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“When the information changes, I change my mind. What do you do sir?”

–paraphrased from Paul Samuelson (1970)1.

Introduction

Physics-based numerical models designed to study processes on the surface of the Earth are com-
monly built with conservation laws. Yet conservations laws are based on a treatable subset of all
physical and biological processes operating in the system of interest, and empirical relationships
are always required to fully describe systems (and provide mathematical “closure”). In contrast to
conservation laws, empirical expressions used in model construction are inductive, and based on
observations of phenomena.

Any model that requires empirical expressions is also subject to revision as the empirical param-
eterization is refined: all empiricism is open to revision by corroborating or conflicting data. As
more data becomes available, and more degrees of freedom are explored, it becomes harder to
incorporate all available data into a single optimal empirical predictor. We argue in this con-
tribution that empirical parameterizations for numerical models should be constructed using
machine learning techniques because these techniques are built to operate on large, high dimen-
sional datasets. Machine learning, in the context of this paper, defines a suite of algorithms used
to develop predictive relationships (correlations) using a set of input data. Examples of commonly
used machine learning techniques in the Earth sciences are artificial neural networks (e.g., Maier
and Dandy, 2000; Pape et al., 2007; van Maanen et al., 2010), regression trees (e.g., Snelder et al.,
2009; Oehler et al., 2012), Bayesian networks (e.g., Aguilera et al., 2011; Yates and Le Cozannet,
2012), and evolutionary algorithms (e.g., Knaapen and Hulscher, 2002; Ruessink, 2005; Goldstein
et al., 2013). Machine learning techniques offer insight and are high-performance, reproducible,
and scalable. The inclusion of powerful inductive techniques like those provided by machine learn-
ing offers the opportunity to enhance the predictions obtained from deductive approaches. Addi-
tionally the use of machine learning often leads to further insight. The use of empiricisms built
from machine learning in a physics-based model results in a “hybrid” model.

Combining the strengths of inductive (data-driven) and deductive (physics-based) approaches
in a single hybrid model has been suggested as a valuable step forward in model development
because of increases in accuracy (e.g., Babovic et al., 2001; Hall, 2004) and speed (Krasnopolsky
and Fox-Rabinovitz, 2006). An additional benefit is the direct coupling of models to data,
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especially valuable for exploratory models (Murray, 2003).
Several studies have already used this approach, embedding
machine learning components directly in models (e.g., Jain and
Srinivasulu, 2004; Corzo et al., 2009; Goldstein et al., 2014; Lim-
ber et al., 2014) or during model calibration (Knaapen and
Hulscher, 2002, 2003; Ruessink, 2005). The focus of this article
is on machine learning components that are directly embedded
within physics-based models. We believe the further use of this
“hybrid” approach will result in more accurate model compo-
nents (i.e., individual empirical predictors) and more accurate
models. We do not intend to cast machine learning solely as
a data fitting procedure. There is a rich set of problems where
machine learning is applicable, but a clear use is in optimizing
the fit of empirical predictors in nonlinear multivariate datasets.

Five main points highlight the advantages of this hybrid
approach: These benefits are not without costs, mostly in the
form of extra work/time and problems associated with less-
rigorous usage of machine learning. As a convention we refer to
machine learning model components as “parameterizations” and
the hybrid model as the “model.”

Machine Learning Highlights

“Theory-Less” or “Data-Less” Model

Components

Building machine learning predictors is usually motivated by a
lack of theory or a perceived inadequacy in theory. Parameteri-
zations that do not have an accurate or well-developed “theory”
might negatively reflect upon model predictions because they
are incorrect, or poorly parameterized. As an example, Goldstein
et al. (2013) built a new predictor for bedforms generated under
wave action motivated by the fact that no predictors were explic-
itly tested in conditions of large grain size variation and strong
wave conditions. This predictor was eventually used in a larger
“hybrid” numerical model with success (Goldstein et al., 2014).

Machine learning predictors also highlight heuristic or theo-
retical elements of a numerical model that do not have sufficient
data to test. Both types of problems (lacking theory and lacking
data) can motivate future research, specifically theory creation
and targeted data collection.

Machine Learning Can Be Used to Gain

New Theoretical Insight

Machine learning techniques on a dataset may provide theoreti-
cal insight. Crutchfield (2014) has termed this process “artificial
science,” where theoretical insight is derived directly from data.
New machine learning techniques suggest that this is possible
(Schmidt and Lipson, 2009). In this way developing predictors
might provide theoretical insight into model or system behav-
ior, at the very least giving new hypotheses to test. The wave
ripple predictor developed by Goldstein et al. (2013) provides
a new, inductively derived predictor for ripples under various
grain sizes and forcing conditions. This new mathematical rela-
tionship describes an observed relationship (between grain size,
wave forcing, and ripple size) derived from observations. This

new relationship (an inductive statement) provides a testable
hypothesis.

The Possibility for Emulation

Beyond detecting a new theory, hypothesis, or physical relation-
ship, machine learning may provide a more parsimonious empir-
ical relation than existed previously (e.g., Tinoco et al., 2015).
This could help to speed up model runtime, a main goal of pre-
vious hybrid model work where the use of artificial neural net-
works allowed for emulation of entire components of a global
climate model based on physical processes with no accuracy loss
(e.g., Krasnopolsky and Fox-Rabinovitz, 2006). The computa-
tional gain associated with the use of a hybrid model cascades
into a series of additional advantages including the possibility
of simulating more scenarios, decreasing grid size or exploring
finer-scale parameterizations.

Machine Learning Outperforms Arbitrary

Curve Fitting

Multidimensional empirical parameterization are often built by
assembling the data, collapsing the data to a two- dimensional
plane, and fitting a user–defined function through the data cloud.
Several steps require “user input,” and may be arbitrary. First,
the collapse of the multidimensional data onto a 2D plane may
require developing nondimensional groups. Though the number
of nondimensional groups is mandated by the well-known Buck-
ingham’s Pi theorem, the actual makeup of each group is not,
and is often guided by utility, physical reasoning or user intu-
ition (e.g., Bridgman, 1922). Second, a user defined curve must be
selected to fit to the data. This curve may not be the most optimal
basis function to fit to the data.

Both of these ambiguities are avoided in machine learning
because: (1) user input can be the raw data parameters, or all
possible nondimensional parameter groupings (e.g., Tinoco et al.,
2015) and (2) machine learning often does not require the use of
a set basis function, or the basis function is sufficiently flexible to
allow the approximation of any arbitrary function. These benefits
suggest that machine learning is a powerful set of tools for devel-
oping parameterizations when data is high-dimensional, noisy,
and nonlinear: these techniques outperform traditional curve fit-
ting for their ability to truly provide an optimal curve to be fit
to data.

Machine Learning is Reproducible and

Scalable

Machine learning is inherently reproducible if the methodology
is clearly described and the data is open and available. Repro-
ducibility relies strongly on researchers to provide the exact data
used as training data (to “teach” the learner) and those used to
test the model. Any specific initialization is also required.

Because machine learning techniques are repeatable, they are
also scalable. As new data is collected, it can be integrated into
the machine learning routine to develop a new, more optimal
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predictor. Not all new data is equally relevant, and Bowden et al.
(2012) present a technique to determine if the new data extends
the range of the predictor.

Caveats and Open Problems

Several issues remain when using machine learning. Predictors
can become overfit if too much data is shown to the learner, or
the optimization routine is performed without bounds. Proper
time to halt an optimization, and other relevant methods to avoid
overfitting, are topics of active research (e.g., Maier and Dandy,
2000; Schmidt and Lipson, 2009; O’Neill et al., 2010; Tuite et al.,
2011). Users should invest energy and time to mine the literature
for these techniques.

Often data used to train the model is not selected optimally.
We have previously advocated a deliberate sampling strategy
to select data from the entire range of phase space available
(e.g., Goldstein and Coco, 2014; Tinoco et al., 2015), as have
others (e.g., Bowden et al., 2002; May et al., 2010; Wu et al.,
2013). Predictors tend to be less overfit and more optimal when
sampling is a considered process. This step adds extra work
(especially to thoroughly document the process for repeatabil-
ity), but we believe it is needed to develop the most optimal
predictor.

Operators of machine learning algorithms should be experts
in the data being examined. Nonphysical predictors can often
appear as a result of regular usage of machine learning, data
and/or computational errors. These erroneous results must be
understood and manually discarded. We acknowledge that this
adds a level of subjectivity to the analysis, but this subjectivity is
also present in traditional empirical techniques (e.g., why did a
researcher choose to fit the data using one function vs. another?).
As a result, thorough examination of the physical correctness
of the predictor should be performed, and expert knowledge
should be exercised before machine learning results are accepted
as correct and inserted into a hybrid model.

When combining machine learning components with
physics-based model components users should be wary of
the general structure of the predictor, and the potential for
competing or mismatched nonlinearities in model compo-
nents. We have personally encountered the mismatch between
machine learning derived and theoretical components in a
numerical model (Goldstein et al., 2014). This mismatch initially
restricted our ability to understand sensitivity over a broad
range of parameter values. We stress that it is always critical
to understand and investigate how model components will
interact.

Conclusion

Models constructed to study Earth surface processes are often
intended to study large-scale, long-term phenomena. Little data
may exist to parameterize long time-scale processes. However,
ample data often exists for smaller space- and time- scale
processes. Earth surface models should leverage all available
data to build empirical parameterizations by adopting a hybrid
approach.

Machine learning tools represent our best ability to process
empirical data in a reproducible way. Best practices (explicit
mentions of data selection and learner initialization) allows for
reproducible results. The process of developing these predic-
tors also explicitly highlights known gaps in knowledge. We
believe these benefits shouldmotivate the widespread adoption of
hybrid models that combine machine learning approaches with
physics-based models.
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