn’t pertinent
for fruit). This mean is calculated by averaging the means of
each animal in the cell. If this is triggered, it indicates that the
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Algorithm6 | Basic processing pass for herbivores and carnivores

if (�indA > rnd0,1 ) ∨ (Hungry ≥ A�) then
DIE

end if

PreyList← PREYPRESENTA(Locus,Mass)
if Sated ≥ 0 then

Mass← Mass+ GROWTHA(mass, δt)
else if (Hungry ≥ 0) ∧ (len(PreyList) > 0) then

Sated← EAT(PreyList,AEatLimit,mass)
Hungry← 0
ForageCt← 0

else if (Hungry ≥ 0) ∧ len(PreyList) = 0) then
FORAGE

ForageCt← ForageCt+ 1
else if (Hungry ≥ AmoveT) ∨ CROWDEDA then

MIGRATEA(Locus)
else

if (mass ≥ ARepSize) ∧ (ARepP ≥ rnd0,1 ) then

REPRODUCEA(Locus)
end if

end if

biomass of the prey species is sparse enough that homogeneity
assumption is unlikely to hold;
• Relative biomass—If the biomass available for predation is

represented in a local SD agent and its density drops below
some proportion of the minimum required to support the
predators in the domain, the prey species should convert its
biomass into IB agents and, if the predator is represented by a
SD agent, it should also convert to an IB form. If the biomasses
are such that the effective predation rate is unsustainable, the
mixing assumption is unlikely to hold.

The pertinent data for conditions will be periodically reported to
the monitor through a set of status trees. The trees are able to
represent single entities, nested entities, and aggregates equally
well, and can preserve structural information which may also be
used in the comparison of these trees. One of the basic elements
we can easily incorporate into a submodel’s status tree is the
agent’s own assessment of its competence relative to its state-
vector and its local conditions. This measure of “self-confidence”
can probably be maintained at little computational cost for most
agents, andmay be themost significant component in amonitor’s
assessment. The high and low population level conditions can
clearly be determined by the agent in question; it can set its
level of self-confidence upward or downward as appropriate.
Starvation can also be encoded in the relevant node of an agent’s
status tree, but since starvation alone may not indicate a problem
with the way the entity is represented, it probably wouldn’t
reduce the value for its confidence.

A starvation triggermay usually arise as a natural consequence
of the population dynamics, but it may also occur when there
is a mismatch in representations which has not been adequately
addressed in the design stage. The final condition based on the
relative biomasses is one which properly lies in the realm of the
monitor—it would be quite inefficient for each of the candidate

animals to be querying their prey for available biomass, summing
the result, and then noting the need for change.

The monitor will primarily use the confidence values
associated with agents and their niches, and the distance from
trees which describe the state of the model or its set of submodels
to trees which describe “known good” configurations. With
data obtained directly from the agents in the system and from
alternative representations it generates status trees,

• τ̌
6
sn, is a candidate status tree tied to a specific configura-

tion. The serial number, sn, ties it to a configuration with that
serial number,
• τ̌

6
d , is a candidate tree which represents the current state

of a domain,
τ

6
t , an aggregate tree for the whole domain at time t,

τ
6
SD(n),t , aggregate trees for each cell, n ∈ {1, . . . , 9},

τR(i),t , specific status trees for each agent,
τR,t , specific status trees for a representation R for each

representation associated with a niche,
and

τ̂R(i),t , candidate trees for all possible representations of
each agent i,

at the beginning of each of its steps. The model may have a mix
of SD and IB representations, and some of the trees will have
to incorporate data from many agents (τ6

t , any of the τ̂R(i),t ,
and τR,t , for example). A candidate tree is a status tree which
represents an alternative submodel in a niche, and candidate
trees are generated for specific agents and for each niche. When
the monitor begins to generate status or candidate trees for a
given agent, it first looks to see if it has generated an appropriate
tree already. If it finds one, it incorporates or adjusts the tree
appropriately; perhaps by incorporating the agent’s biomass and
size into the tree’s data. We will also denote the configuration of

a domain (global or local) with τ̌
6
c where c identifies the domain

in question.
The monitor assesses the trees by calculating aggregate values

of particular attributes, comparing the trees’ divergences from
allegedly ideal configurations, and by looking how uniform
groups are – groups of individuals that are all very similar are
good candidates for simpler representations.

We can calculate the average confidence value from any of
these trees by evaluating

〈mask(τ , confidence, 0)〉

supp(mask(τ , confidence, 0))
,

for example. The trees and functions to manipulate them are
described in the Appendix(Supplementary Material).

Now let us consider what a simulation might look like.
Figure 3 provides an overview of the configuration of the system
as our hypothetical simulation runs. The model begins with
eleven agents (not counting the monitor). The monitor runs its
first step generating the status trees: τ

6
0 , which characterizes

the model in aggregate, τ6
SD(0),0, . . . , τ

6
SD(9),0, which record the

aggregate state of the 10 SD submodels, the aggregate status tree
for the IB agent, τ

6
IB(0),[9], status trees for the SD submodels:
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FIGURE 3 | The color of the p,h, and c indicate an agent’s current

representation within a cell at various points in the description of a

simulation. In each, a black symbol indicates that the biomass of plants (p),

herbivores (h), or carnivores (c) is modeled with the global SD agent, a blue

symbol indicates that the biomass is modeled with a cell’s SD agent, and red

indicates that an IB model is being used. Symbols composed of two colors

indicate that more than one representation is currently controlling portions of

the relevant biomass. The initial configuration of the model is represented in

(A). Each of the subsequent panels (B–H) represent snapshots of the

changing configuration during the simulation.

τSD(0),0–τSD(10),0, the status tree for the lone carnivore,
τ IB(11),0, followed by the trees which represent alternative agents:
τ̂SD(0),0–τ̂SD(10),0 and τ̂ IB(11),0. As mentioned earlier, there
is only the single tree for agent 11 (the carnivore) since its
alternative representation is embodied in τ̂SD(10),0. During the
simulation a simulated fire will occur.

The first steps whichmust be taken before ranking of potential
configurations is to find the sets of candidate trees which best
approximate the current configuration at both the global and cell
levels. We do this by calculating a similarity index or a distance
which indicates how close each of the candidate trees are to
the configuration of each of the domains. There are many ways
we could do this: for an index which only considers structural
similarity we might use something like the simple function

ssim(c, τd) =
overlap(c, τd)

max(‖c‖⊺, ‖τd‖⊺)
,

but for a more comprehensive treatment which factors values
which are incorporated into the candidate and status trees
we might apply the 1(,) or dist functions described in the
Supplementary Material. The dist function is a well-defined
distance over the vector space of trees, while the 1(,) function is
an index of similarity that incorporates structural characteristics
as well as the numerical distance between compatible subtrees.
To refine such an analysis we could apply mask and mask
to select only the relevant parts of the candidate and status
trees.

So to assess the configuration of a domain, we would use our
chosen measure to construct a set of the results of applying an
optimization function, opt, to each of the candidate trees and
their similarity to the current configuration. So if S is the set of all

serial numbers for candidates, τ̌6
d is the status tree fo the current

domain, and, we calculate

(C) = {(δ(τ̌6
d , τ̌

6
i ), i) : ∀i ∈ S},

and this is used to generate

C∗ = {(opt(τ̌6
i ), c, τ̌

6
i , i) : ∀(c, i) ∈ C}

where δ stands for our chosen measure of similarity.
The elements in C∗ are then assessed by the monitor, and

the best permissible candidate is selected. If there is only a small

improvement on the current configuration, τ̌6
d , the monitor will

leave the configuration as it is; otherwise, the monitor would
then manage the creation of new agents to replace less optimal
representations and manage the exchange of state data.

So the early phase of our simulation might begin like so:

1. Both of the aggregate trees τ
6
0 and τ

6
SD(9),0 indicate that there

is an IB agent in their domain and that their SD representa-
tion does not perform well for the indicated biomass. Both
the status and candidate trees for agent 11, τ11(0),,τ IB(11),0 and
τ̂ IB(11),0, indicate that it is confident that it can represent the
biomass, and that there are no immediate unmet requirements
from other agents. (Figure 3A).

2. The monitor assesses the trees against a prepared set of con-
figurations: each of the alternative configurations (including
the current configuration) is compared to a set of prepared,

“efficient” configurations. The configuration of cell 9, τ̌
6
9 ,

notes global SD representations for plants and herbivores.
This configuration is ranked lower than the alternative which
has an individual based model for carnivores and a local
SD submodel for the other entities in the cell. The monitor
makes this change in configuration, and informs the global SD
agent that it is no longer controlling the biomasses in cell 9
(Figure 3B ).

3. The model may run for some time without any change in
configuration. Both the herbivores and carnivores breed. The
increased execution speed between C and D in Figure 4

is a result of a change in representation: the number
of carnivores, recorded in τ

6
SD(C),t4

, reaches a point that

prompts the monitor to convert them to an SD form
(Figure 3C).
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FIGURE 4 | Normalized indexes of execution speed (black) and fidelity

(red) the against configuration changes through time associated with

Figure 3.

4. The biomass of carnivores has increased significantly by the
time the model reachesD in Figure 4, and they are now eating
all the young herbivores; as a result the carnivore population
is now prey-limited, and the Relative biomass condition is
triggered. Both the carnivore and herbivore populations are
converted to IB representations. Notice that dynamics in the
fidelity in Figure 4 around D arise from the collapse of the
carnivore’s prey, followed by the increase in fidelity after the
representation change atD (Figure 3D).

5. A carnivore, agent 43, has been hungry ((Hungry ≥ AmoveT)
and has migrated to the cell 5 (noted in τ IB(43),t5). As occurred
in cell 9 at step 2, the monitor converts plants and herbivores
in cell 5 to a local SD representation, with IB carnivores
(Figure 3E).

6. A lot of activity has occurred in this monitor interval: a
Starvation risk is triggered in cell 9 because too many of the
carnivores are hungry (many of the τ IB(n),t7 trees indicate
that the elapsed time without eating is greater than Hungry).
There has been more migration to cells 5,6 and 8 from cell
9 (more of the τ IB(n),t7 trees indicate residence in new cells),
and a chance migration has introduced a carnivore into cell 3
from cell 5. Cells 3,6 and 8 are converted to local SD and IB
representations as happened in step 3 (Figure 3F).

7. The population of carnivores in cell 9 crashes as a result of

migration and the scarcity of prey, (reported in τ̌
6
9 ) The IB

juvenile herbivores are patchy and harder to find, so only a
few carnivores are getting enough to eat. There will be many
τ IB(n),t10 which indicate hunger or death due to starvation.
The monitor cleans up the dead agents. There are chance
migrations from cell 5 into cells 4 and 7 (in τ

6
SD(4),0 and

τ
6
SD(7),0). A fire begins in cell 8, moving through cell 5: biomass

loss in all niches causes all niches to shift to IB representations
(Figure 3G).

8. Juvenile herbivores are reappearing in cell 9, but the available
plant biomass (recorded in τSD(9),t11) has dropped due to
reduced germination rates, triggering the Relative biomass
condition in cell 9 causing the plants to convert to an IB repre-
sentation. The fire in cell 8 has killed all animal biomass in the
cell; they do not return to the global SD representation because

their status trees diverge by too much. Instead, they convert to
local SD representations (which represent zero biomass quite
efficiently). Plants remain as IB agents The fire spreads to
cell 5. Figure 4 shows a modest increase in execution speed
between G and H due to the population losses associate with
the fire (Figure 3H).
• . . . the simulation continues.

4. Discussion

Adaptive hybrid models can be constructed so that each
submodel is aware of its other representations and is able to
change form as appropriate (Gray and Wotherspoon, 2012).
This approach requires each model to have a reasonably close
coupling with its alternative representations, and the burden
of instrumenting (and maintaining) the necessary code quickly
becomes untenable in complex models. Worse, it removes the
possibility of more subtle configuration management that can
accept poor performance in one part of a system in exchange
for much better performance elsewhere. It seems that a guiding
principle should be that in an adaptive hybrid model, each repre-
sentation should know only as much about the rest of the model
as it must know, and no more. The facility for a submodel to
delve into the workings of other submodels, or the workings of
the model as a whole, decreases the clarity that hybrid modeling
makes possible, and opens avenues for unwanted, unanticipated
behavior.

The major argument in favor of closely integrated repre-
sentations for submodels is that it makes common (or at least
similar) state variables easy to maintain across representations,
even in the face of many representation changes. It is an attractive
arguement, but the long term consequence is an ever growing
burden of code maintenance.

Constructing hybrid models isn’t significantly more complex
than constructing traditional models. Adaptive hybrid models of
the sort described in this paper will require a more significant
investment in the design of a monitoring routine, and in the
crafting of appropriate sets of candidate configurations. The
transition dynamics such a model will exhibit depend on the
sets of candidate configurations, and it seems likely that a
combination of analysis and experimentation may be the most
effective way to develop a set of useful configurations. The hybrid
models associated with (Lyne et al., 1994; Little et al., 2006;
Fulton et al., 2009) were built by extending the repertoire of
ways of representing elements of the ecosystem or the anthropic
components rather than wholescale redesign and replacement.

We can imagine an ideal adaptive hybrid model, where any
state information which must be passed on is accompanied by an
appropriate, opaque parcel of code to perform the maintenance.
As long as the monitor knows what information each of these
maintenance interfaces needs, they can be updated each time the
monitor interrogates the agent which has control of the state data.
This is a readily attainable ideal: many programming languages
support first class functions with closures, and these features are
precisely what we need to address this problem. Scheme, Python,
ML, Common Lisp, Lua, Haskell, and Scala all have first order
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functions with closures and, hence, the capacity to build model
systems with this capability.

The state vectors and their supporting maintenance
procedures can be treated as data and passed in lists associated
with the status trees. If a monitor decides to swap represen-
tations, the accumulated lists of maintenance functions may
be passed on to the new representation. A new representation
inherits a maintenance list with variables that are part of its
native state, it can claim them as its own and continue almost as
though it had been running the whole time. In this way, a new
representation doesn’t need to know anything about its near kin,
only that it must be able to run these black-box functions that
come from other submodels, and to pass them on when required.

It may seem that this concentrates the global domain
knowledge in the monitor, but this is not really the case. The
monitor knows how to blindly query agents for state data and
to the data in maintenance procedures. The monitor also knows
how to recognize and rank characterizations of the states of
the submodels or niches and to use those data to select a
configuration.

The domain knowledge is encapsulated in the sets of targets
the monitor matches the current configuration against, and in
the heuristic triggers (such as Starvation risk) associated with a
submodel or niche.

The essential problems any monitor is likely to deal with
are problems of set selection (recognition, pattern matching. . . )
and optimisation. These are common tasks: web searches, voice
recognition, and route planning have become ingrained parts of
modern society. Like route planning, themonitor needs to be able
to reassess the “optimal” strategy as an ongoing process.

There are many options to choose from to rank configura-
tions. A few of the likely candidates include

• Using an objective function to evaluate each of the possible
configurations,
• Selecting a configuration based on decision trees,
• Using neural nets to match model states and direct us to an

appropriate configuration,
• Using Bayesian networks to determine the most likely

candidate,
and
• Using support vector machines to select the target/configura-

tion pairs.

In writing this paper, one of the vexing difficulties has been
finding a suitable mathematical representation which would
allow comparisons between configurations, submodel states and
the states of niches. We need proxies that describe models
and configurations of models in a way that we may readily
understand, manipulate and reason about, and being able to
deal with submodels which are, in themselves, adaptive hybrid

models, seems to be a naturally desirable trait. The vector space
of trees described in the Appendix (Supplementary Material) has
some nice properties, andmay be directly useful with many of the
options above: it forms a commutative ring (without necessarily
having a unit), and would naturally inherit the body of techniques
which only require the properties of such a ring.

5. Conclusion

There are still some major obstacles to developing a fully
fledged adaptive hybrid model which is generic enough to tackle
instances as varied as marine ecosystem modeling and urban
planning. Foremost is a relative lack of real examples. The
simulation of the hypothetical model2 has tried to expose the
character of an adaptive hybrid model which uses a monitor
to manage the configuration of the system. There are parts of
the description of the example system which are conspicuous by
their absence; this is largely because they lie in almost wholly
uncharted water. As a modeling community, we need to develop
a wide range of approaches to how amodel may assess the relative
merits of a set of configurations. Many of the mechanisms we
need for adaptive hybrid models already exist, but are found in
domain specific models, and in wholly different domains, such as
search engines and GPS navigation.

Establishing a suitable mathematical representation for
model configurations which gives us access to well-developed
techniques for set selection, pattern recognition and component
analysis would seem to be almost as urgent as adaptive hybrid
examples of real systems.
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