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The 2015 policy to incorporate sex as a biological variable (SABV) enhanced
biomedical research and allowed for better predictions to be made regarding
clinical outcomes and environmental health risks. This review aims to make a
case for the next SABV—stress as a biological variable. While the body is
equipped to respond to acute stress, chronic stress can overwork physiologic
systems, leading to allostatic load, or progressive wear and tear on the brain
and body. Allostatic load has many implications on immune, cardiovascular,
and metabolic function, and alters xenobiotic metabolism of environmental
and pharmaceutical chemicals. However, historically disadvantaged
communities and populations are at an increased risk of harm due to elevated
exposure to psychosocial stressors and environmental pollutants. Therefore,
the unique biological responses among populations that experience this
double hit should be considered in toxicology risk assessments. Among
current approaches, allostatic load measurements are optimal as a framework
that captures health disparities and a tool that quantifies cumulative stress
burdens that can be integrated into health data for better risk predictions.
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1 Introduction

In 2015, the National Institutes of Health (NIH) released the sex as a biological

variable (SABV) policy to address the historical exclusion of female humans and

animals from biomedical research. Many environmental health studies have

demonstrated that sex is an important biological variable that influences xenobiotic

exposure, metabolism, and health effects. In Rebuli et al., for example, we identified

sex-specific inflammatory responses to woodsmoke exposure, that were not discernable

when analyzing aggregate data (1). As a result of the SABV policy, which requires

researchers to factor sex into both human and vertebrate animal study design, better

predictions can be made regarding clinical outcomes and environmental health risks.

However, stress, which affects all bodily systems and is another major biological

variable that influences individual-level susceptibility to both clinical and environmental

outcomes, is not considered in the design of clinical and pre-clinical studies. While the

body is equipped to manage small or infrequent doses of stress, chronic stress can alter

bodily processes, making individuals more vulnerable to other stressors, including

environmental chemicals. Because of the broad impacts of stress on the body and the

presence of persistent psychosocial stressors in minority and low-income communities,

it is vital to understand how stress modifies responses to xenobiotic exposures, ranging

from environmental exposures to pharmaceutical drugs, to improve comprehensive risk
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assessments. Additionally, as climate-related changes drive

increased environmental exposures, it is crucial to integrate stress

into environmental research to fully capture the complexities of

environmental health risks and disparities. Therefore, this

review discusses the importance of stress as a biological variable

and the use of allostatic load to integrate chronic stress-related

dysregulation into toxicology and risk assessments.
2 The biology of stress and allostatic
load

The neuroendocrine stress response is implicated in the

physiological effects of chronic stress. Stressful stimuli activate

the sympathetic-adrenal-medullary (SAM) to release

catecholamines, primarily epinephrine and norepinephrine, from

the adrenal medulla which interact with alpha- and beta-

adrenergic receptors in the central nervous system and smooth

muscle cells to exert a “fight or flight” response characterized by

increased blood pressure, heart rate, cardiac output, oxygen

consumption and lipolysis among other physiological responses

(2). The hypothalamus-pituitary-adrenal (HPA) axis is also

stimulated to produce corticotrophin-releasing hormone, which

triggers adrenocorticotropic hormone (ACTH) synthesis from the

pituitary gland. ACTH acts on adrenal glands to release

glucocorticoids, primarily cortisol, into circulation.

Glucocorticoids affect various systemic processes in response to

stress, including altering lipid and glucose metabolism and

immune responses according to the duration and intensity of

exposure. While SAM and HPA activation is an adaptive

response following acute stress, prolonged exposure to

psychosocial and environmental stressors can chronically activate

the HPA axis and stress responses, leading to excess

glucocorticoid and catecholamine production and downstream

adverse effects on immune, cardiovascular, metabolic, and

nervous systems (3). Over time, chronic stressors impair the

body’s capacity for effective regulation and adaptation, increasing

the risk for maladaptive responses, and allostatic load, the

progressive physiological ‘wear and tear’ on the brain and body

that pre-dispose individuals to disease through deterioration of

physical and mental health. As sub-clinical changes to organ

systems persist, allostatic overload occurs in which chronic stress

results in morbidities and mortality (4, 5).

Traditionally, stress was defined as a threat to homeostasis, or

the dynamic equilibrium maintained by physiological systems

through immediate, short-term adjustments to restore balance to

a fixed set point. However, allostasis, introduced by

neuroscientist Peter Sterling and epidemiologist Joseph Eyer,

expands on this concept by emphasizing the body’s ability to

achieve stability through adaptive changes in response to stress.

Unlike homeostasis, which relies on adhering to a limited set

point, allostasis describes the adaptive mechanisms that allow

physiological systems to function within a dynamic operating

range in response to stress (6, 7). However, both homeostasis

and allostasis fail to account for the long-term effects of chronic

stress, which causes long-term activation of allostatic processes.
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Over time, chronic or prolonged stress exert wear and tear on

organs and tissues, where they are unable to recover from or

adapt to ongoing stress. As a result, the body begins brace for

prolonged exposure to stress by operating at new, altered set

points (6, 8, 9). Allostatic load (AL) was defined by

neuroscientist Bruce McEwen and physiological psychologist

Eliot Stellar to encompass this stress-induced strain on the body

that predisposes individuals to disease (Figure 1B) (6).

Allostatic load is both a framework and a tool to measure the

effects of cumulative stress on the body. Teresa Seeman and

colleagues were the first to develop an operational method for

allostatic load which involved measuring biomarkers across

various systems and integrating those markers into a composite

score (10). These biomarkers include primary mediators

(epinephrine, norepinephrine, cortisol, and DHEA-S), which

have direct correlation with adrenal function, and secondary

mediators, which represent the organ effects of stress on

cardiovascular (systolic and diastolic blood pressure) and

metabolic (waist-hip ratio, total cholesterol-HDL ratio,

glycosylated hemoglobin, HDL cholesterol) systems. Higher

allostatic load scores, measured in a cohort of older men and

women, correlated with increased risk for poorer cognitive and

physical function, cardiovascular disease, and mortality (10).

These results were corroborated in a 5-year follow up study that

also showed composite allostatic load scores were a better

predictor of mortality and declines in physical functioning than

metabolic markers or primary markers alone (11). Allostatic load

continues to serve as an objective measure of cumulative stress in

research and has been studied in the context of various physical

and mental health outcomes including ageing, increased risk for

cardiovascular diseases, diabetes, preeclampsia, musculoskeletal

disorders, depression, epileptic seizures, cancer, anxiety disorders,

and health risk behaviors (5, 12).
3 Allostatic load as a risk for immune,
metabolic and cardiovascular diseases

As illustrated in Figure 2, the physiological wear and tear from

allostatic load can increase susceptibility to other physical and

chemical stressors, including environmental pollutants, by

impairing immune function, and increasing risks for metabolic

and cardiovascular diseases (13). Allostatic load is characterized

by the excess production or release of primary stress hormones,

which regulate the immune system through mediating leukocyte

distribution. Epinephrine and norepinephrine act together to

mobilize immune cells into the bloodstream and epinephrine and

cortisol influence the trafficking of immune cells to specific

tissues or sites of injury (14). However, stress induced immune

responses depend on the duration and severity of the stress

response (3). Under acute stress, energy stores are mobilized, and

the immune system ramps up as the body prepares for wound

healing or defense against invading pathogens (15). This is

characterized by the mobilization of leukocytes into the blood

from various compartments, including spleen, bone marrow,

lung, and lymph nodes, and the subsequent redistribution of
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FIGURE 1

Graphical depictions of the interplay between (A) social determinants of health, (B) allostatic load, (C) environmental exposures and (D) stress induced
susceptibility to environmental pollutants.
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leukocytes to tissues and organs where they recruit other immune

mediators, such as cytokines. After the initial trafficking of immune

cells, blood monocytes, lymphocytes, T helper cells, cytotoxic

T cells, B and NK cells continue to decrease while blood

neutrophil counts increase (14, 16). In contrast, chronic stress

reduces the number of circulating lymphocytes and reduces

immune cell responsivity, which may indicate glucocorticoid

resistance (14). Additionally, chronic stress has been shown to

suppress other immune mediators, including cell mediated

immunity, antibody production, NK cell activity, and leukocyte

proliferation, which is believed to be induced by chronic
Frontiers in Environmental Health 03
inflammation (17, 18). Compromised immune function can

increase susceptibility to environmental exposures, which also

have various harmful effects on the immune system, including

generating oxidative stress that damage DNA or cellular proteins,

activating pro-inflammatory pathways, or suppressing immune

cell activity (19–21) (Figure 2).

Additionally, glucocorticoids have regulatory effects on

cardiovascular and metabolic systems (22). For the cardiovascular

system, glucocorticoids increase sensitivity to catecholamines, such

as epinephrine and norepinephrine, which elevate heart rate and

blood pressure, and directly affect the renin-angiotensin-aldosterone
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FIGURE 2

Schematic illustrating biological mechanisms mediating potential interactions between chronic stress and environmental exposures.
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system (RAAS), which regulates blood volume, electrolyte balance,

and endothelial function (22, 23). Excess glucocorticoids can also

lead to metabolic syndrome, characterized by high blood pressure,

obesity, low HDL cholesterol, elevated triglycerides, and
Frontiers in Environmental Health 04
hyperglycemia (24). Specifically, glucocorticoids drive changes in

eating behaviors, promoting the consumption of less nutrient, but

more palatable foods, increase visceral fat deposition in the liver

and vascular tissue, and contribute to insulin resistance and
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elevated blood glucose levels (25, 26). Therefore, in a state of allostatic

load, excess glucocorticoid production disrupts normal metabolic and

cardiovascular function, driving the development of Type-2 diabetes,

hypertension, obesity, atherosclerosis and cardiovascular-specific

mortality (25, 27–29). Because chronic stress and environmental

chemicals act through similar mechanisms, co-exposure amplifies

their cumulative impact on cardiovascular and metabolic systems

(3, 30, 31). This is demonstrated by studies linking transportation

noise, a prevalent socioeconomic stressor, and air pollution to

major adverse cardiovascular events (MACE) (32, 33). Chronic

environmental stressors, such as transportation noise, stimulate

stress-related neurobiological activity, including increased amygdala

metabolic activity, which is central to stress perception (34–36).

Elevated amygdala activity increases arterial inflammation, a critical

driver of cardiovascular disease and metabolic conditions such as

hypertension, type-2 diabetes and obesity (35, 37). Air pollution,

such as PM 2.5, also exacerbates arterial inflammation and

promotes leucopoietic tissue activity, contributing to MACE risk

(38, 39). Air pollution also increases risks for metabolic diseases

such as diabetes and stroke (39). When combined, exposure to

both stressors and pollutants amplify these harmful pathways,

significantly increasing susceptibility to cardiovascular and

metabolic diseases (33). The combined impact of transportation

noise and elevated PM 2.5 highlights how chronic stress amplifies

susceptibility to environmental exposures, compounding

their effects on already compromised systems and increasing the

risk of harm.
4 Stress and xenobiotic metabolism

In addition to increasing environmental susceptibility through

modifying organ function, stress can also modify xenobiotic

metabolism through altering cytochrome P-450 (CYP) enzymes,

the primary enzymes involved in the metabolism of endogenous

and exogenous chemicals (Figure 1C) (40). Glucocorticoids are

known regulators of CYP enzymes, specifically belonging to the

CYP1A family, which metabolizes polycyclic aromatic

hydrocarbons, persistent organic pollutants present in air, water,

and soil (41, 42). Cortisol suppresses the hypothalamic-pituitary-

thyroid (HPT) axis through stimulating the release of

somatostatin, which inhibits the secretion of thyrotropin

releasing hormone (TRH) and thyroid stimulating hormone

(TSH), modifying thyroid-mediated regulation of CYPs.

Somatostatin also suppresses growth hormone secretion, which

further down-regulates insulin-like growth factor-1 and, thus,

alters insulin-mediated regulation of CYP enzymes (43).

Catecholamines are also capable of modifying CYP enzymes

through alpha- and beta-adrenergic receptor pathways (40).

Animal studies have demonstrated that psychological stress

suppressed CYP1A2 in rat liver and upregulated CYP2A5 in

mice (42). Another study showed stress increased the inducibility

of CYP1A1 and CYP1A2 by Benzo[a]pyrene, a polycyclic

aromatic hydrocarbon prevalent in urban and industrial areas

(44–46). The consequences of altered CYP function depend on

the location of the enzyme and the activity of the parent
Frontiers in Environmental Health 05
compound; however, a major risk is the potential of induced

enzymes to accelerate the formation of carcinogenic or highly

reactive species, increasing the toxicity of the parent compound

(47) (Figure 2). Overall, more research is needed to elucidate the

role of stress in modifying xenobiotic metabolism and assess

differences between the effects of acute and chronic stress.

Factors that alter the expression and function of metabolizing

enzymes can also affect the pharmacodynamics of various drugs.

Glucocorticoids can affect drug absorption by influencing

gastrointestinal function and blood flow. Stress decreases blood

flow to visceral organs while increasing blood flow to working

muscles, which may decrease drug absorption by the GI track

for orally administered drugs and increase absorption for

drugs administered intramuscularly (43). Additionally, because

distribution occurs most rapidly into tissues with increased blood

flow and least rapidly in tissue with decreased blood flow,

changes in blood flow can alter the distribution of drugs from

circulation into target tissues (48). Further, because cortisol

mobilizes free fatty acids, which have a strong binding affinity

for the same binding sites as drugs on human serum albumin, it

may displace drugs from albumin binding sites, increasing the

amount of unbound drug in circulation, which can result in

subtherapeutic or toxic plasma concentrations of drugs (49–51).

This effect has been reported for various drug types including

anesthetics, anticoagulants, and antibiotics (48). Pharmacologic

implications of stress may influence clinical trial success and

drug efficacy and safety, especially among racial and ethnic

groups that have higher circulating levels of glucocorticoids and

higher baseline allostatic load.
5 Disparities in allostatic load and
social determinants of health

Many studies have reported racial, ethnic, and socioeconomic

disparities in allostatic load, which are driven by “weathering,”

the hypothesis that minority populations experience early health

deterioration because of socioeconomic disadvantage (27, 52–56).

This accelerated health decline is often overlooked in research

studies, which can misinform health and disease predictions. For

example, one study observed that cohort selection bias in the

Study of Women’s Health Across the Nation (SWAN) resulted in

poor age of onset predictions for cardio-metabolic diseases,

which were significantly lower for Black and Hispanic women

compared to White women (57). Weathering is an outcome of

experiencing adverse social determinants of health (SDOH), non-

medical factors (neighborhood quality, access to education and

health care, economic stability, and social and community

support) that impact disease risk, mental health, life expectancy,

education and development, productivity, economic stability, and

overall quality of life (Figure 1A) (58–62). Adverse SDOH are

the legacy of discriminatory practices, such as redlining and

disinvestment, which created housing, economic, educational and

health inequalities in minority communities that are still felt

today (63, 64). Historically redlined neighborhoods across the

U.S. are not only associated with current markers of
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neighborhood disadvantage and elevated social stressors

(discrimination, crime, violence, and noise), but also correlate

with elevated exposure to pollutants (63, 65). Therefore, allostatic

load is useful for capturing the weathering effects of SDOH to

assess how they affect pollutant susceptibility and responses.
6 Allostatic load as a risk for
susceptibility to environmental
pollutants

Because of the effects allostatic load has on xenobiotic

metabolism, immune dysfunction, and cardiometabolic health, it is

plausible that allostatic load increases susceptibility to

environmental pollutants. This is further supported by

epidemiological studies reporting a link between adverse

psychosocial experiences, toxicant exposures, and greater risks for

adverse health outcomes. A study in infants reported that prenatal

exposure to both air pollution and maternal stress were associated

with lower orienting and regulation (OR) at 4months, which

predicted lower competence and increased behavioral problems at

12months (66). Other studies have found strong associations

between air pollution and asthma in children exposed to

community violence (67, 68). Similar associations were observed

among children from mothers with less than a high school

education, black children, and children living in geographic areas

with a higher percentage of black residents (69). Additionally, in

adults, strong associations have been found between high

psychosocial stress, PM2.5 exposure and systolic blood pressure (70).

Among the most impactful studies highlighting the link between

allostatic load and environmental disparities is a study associated

with the Baltimore Housing Mobility Program, which was designed

to address historic and contemporary housing discrimination. This

study demonstrated that removing factors causing allostatic load, by

moving families from high to low poverty neighborhoods with

increased access to resources (food, safe schools, etc.), decreased

symptoms and improved disease outcomes in children with asthma

(71). Interestingly, indoor PM2.5 and PM10 concentrations, as well

as levels of allergens, were less associated with changes in asthma

outcomes than markers of stress. These examples underscore the

impact stressful events, before and during one’s lifespan, can have

on susceptibility to environmental exposures and suggest that

interventions addressing causes of allostatic load can significantly

improve environmental health disparities.
7 Operationalizing allostatic load

Currently, operationalizing allostatic load is limited by the

substantial variability in scoring approaches used throughout the

literature. Since the introduction of the allostatic load score, the

number of primary and secondary biomarkers included in

allostatic load indices has grown from the original 10 to

approximately 60, with individual scores now incorporating a

variable range of 6–25 biomarkers (72). Most commonly,

biomarkers are converted into dichotomous variables using high-
Frontiers in Environmental Health 06
risk quartiles to assign risk. Typically, biomarkers in either the

highest or lowest 25% of the sample distribution are deemed high-

risk and assigned a value of 1, while “low-risk” biomarkers are

assigned a value of 0. The total allostatic load score then reflects

the sum of high-risk biomarkers for an individual (73).

Calculating high-risk quartiles based on the sample distribution

may skew results by baselessly weighing biomarkers from certain

biological systems more than others. Additionally, because the

sample distribution is study-specific, results can vary significantly

across studies due to study demographics, making it harder to

compare findings or establish thresholds for high allostatic load

(73). Alternatively, some studies use clinically-relavant cutoffs to

dichotomize biomarkers into high vs. low risk and compute

scores. However, many biomarkers lack established clinical cutoffs

and this approach may fail to detect subclinical changes that are

characteristic of allostatic load (73). Less common approaches

include calculating the sum or average of biomarker Z-scores and

summing dichotomous systems-level scores to generate an overall

allostaic load score (73). Because biomarker Z-scores are weighted

based on its deviation from the mean, biomarkers with greater

deviation will have a greater weight and impact on the overall

allostatic load score without proper justification (5). Translating

allostatic load scores into meaningful interpretations poses another

challenge. Allostatic load scores are often reported as either

continuous variables or categories (low, medium, or high) using a

variety of approaches, such as assigning scores above the median,

or in the highest quartile, as high or using arbitrary thresholds

based on score distributions (73). Despite these limitations, the

utility of allostatic load justifies greater efforts to develop

standardized methods. To improve the validity and comparability

of allostatic load, researchers suggest using a core set of

biomarkers to improve comparability. An individual participant

data (IPD) meta-analysis identified a panel of five biomarkers—

resting heart rate (RHR), high density lipoprotein (HDL), waist-to-

height ratio (WtHR), C-reactive protein (CRP), and hemoglobin

A1C (HbA1C)- that predicted health outcomes and mortality

similar to longer allostatic load measures (74). Using a small set of

biomarkers consistently across studies is a first step toward

standardizing allostatic load scoring. This framework can be re-

evaluated with additional markers as new research emerges.
8 Integrating allostatic load in
toxicology risk assessments

Integrating allostatic load into environmental exposure

assessments is an emerging area of research. Previous studies have

commonly used high-risk thresholds to calculate allostatic load

scores, followed by regression models to examine relationships

between allostatic load and environmental pollutants such as

PFAS, traffic-related air pollution, and PM 2.5 (75–77). More

complex approaches, like multilevel mixed-effects generalized

linear models, have been used to examine associations between

residential greenspace and allostatic load (78). Association studies

provide valuable insight into the relationship between stress and

pollutant health effects; however, mechanistic studies are needed to
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better understand the underlying factors that contribute to increased

susceptibility. Animal models have proven useful for studying stress-

induced susceptibility to air pollutants (79). In these models,

allostatic load can be integrated using tools like the rat cumulative

allostatic load measure (rCALM) to explore stress and pollutant

interactions (80, 81). In human exposure studies, allostatic load

can be incorporated as critical variable, much like sex, to better

understand its role in stress-induced susceptibility. By evaluating

the mechanisms described earlier, researchers can gain insight into

how allostatic load interacts with environmental exposures to

influence health outcomes. Furthermore, longitudinal studies on

allostatic load would help characterize the development of

allostatic load over a lifespan as well as potential consequence of

persistent exposures. For example, a longitudinal study by Mair

et al., found that long-term proximity to petrochemical plants in

Texas City was associated with higher allostatic load, particularly

among women (82). Together, these approaches will help to

enhance the precision of risk evaluations and guide more targeted

interventions for vulnerable populations.

As allostatic load assessments become increasingly

standardized and research on the environmental risks linked to

allostatic load continues to grow, there is a greater opportunity to

integrate these assessments into clinical practice. This integration

can enhance patient evaluations, identify underlying stress-related

health risks, and inform more personalized interventions to

improve both mental and physical health. Incorporating allostatic

load into clinical settings will also allow for a more

comprehensive understanding of patients’ health, not only

addressing the physical symptoms, but also the psychological and

environmental factors that contribute to health and well-being (83).
9 Discussion

In summary, epidemiological and experimental evidence support

the relationship between stress and greater susceptibility to chemical

stressors. Therefore, it is important to consider more rigorously

stress as a biological variable in toxicological studies. Allostatic load

is a powerful framework and tool that captures health disparities

and socioeconomic disadvantages, while providing a cumulative

stress score that can be integrated into risk assessments. Allostatic

load overcomes the limitations of traditional stress assessment

methods, including questionnaires, which are susceptible to bias or

underreporting among racial and ethnic minorities, or using a

single measure of cortisol, which naturally operate on a day-night

rhythm and fail to account for the downstream effects of stress on

the body (84, 85). Additionally, it is important that allostatic load is
Frontiers in Environmental Health 07
integrated into health data, to assess how chronic stress modifies

biology and disease. The consequences of not accounting for

allostatic load include having poorly representative research cohorts

that fail to provide cumulative risk assessments for environmental

and pharmaceutical chemicals. Therefore, future work is needed to

refine allostatic load score measurements, establish a framework for

incorporating allostatic load into risk assessment studies and clinical

settings, and uncover the mechanisms underlying stress-

induced susceptibility.
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