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The dynamics of neurobehavioral
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settings
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Adequate sleep is essential for maintaining health, safety, and neurobehavioral
functioning in 24/7 operational settings. Loss of sleep causes fatigue, which
results in neurobehavioral impairment. Neurobehavioral impairment builds up
disproportionately under conditions of total sleep deprivation compared to
sustained sleep restriction; and recuperation due to recovery sleep is
disproportionately fast after total sleep deprivation compared to sustained
sleep restriction. These sleep schedule-dependent dynamics have been
captured in a previously published, biomathematical model of fatigue, which
includes positive feedback regulation of a relatively fast (hours to days) sleep/
wake homeostatic process by a slower (days to weeks) allostatic process—a
feature that suggests adenosinergic mechanisms are involved. However, the
previously published model underestimates the rate of recuperation due to
recovery sleep after acute total sleep deprivation as well as after consecutive
days of sleep restriction. The objective of the present research is to modify the
model to improve the accuracy of its predictions for recuperation due to
recovery sleep. This can be accomplished by including in the model an
additional, reciprocal feedback mechanism, presumed to be predominantly
adenosinergic in nature, which provides feedback from the faster homeostatic
process back onto the slower allostatic process. Adding a single new model
parameter and refitting three existing model parameters significantly improves
the predictions for recuperation due to recovery sleep after both acute total
sleep deprivation and sustained sleep restriction. This model modification also
improves the predictions of the build-up of neurobehavioral impairment
across days of sustained sleep restriction, without adversely affecting the
accuracy of the model in other scenarios including circadian misalignment
and sleep inertia. The modified model preserves the previously developed
capability to predict the differential dynamics of fatigue for objective
performance impairment and subjective sleepiness. With the improved
predictions for recuperation due to recovery sleep, the expanded model can
be used to provide quantitative estimates for potentially impactful work
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scheduling decisions, such as the duration of time off needed before workers
would be safe to return to the work floor. This enhances the usefulness of the
model as a tool for predicting and managing neurobehavioral functioning and
safety in 24/7 operational settings.

KEYWORDS

acute recuperation, sustained recuperation, cognitive performance, subjective

sleepiness, acute total sleep deprivation, sustained sleep restriction, circadian

misalignment, sleep inertia
1 Introduction

1.1 Sleep loss and recovery sleep

1.1.1 Ubiquitous sleep loss underscores the need
for recovery sleep

Consensus recommendations say that adults should have

regular sleep of at least 7 h per day (1, 2). However, hundreds

of millions of individuals world-wide do not regularly obtain

sufficient sleep (3), even if their sleep is not curtailed by sleep

and circadian disorders or other medical conditions. The

reasons vary and include demands on people’s time from work

and commutes (4), caregiver duties (5), or other time

commitments (6), to cultural norms (7), stimulant use (8), life

stress (9), digital technology use (10), and lifestyle (11).

Evidence is accumulating that irregular sleep is associated with

poor performance and health outcomes (12–14), and people

are therefore advised to maintain regular sleep/wake schedules

(15, 16). Yet, the reality many people face is that they are

chronically sleep restricted (17) and must try to make up for

lost sleep on the weekend or days off work (18–20).

Understandably, they have to trade sleep regularity for

intermittent, extended catch-up sleep.
1.1.2 Recovery sleep is critical for risk
management in operational settings

The issue of sleep loss is particularly salient for shift workers

and others in extended and around-the-clock operational

settings, where work schedules prevent them from getting

enough sleep during work periods (21–23). Insufficient sleep

during work periods results in neurobehavioral impairment,

safety concerns, and potential long-term health consequences

(24, 25). Proper recuperation through recovery sleep between

work periods is essential to help manage these risks (26).

Inadequate recovery sleep leads to incomplete physiological and

neurobehavioral recuperation (27)—a condition to which people

may not be able to functionally adapt (28).
1.2 Temporal dynamics of recuperation

1.2.1 The need for recovery sleep is a non-linear
function of prior sleep loss

The dynamics of recuperation during recovery sleep are a

topic of investigation within the framework of the two-process
02
model of sleep regulation (29, 30). The two-process model

posits that sleep/wake regulation and neurobehavioral

functioning are governed by two primary physiological

processes (31): a homeostatic process that produces a

saturating exponential increase of pressure for sleep during

wakefulness and a saturating exponential decrease of this

pressure during sleep; and a circadian process that exerts a

pressure for wakefulness during the day and withdraws

that pressure for wakefulness during the night. Based on the

interplay between these two processes, the two-process model

predicts that during a period of total sleep deprivation, there

will be a rapid growth of neurobehavioral impairment across

hours awake, with the level of impairment being strongly

modulated by circadian rhythmicity—as confirmed by

observations from acute total sleep deprivation experiments

(30, 32). Furthermore, the model predicts that the longer the

sleep deprivation, the more recovery sleep will be needed to

fully recuperate. Yet, since the saturating exponential decrease

in homeostatic pressure during recovery sleep would make the

first few hours of the sleep period disproportionately

recuperative (33), the sleep lost during the sleep deprivation

period would not need to be recovered hour for hour—as

confirmed by empirical data (34, 35).
1.2.2 The two-process model predicts
recuperation from recovery sleep inaccurately

Given the saturating exponential nature of the dissipation of

homeostatic pressure during sleep, the two-process model

predicts that a day with at least some sleep, even if substantially

restricted, should display significantly less neurobehavioral

impairment compared to a day with no sleep at all, again

because the first few hours of the sleep period are

disproportionately recuperative—a prediction that has also been

confirmed by empirical data (33, 36, 37). However, the two-

process model further predicts that there should be swift

adaptation when a restricted sleep schedule is sustained across

consecutive days, such that after one or two days

neurobehavioral functioning will have degraded to a modest

level of impairment that is then maintained from day to day

(38). Laboratory studies have conclusively shown that this

prediction is incorrect, and that sustained sleep restriction

instead results in a steady accumulation of sleep pressure and

neurobehavioral impairment that continues over many days

(39–43). Because the two-process model does not adequately

predict the build-up of neurobehavioral impairment across days
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of sustained sleep restriction, it also does not offer insight into

neurobehavioral recuperation during subsequent recovery sleep.

1.2.3 The recuperative potential of recovery sleep
is different after sustained sleep restriction than
after acute total sleep deprivation

The financial cost of laboratory studies of recovery sleep is high

and data pertaining to neurobehavioral recuperation are relatively

scarce (44). From the available data, there appears to be a

relatively straightforward dose-response relationship between the

duration of recovery sleep and the degree of neurobehavioral

recuperation (45, 46). Nonetheless, the recuperative potential of

sleep also depends on the nature of the preceding sleep loss.

That is, under conditions of acute total sleep deprivation

or short-term sleep restriction there is a rapid build-up of

neurobehavioral impairment, but there is also a high rate of

recuperation during recovery sleep; one or two nights with at

least 8 h of recovery sleep tend to suffice to fully recover (32, 47).

By contrast, under conditions of sustained sleep restriction there

is a more gradual build-up of neurobehavioral impairment across

days (40, 41), which can reach a level equivalent to that seen

after two to three days and nights of total sleep deprivation (42)

but takes much longer (multiple nights) to recovery from

(41, 48, 49). Thus, to determine how much recovery sleep is

needed to overcome the neurobehavioral consequences of prior

sleep loss, it is necessary to account for the nature of the prior

sleep/wake schedule. Failure to do this properly could be a

serious hindrance in efforts to curb fatigue1 and manage its risks

in operational settings.
1.3 Biomathematical modeling of
recovery sleep

1.3.1 A published biomathematical model predicts
neurobehavioral impairment after sleep loss and
recovery sleep

The sleep schedule-dependent dynamics of recovery sleep have

proven to be challenging to model mathematically (50). Even so,

they are represented in a biomathematical model of fatigue

developed specifically to predict neurobehavioral functioning

during sleep loss and after recovery sleep in scenarios involving

acute total sleep deprivation or sustained sleep restriction. Since

it was first published (51), this model has been refined to better

capture the interaction of circadian rhythmicity with sleep loss
1Here “fatigue” is a term conventionally used in operational settings to refer

to neurobehavioral impairment, or more specifically “a state of reduced

mental or physical performance capability, resulting from sleep loss or

extended wakefulness, circadian rhythmicity, workload, or other factors”

(26); see https://www.icao.int/safety/fatiguemanagement/FRMS%20Tools/

FRMS%20Implementation%20Guide%20for%20Operators%20July%202011.

pdf.
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and recovery (52), to include prediction of the magnitude of

sleep inertia2 upon awakening (53), and to differentiate between

objective performance impairment vs. subjective sleepiness (54).

These refinements have made the model useful as a tool for

fatigue risk management in operational settings (55). It is

currently in use in passenger and cargo aviation as a tool to help

minimize fatigue in work scheduling and to review fatigue

reports to help improve operational safety.

1.3.2 The homeostatic and allostatic processes of
the biomathematical model interact

At its core, the model includes a positive feedback mechanism

comprising a relatively fast homeostatic process and a slower

allostatic process, which together (and in conjunction with

circadian rhythmicity) determine the build-up rate of

neurobehavioral impairment due to sleep loss and the

recuperation rate of recovery sleep (51). In mathematical form,

the core of the model is a system of first-order ordinary

differential equations (ODEs) with two principal state variables,

p and u, changing as a function of time t. The function p(t)

predicts neurobehavioral impairment during wakefulness, or the

nominal propensity thereof during sleep (which would become

manifest upon awakening), as driven by the homeostatic process

on a timescale of hours to days. The function u(t) captures the

allostatic process (56) and modulates p(t) on a timescale of days

to weeks. In equations, the model can be written in the following

form (52):

dp(t)
dt

du(t)
dt

2
664

3
775 ¼ aw bw

0 dw

� �
p(t)
u(t)

� �
þ fw(t)

0

� �
during wake; (1a)
dp(t)
dt

du(t)
dt

2
664

3
775 ¼ as bs

0 ds

� �
p(t)
u(t)

� �
þ fs(t)

1

� �
during sleep: (1b)

Here a, b and d are parameters specific to wake (w) and sleep

(s), where aw, as and ds are negative, and bw, bs and dw are positive.

The nonhomogeneities fw(t) and fs(t) represent wake- and sleep-

specific modulating functions, respectively (52).

1.3.3 The prediction of neurobehavioral
recuperation from recovery sleep for different
types of sleep loss could be improved

A model of the form of Equation 1 has the capacity to

differentiate the build-up of neurobehavioral impairment during
2Sleep inertia refers to a transient period of lingering neurobehavioral

impairment and disorientation, which manifests immediately after waking up

(107) and then decays exponentially, largely dissipating within an hour (108).
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FIGURE 1

Predictions of the previously published, biomathematical model of fatigue for acute total sleep deprivation and sustained sleep restriction with
subsequent recovery. The graphs show group-average observations and corresponding model predictions for the number of lapses of attention
(reaction times >500 ms) on a Psychomotor Vigilance Test (PVT) (58) administered at 2 h intervals during scheduled wakefulness in two in-
laboratory studies. The first study (left panel) involved an 88 h period of acute total sleep deprivation followed by two days with 8 h recovery sleep
opportunities (23:30–07:30); data (black dots) are from 13 healthy young adults (36, 42). The data show a characteristic increase in performance
impairment modulated by circadian rhythmicity during total sleep deprivation, and a rapid recuperation to near-baseline performance levels
during the two recovery days (32). The second study (right panel) involved 14 days of sleep restriction to 4 h per day (03:30–07:30) followed by
two days with 8 h recovery sleep opportunities (23:30–07:30); data (black dots) are from 13 (different) healthy young adults (42). The data show a
steady accumulation of performance impairment across consecutive days with sleep restriction, and a slow and incomplete recuperation during
the two recovery days (32). Gray bars indicate the sleep opportunities. Tick marks on the abscissa denote midnight for each day. The green curves
represent the predictions for the two studies based on the previously published model (52), which is of the form of Equation 1, after recalibrating
that model using only the data from the acute total sleep deprivation study.3 Whereas the recalibrated model captures the temporal dynamics of
PVT performance during total sleep deprivation relatively well (left panel), the degree of recuperation after recovery sleep is considerably
underestimated (i.e., the residual neurobehavioral impairment is overestimated), despite this being the study to which the model was recalibrated.
Moreover, the recalibrated model predicts PVT performance during the two recovery days after sustained sleep restriction relatively well (right
panel), but at the cost of significantly underpredicting the build-up of impairment across the prior 14 days of sustained sleep restriction. Thus,
even after the recalibration performed for this illustration, the model cannot accurately predict neurobehavioral recuperation due to recovery
sleep for both types of sleep loss at the same time.

McCauley et al. 10.3389/fenvh.2024.1362755
acute total sleep deprivation vs. sustained exposure to various doses

of sleep restriction (51), although it slightly underestimates the

build-up of neurobehavioral impairment across days of sustained

sleep restriction. The model can also differentiate

neurobehavioral recuperation due to recovery sleep in these

scenarios—however, following both acute total sleep deprivation

and sustained sleep restriction, the model underestimates the rate

of recuperation during recovery sleep (i.e., it overestimates the

residual neurobehavioral impairment). While still a major

improvement over the two-process model, a model of the form

of Equation 1 does not appear to have the dynamic capability to

accurately predict neurobehavioral recuperation due to recovery

sleep for both types of sleep loss simultaneously. This is

illustrated in Figure 1.
3Two model parameters that are highly influential with regard to the growth

and decay dynamics of the model (52) were refit: ηw (which through

Equation (9) also altered ηs) and µw (cf. Table 2).
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1.4 Research objective

1.4.1 Adding a single model parameter improves
the prediction accuracy of neurobehavioral
recuperation

The suboptimal prediction of neurobehavioral recuperation

due to recovery sleep for both acute total sleep deprivation and

sustained sleep restriction with the same set of equations limits

the usefulness of the biomathematical model for fatigue risk

management in operations where both types of sleep loss are

common, such as commercial aviation and the military. A

solution to this problem can be found by recognizing that

Equation 1 are part of a larger class of models, which has

previously been documented (51, 57) but not yet fully explored.

In this larger class of models, the lower left coefficient of zero in

each of the 2 × 2 coefficient matrices in Equation 1 is replaced by

a free parameter, which opens up a bigger dynamic repertoire by

making the feedback mechanism between the homeostatic and

allostatic processes bidirectional (i.e., with p(t) modulating u(t)

as well). Here we investigate whether this modification of the

model, with just one added parameter, achieves improved

prediction accuracy for neurobehavioral recuperation from

recovery sleep after both acute total sleep deprivation and
frontiersin.org
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FIGURE 2

Schematic of the modified biomathematical model of fatigue. In this pharmacodynamic analog of the structure of the fatigue model, three
compartments describe the interplay during wakefulness (left) and sleep (right) between state variables p(t) predicting neurobehavioral impairment
(or the nominal propensity thereof during sleep) and tracking the homeostatic process, u(t) representing the allostatic process, and h(t)
representing sleep inertia after awakening (or the nominal propensity thereof during sleep). The modulating functions gw(t) and gs(t) reflect the
influence of the circadian process (52) during wakefulness and sleep, respectively. Parameters shown next to arrows represent rate constants; see
Equation 8. The curved blue arrows pointing from p(t) and h(t) onto u(t) are new in the modified model; they represent the reciprocal feedback
mechanism between fast (p and h) and slow (u) dynamic processes underlying neurobehavioral functioning.

McCauley et al. 10.3389/fenvh.2024.1362755
sustained sleep restriction, while preserving previously attained

prediction accuracy for neurobehavioral impairment across a

wide range of sleep loss scenarios.

The objective of the present research is to modify our

previously published model to improve the accuracy of its

predictions for recuperation due to recovery sleep following total

sleep deprivation and sustained sleep restriction.
2 Methods

2.1 Model formulation

Figure 2 illustrates the biomathematical model of fatigue as

modified to improve the predictions of recuperation from

recovery sleep, and Table 1 shows the full set of model

equations. Equations (T1-1) in Table 1 describe the dynamics

of p(t), representing neurobehavioral functioning during

wakefulness or the nominal propensity thereof during sleep,

based on the homeostatic process in interaction with other

processes. Equations (T1-2) describe the dynamics of u(t),

representing the allostatic process modulating p(t). Equations

(T1-3) describe the dynamics of sleep inertia through the

function h(t), representing the manifestation of sleep inertia

after awakening or the nominal propensity thereof across

periods of sleep. Equations (T1-4) describe the dynamics of

the function κ(t), represent the time-varying amplitude of the

impact of the circadian process. It is embedded in the

modulating functions gw(t) and gs(t) specified in Equations

(T1-5), with the circadian process c(t) specified in Equations

(T1-6). The parameters in these equations are provided

in Table 2.
Frontiers in Environmental Health 05
Aside from some trivial adjustments to the equations to more

explicitly show the positive or negative signs of the parameters, the

modified model with the added feedback mechanism is nearly

identical to the most recent earlier version of the model without

the added feedback mechanism (53). That said, Equations (T1-2)

in Table 1 have been expanded to incorporate the new

parameter, which replaces the zeros in the 2 × 2 coefficient

matrices in Equation 1 from the original model (51) that had

hitherto been retained. In the previous version of the model (53),

Equations (T1-2) were as follows (Equations 2a,b):

du(t)
dt

¼ hwu(t) during wake; (2a)

du(t)
dt

¼ �hsu(t)þ 1 during sleep: (2b)

When combined with Equations (T1-1) and written in the

matrix form of Equation 1, we get (Equations 3a,b):

d~p(t)
dt

du(t)
dt

2
64

3
75 ¼ �aw awbw

0 hw

� �
~p(t)
u(t)

� �

þ jkgw(t)
0

� �
during wake; (3a)

d~p(t)
dt

du(t)
dt

2
64

3
75 ¼ �as asbs

0 �hs

� �
~p(t)
u(t)

� �

þ jkgs(t)� asbs=hs
1

� �
during sleep; (3b)
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TABLE 1 Equations defining the modified biomathematical model of fatigue.

(T1-1a) dp(t)
dt ¼ �aw[ p(t)� pf � bwu(t)]þ jh(aw � nw)h(t)þ jkgw(t) During wake

(T1-1b) dp(t)
dt

¼ �as 1� nsgjh
as

� �
( p(t)� pf )� bs u(t)� 1

hs

� �� �

þ jh(as � ns(1þ gjh))h(t)þ jkgs(t)

During sleep

(T1-2a) du(t)
dt ¼ �hw[zwju( p(t)� pf )� u(t)]þ hwzwjujhh(t) During wake

(T1-2b) du(t)
dt ¼ hs[zsju( p(t)� pf )� u(t)]� hszsjujhh(t)þ 1 During sleep

(T1-3a) dh(t)
dt ¼ �nwh(t) During wake

(T1-3b) dh(t)
dt ¼ �ns[(1þ gjh)h(t)� g( p(t)� pf )] During sleep

(T1-4a) dk(t)
dt ¼ lwk(t)(1� k(t)) During wake

(T1-4b) dk(t)
dt ¼ �lsk(t) During sleep

(T1-5a) gw(t) ¼ k(t)[c(t)þ mw] During wake

(T1-5b) gs(t) ¼ k(t)[c(t)þ ms] During sleep

(T1-6) c(t) ¼ sin 2p t�f
t

� � During wake and sleep

McCauley et al. 10.3389/fenvh.2024.1362755
where:
~p(t) ¼ (p(t)� pf )� jhh(t), (4)
which stands for neurobehavioral functioning expressed relative to

the floor of the neurobehavioral metric (denoted as pf) and

excluding sleep inertia [represented by the ξhh(t) term].

Now replacing the zeros in the 2 × 2 coefficient matrices,

we obtain:
d~p(t)
dt

du(t)
dt

2
64

3
75 ¼ �aw awbw

�hwzwju hw

� �
~p(t)
u(t)

� �

þ jkgw(t)
0

� �
during wake; (5a)
d~p(t)
dt

du(t)
dt

2
64

3
75 ¼ �as asbs

hszsju �hs

� �
~p(t)
u(t)

� �

þ jkgs(t)� asbs=hs
1

� �
during sleep: (5b)

Here ζw = ζs denotes the new model parameter (assumed to be

identical for wakefulness and sleep), ηw and ηs are the rate

parameters of the allostatic process, and ξu is a newly introduced

scaling factor assumed to be identical to other scaling factors in

the model (i.e., ξκ and ξh). It is easy to show that Equation 5

reduce to Equations (T1-1), (T1-2).
Frontiers in Environmental Health 06
Combining Equation 5 with Equations (T1-3), we may write:

d~p(t)
dt

du(t)
dt

dh(t)
dt

2
666664

3
777775
¼

�aw awbw 0
�hwzwju hw 0

0 0 �nw

2
4

3
5 ~p(t)

u(t)
h(t)

2
4

3
5

þ
jkgw(t)

0
0

2
4

3
5 during wake; (6a)

d~p(t)
dt

du(t)
dt

dh(t)
dt

2
666664

3
777775
¼

�as asbs 0
hszsju �hs 0
gns 0 �ns

2
4

3
5 ~p(t)

u(t)
h(t)

2
4

3
5

þ
jkgs(t)� asbs=hs

1
0

2
4

3
5 during sleep: (6b)

Using Equation 4 and its derivative to time t in Equation 7,

d~p(t)
dt

¼ dp(t)
dt

� jh
dh(t)
dt

, (7)

to substitute p(t) for ~p(t) we get:

dp(t)=dt

du(t)=dt

dh(t)=dt

2
64

3
75¼

�aw(p(t)�pf )þawbwu(t)þjh(aw�nw)h(t)þjkgw(t)

�hwzwju(p(t)�pf )þhwu(t)þhwzwjujhh(t)

�nwh(t)

2
64

3
75 during

wake;

(8a)
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TABLE 3 Summaries of the calibration and validation datasets.

Study Sample size (and
number of
conditions)

Number of
distinct time

points
Cal1: total sleep deprivation N = 12

(1 condition)
31

Cal2: sustained sleep restriction N = 33
(3 conditions)

385

Cal3: simulated day or night
shift

N = 27
(2 conditions)

96

Total calibration dataset N = 72
(6 conditions)

512

Val1: total sleep deprivation or
rested control

N = 26
(2 conditions)

50

Val2: sustained sleep restriction
with dose-response recovery

N = 142
(6 conditions)

358a

Val3: sustained sleep restriction
with intermittent dose-response
intervention

N = 62
(7 conditions)

594

Total validation dataset N = 230
(15 conditions)

1,002

a363 when also counting the sleep inertia time point on the dose-response

recovery day of study Val2 (not used for goodness-of-fit calculations).

TABLE 2 Parameters of the modified biomathematical model of fatigue.

Parameter Interpretation Value
pf Floor of metric scalea 0/1

αw Homeostatic build-up rate for p(t) during
wakefulnessa

0.028 h–1/0.22 h–1

αs Homeostatic dissipation rate for p(t) during
sleepa

0.26 h–1/0.037 h–1

βw = βs Scaling factor for impact of u(t) onto p(t) 0.26

ζw = ζs (new) Scaling factor for impact of p(t) onto u(t)b 1.31 ± 0.01

Wc Critical threshold (for bifurcation)a 20.2 h/22.02 h

ηw Build-up rate constant for u(t) during
wakefulnessb

0.0126 ±
0.0001 h−1

ηs Dissipation rate constant for u(t) during sleep see Equation 9

νw = νs Decay rate for h(t) 1.37

γ Scaling factor for dynamic asymptote of h(t)
during sleep

0.71

λw = λs Rate constant for modulation of circadian
amplitude

0.49 h–1

µw Offset in circadian process during
wakefulnessa,b

0.466 ± 0.004/
0.82 ± 0.01

µs Offset in circadian process during sleep –1.5

φ Phase position of circadian process (relative to
midnight)

21.2 h

τ Circadian period 24 h

T Duration of light/dark cycle 24 h

ξu = ξκ = ξh Metric-dependent scaling factor for the effects
of u(t), κ(t) and h(t)a

1.09/0.51

aTwo values are provided—the first is for objective performance predictions on the

PVT and the second is for subjective sleepiness predictions on the KSS.
bEstimate ± SE is shown, as determined during model calibration.
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du(t)=dt

dh(t)=dt

2
64

3
75¼

(�asþ jhgns)(p(t)� pf )þas bsu(t)þ jh(as� ns� jhgns)h(t)

þjkgs(t)�asbs=hs

hszsju(p(t)� pf )�hsu(t)�hszsjujhh(t)þ 1
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2
6664

3
7775

(8b)

It can readily be seen that Equations (6a, 8a) are identical to

Equations (T1-1a), (T1-2a), (T1-3a), and Equations (6b, 8b) are

identical to Equations (T1-1b), (T1-2b), (T1-3b).
2.2 Model recalibration

Whereas our model modification adds only a single parameter,

namely ζ, there are three previously included parameters that must

be reevaluated to compensate for the addition of terms in

Equations (T1-2) and restore previously attained accuracy in

predicting the effects of sleep loss on neurobehavioral

functioning. These include the offset in the circadian modulating

functions gw(t) of Equations (T1-5a), μw, which is estimated

separately for whether the model predicts sustained attention

performance as measured on the Psychomotor Vigilance Test

(PVT) (58) or subjective sleepiness as measured on the

Karolinska Sleepiness Scale (KSS) (59); and the rate parameter of
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the allostatic process during wakefulness, ηw. The latter also

determines the rate parameter of the allostatic process during

sleep, ηs, through the following equation:

hs ¼ hw
Wc

T �Wc
, (9)

where T is the duration of the day (normally 24 h). Wc is a critical

amount of daily wakefulness W that was previously shown to

determine whether performance impairment can stabilizes over

days (W <Wc) or rather escalates (W >Wc) (51). This bifurcation

dynamic is also a feature of the modified model, as previously

shown for the larger class of models more generally (57).
2.3 Data sets

Data from published in-laboratory studies were used for model

calibration (studies Cal1–Cal3) and validation (studies Val1–Val3).

In each of the studies, objective sustained attention performance

was measured with the 10 min PVT (58), for which the number

of lapses of attention (reaction times >500 ms) was assessed (60).

Additionally, subjective sleepiness was measured with the KSS

(59), for which the self-reported sleepiness score (on a scale from

1 to 9) was recorded. Within each condition of each study, data

were averaged over subjects by test administration (i.e., time

point). Data points potentially affected by sleep inertia (typically

occurring within the first 2 h after scheduled awakenings) were

omitted, as these were not the focus of the present calibration

and validation efforts (except in validation study Val2 where

sleep inertia was considered separately). The datasets are

summarized in Table 3.
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2.3.1 Calibration study Cal1
As a part of a larger study (61), N = 12 healthy adults (ages

22–37 years; 5 women) were randomized to a total sleep

deprivation condition. After two days with 10 h baseline sleep

opportunities (22:00–08:00), subjects were kept awake for 62 h.

This was followed by two recovery days with 10 h sleep

opportunities (22:00–08:00). Neurobehavioral testing occurred

at 2 h intervals through most of scheduled wakefulness,

starting at 09:30. PVT and KSS data from the 62 h total sleep

deprivation period and from each of the two recovery days

were used for model calibration. The first test administration

of each period of wakefulness was omitted to avoid sleep

inertia effects.
2.3.2 Calibration study Cal2
In this study (42), N = 33 healthy adults (ages 21–38 y;

6 women) were randomized to one of three conditions with

fourteen consecutive days of nighttime sleep restriction: a 4 h

daily sleep opportunity (03:30–07:30; n = 12), a 6 h daily sleep

opportunity (01:30–07:30; n = 13), or an 8 h daily sleep

opportunity (23:30–07:30; n = 8). The fourteen days of sustained

sleep restriction were preceded by 3 baseline days and followed

by 3 recovery days with 8 h sleep opportunities (23:30–07:30).

Neurobehavioral testing occurred at 2 h intervals during

scheduled wakefulness, starting at 07:30. PVT and KSS data from

the last baseline day, the 14 days of sleep restriction, and the first

two recovery days were used for model calibration. The first two

test administrations of each waking period were omitted to avoid

sleep inertia effects.
2.3.3 Calibration study Cal3
In this study (62), N = 27 healthy adults (ages 22–39 years;

14 women) were randomized to one of two simulated shift work

schedules: day shift (n = 14) or night shift (n = 13). The day shift

condition involved thirteen consecutive days with 10 h nighttime

sleep opportunities (22:00–08:00). The night shift condition

involved a baseline day with a 10 h nighttime sleep opportunity

(22:00–08:00) and a 5 h afternoon transition nap (15:00–20:00),

followed by four days with 10 h daytime sleep opportunities

(10:00–20:00). There was then a “restart break” with a 5 h

morning transition nap (10:00–15:00), a 10 h nighttime sleep

opportunity (22:00–08:00), and another 5 h afternoon transition

nap (15:00–20:00), followed by another four days with 10 h

daytime sleep opportunities (10:00–20:00). The night shift

condition ended with a 5 h morning transition nap (10:00–15:00)

and a 10 h nighttime recovery sleep opportunity (22:00–08:00).

Neurobehavioral testing occurred at intervals of 1–3 h through

most of scheduled wakefulness, starting at least 1 h after the

scheduled awakenings. For both conditions, PVT and KSS data

from after the first nighttime sleep opportunity through to the

end of the study were used for model calibration. None of the

test administrations needed to be omitted to avoid sleep

inertia effects.
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2.3.4 Validation study Val1
In this study (63), N = 26 healthy adults (ages 22–37 years;

10 women) were randomized to a total sleep deprivation

condition (n = 13) or a rested control condition (n = 13). In the

total sleep deprivation condition, after two baseline days with

10 h sleep opportunities (22:00–08:00), subjects were kept

awake for 62 h. This was followed by two recovery days with

10 h sleep opportunities (22:00–08:00). The rested control

condition involved six consecutive days with 10 h sleep

opportunities (22:00–08:00). Neurobehavioral testing occurred

at 1 to 3 h intervals through most of scheduled wakefulness,

starting at 09:30. PVT and KSS data from the 62 h total sleep

deprivation period and from each of the two recovery days, as

well as the equivalent time points in the rested control

condition, were used for model validation. The first test

administration of each period of wakefulness was omitted to

avoid sleep inertia effects.
2.3.5 Validation study Val2
In this study (46), N = 142 healthy adults (age range 22–45

years; 69 women) were randomized to one of six recovery sleep

conditions. In each condition, after two days with 10 h baseline

sleep opportunities (22:00–08:00), subjects had five consecutive

days of restriction to a 4 h nocturnal sleep opportunity (04:00–

08:00). This was followed by a recovery day with a sleep

opportunity of 10 h (22:00–08:00; n = 27), 8 h (00:00–08:00;

n = 21), 6 h (02:00–08:00; n = 25), 4 h (04:00–08:00; n = 29), 2 h

(06:00–08:00; n = 27), or 0 h (n = 13). Neurobehavioral testing

occurred at 2 h intervals during scheduled wakefulness, starting

at 08:00. PVT and KSS data from the last baseline day, the five

sleep restriction days, and the recovery day were used for model

validation. The first test administration of each period of

wakefulness was omitted to avoid sleep inertia effects. Separately,

data from the first test administration of the recovery day (in all

but the 0 h condition) were used to validate the sleep inertia

aspect of the modified model.
2.3.6 Validation study Val3
In this study (43), N = 62 healthy adults (age range 22–44 years;

28 women) were randomized to one of seven intermittent sleep

dose-response interventions during a prolonged period of

sustained sleep restriction. In each condition, after two days with

10 h baseline sleep opportunities (22:00–08:00), subjects had five

consecutive days of restriction to a 4 h daily sleep opportunity

(04:00–08:00). This was followed by an intermittent sleep dose-

response intervention day with a sleep opportunity of 12 h

(22:00–10:00; n = 10), 10 h (22:00–08:00; n = 11), 8 h (00:00–

08:00; n = 11), 6 h (02:00–08:00; n = 10), 4 h (04:00–08:00; n = 8),

2 h (06:00–08:00; n = 7), or 0 h (n = 5). Subjects then had another

five consecutive days of restriction to a 4 h daily sleep

opportunity (04:00–08:00), which was followed by two days with

10 h recovery sleep opportunities (22:00–08:00). Neurobehavioral

testing occurred at 2 h intervals during scheduled wakefulness,

starting at 08:00 each day (or at 10:00 on the intermittent sleep

dose-response intervention day in the 12 h condition). PVT and
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TABLE 4 Goodness-of-fit of the modified model for PVT lapses and KSS sleepiness for the calibration (Cal1–Cal3) and validation (Val1–Val3) studies.

Study PVT EVa KSS EVa PVT RMSEa KSS RMSEa

Cal1 86.5% (+4.3%) 85.2% (+8.7%) 3.52 (–0.52) 0.73 (–0.19)

Cal2 70.8% (+5.6%) 69.3% (+14.5%) 2.84 (–0.26) 0.58 (–0.12)

Cal3 93.3% (+4.9%) 85.1% (+21.2%) 1.58 (–0.50) 0.61 (–0.34)

Cal1 + Cal2 + Cal3 78.1% (+5.2%) 76.4% (+15.7%) 2.70 (–0.31) 0.60 (–0.17)

Val1 68.1% (+3.2%) 81.4% (+25.3%) 3.50 (–0.17) 0.62 (–0.33)

Val2 78.7% (0.0%) 79.9% (+6.3%) 1.78 (0.00) 0.60 (–0.09)

Val3 40.2% (+5.0%) 3.8% (+17.5%) 4.68 (–0.19) 1.25 (–0.11)

Val1 + Val2 + Val3 50.2% (+4.4%) 40.7% (+13.4%) 3.81 (–0.17) 1.02 (–0.11)

aExplained variance (EV) and root-mean-square error (RMSE) are based on group-average, time point-specific data expressed relative to the grand mean. Higher is better

for explained variance (EV) and lower is better for root-mean-square error (RMSE). Numbers in parentheses indicate change relative to the earlier model version (53).
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KSS data from the last baseline day through to the two recovery

days were used for model validation. The first test administration

of each period of wakefulness was omitted to avoid sleep inertia

effects. The second recovery day contributed only one time point

(after sleep inertia) before the study ended.
2.4 Calibration and validation procedures

The one new model parameter (ζw = ζs) and the three model

parameters being refitted (ηw and metric-dependent μw for PVT

and KSS) were calibrated by means of a Metropolis-Hastings-

type Markov chain Monte Carlo (MCMC) algorithm, keeping the

other model parameters at their previously estimated values as

shown in Table 2. We used a Delayed Rejection Adaptive

Metropolis (DRAM) method (64) with a chain length of 176,728

(200,000 iterations, 11.6% rejection rate), applied to the group-

average PVT and KSS data points in the calibration dataset.

For determining the initial values of p, u, h and κ, we assumed

an equilibrium state for the sleep/wake schedule of the baseline

day(s) in each study, and iterated across days using that schedule

until a steady state over days at the scheduled time of awakening

was reached (at a tolerance level of ε = 10−9). Model goodness-

of-fit based on group-average data was determined using

explained variance (EV) and root-mean-square error (RMSE).
3 Results

3.1 Model improvement

The modified model addressed the main areas of improvement

identified for the earlier version of the model (53): underestimation

of the rate of recuperation due to recovery sleep following acute

total sleep deprivation and following consecutive days of sleep

restriction. By adding a single model parameter to add a

reciprocal feedback mechanism to the model and refitting three

existing model parameters, the predictions for recuperation due

to recovery sleep after both acute total sleep deprivation and

sustained sleep restriction improved significantly, as did the

predictions of the build-up of impairment across days of

sustained sleep restriction. The impact on the accuracy of the

model in other aspects of its temporal dynamics was minimal,
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and the capability to differentiate fatigue in terms of objective

performance impairment vs. subjective sleepiness was preserved.

As shown in Table 4, compared to the earlier model version

(53) the modified model had improved goodness-of-fit for nearly

all calibration and validation data, for both PVT and KSS

predictions, with only the PVT predictions for validation study

Val2 showing no change.
3.2 Goodness-of-fit for calibration studies

Calibration study Cal1 involved exposure to 62 h of acute total

sleep deprivation, followed by two recovery days with 10 h sleep

opportunities. Figure 3 shows the group-average observations and

the associated model predictions by time point across the study. As

shown in the figure, the modified model was remarkably similar to

the earlier model version (53) across the 62 h acute total sleep

deprivation period, with both data and model displaying the well-

established increase in performance impairment superimposed by

circadian rhythmicity (30), although the circadian peak of PVT

performance impairment during the second night of sleep

deprivation was somewhat underpredicted by both models. Notably,

for both PVT performance and KSS sleepiness, the modified model

predictions for recuperation after the two 10 h recovery sleep

periods were substantially improved. This addressed the earlier

model version’s underestimation of the rate of recuperation after

acute total sleep deprivation. For KSS sleepiness, baseline

performance (during the first ∼16 h of the 62 h period of

wakefulness) was also captured better by the modified model. The

latter was a consequence of the baseline sleep schedule yielding

different initial values, as compared to the earlier model version,

due to the improved recovery dynamics predicting baseline sleep to

be more recuperative.

Calibration study Cal2 comprised three different sustained

sleep restriction conditions, with fourteen consecutive days of

sleep restriction to a 4 h, 6 h, or 8 h daily sleep opportunity

followed by two recovery days with 8 h sleep opportunities.

Figure 4 shows the group-average observations and the associated

model predictions by time point across the study for each sleep

restriction condition. As shown in the figure, the modified model

displayed the established sleep dose-dependent accumulation of

neurobehavioral impairment across days of sleep restriction (42)

for objective performance on the PVT and subjective sleepiness
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FIGURE 3

Observations and predictions for neurobehavioral functioning across 62 h of acute total sleep deprivation followed by two recovery days in calibration
study Cal1. Block dots (and whiskers) are the means (±SE) of the number of lapses on the PVT (left panel) and the sleepiness score on the KSS (right
panel). All data used for calibration are shown, from the start of the total sleep deprivation period (beginning on day 0) to the two recovery days (days 3
and 4, each with 10 h sleep opportunity). Plotted curves are the corresponding model predictions, with blue representing the earlier model version (53)
and orange representing the modified (new) model. Gray bars indicate the sleep opportunities. Tick marks on the abscissa denote midnight for
each day.
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on the KSS in all three conditions, although the accumulation of

impairment in the 6 h sleep restriction condition was

underpredicted for the PVT. In the 6 h and 4 h conditions, the

modified model captured the gradual recuperation over the two

recovery days (each with 8 h sleep opportunity). Importantly,

both during the sleep restriction days and during the recovery

days, the model fit was better overall compared to the earlier

model version (53). Note that for the PVT in the 4 h sleep

restriction condition (Figure 4, bottom left), the fit was improved

especially during the sleep restriction days, where it exhibited the

more substantial build-up of impairment that was underpredicted

in the earlier model version. The degree of subsequent

recuperation was still underestimated by the modified model, but

relative to the greater prior build-up it was nonetheless faster

than in the earlier model version. Also, the degree of

recuperation on the KSS during the recovery days after 4 h

sustained sleep restriction was predicted well by the modified

model. These improvements partially addressed the earlier model

version’s underestimation of the rate of recuperation after

sustained sleep restriction. Furthermore, subjective sleepiness on

the KSS in the 8 h (control) condition was more accurately

predicted by the modified model (Figure 4, top right).

Calibration study Cal3 consisted of simulated night and day shift

schedules. Figure 5 shows the group-average observations and the

associated model predictions by time point across the study for

each shift schedule. As shown in the figure, the most notable

difference with the earlier model version was that the modified

model predicted the observations better at low levels of

neurobehavioral impairment. There was still a slight overprediction

of impairment on the PVT, especially for the day shift schedule

and the first few days of the night shift schedule, but overall the

modified model captured the dynamics relatively well.
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3.3 Goodness-of-fit for validation studies

Validation study Val1 involved exposure to 62 h of acute total

sleep deprivation, followed by two recovery days with 10 h sleep

opportunities, or participation in an equivalent rested control

condition. The study design of the sleep deprivation condition was

essentially the same as that of calibration study Cal1. As evident

from the RMSE values in Table 4, goodness-of-fit of the modified

model to the group-average PVT and KSS data for study Val1 was

almost identical to what we found for study Cal1. This indicated

robust validation for acute total sleep deprivation and subsequent

recovery, on par with goodness-of-fit for rested control.

Validation study Val2 had five consecutive days of restriction

to a 4 h daily sleep opportunity, followed by a dose-response

recovery day with a sleep opportunity ranging from 0 h to 10 h

in duration. Figure 6 shows day-average neurobehavioral

functioning for the recovery day after five days of sustained

sleep restriction, plotted as a function of the sleep dose on the

recovery day (ranging from 0 h to 10 h). As expected,

recuperation increased (i.e., residual impairment decreased)

with greater duration of recovery sleep. The modified model

captured this dose-response relationship more accurately than

the earlier model version (53).

Validation study Val3 involved five days of restriction to a 4 h

daily sleep opportunity followed by an intermittent sleep dose-

response intervention day with a sleep opportunity ranging from

0 h to 12 h in duration (day 6). There were then another five

days of restriction to a 4 h daily sleep opportunity followed by

two days with 10 h recovery sleep (days 12 and 13). Figures 7, 8

(left panels) show the group-average PVT and KSS observations,

respectively, averaged within days and plotted across days of the

study, as a function of the intermittent sleep dose-response
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FIGURE 4

Observations and predictions for neurobehavioral functioning across days of sustained sleep restriction and recovery in calibration study Cal2. Block
dots (and whiskers) are the means (±SE) of the number of lapses on the PVT (left panels) and the sleepiness score on the KSS (right panels). All data
used for calibration are shown, including the last baseline day with 8 h sleep opportunity (day 0), the 14 days of sleep restriction to a daily sleep
opportunity of 8 h (top panels), 6 h (middle panels), or 4 h (bottom panels), and the two recovery days each with 8 h sleep opportunity (days 15
and 16). Plotted curves are the corresponding model predictions, with blue representing the earlier model version (53) and orange representing
the modified (new) model. Gray bars indicate the sleep opportunities. Tick marks on the abscissa denote midnight for each day.
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intervention condition.4 Because the second recovery day (day 13)

contributed only one time point, it is not included in the figures

(but it was included in the goodness-of-fit results of Table 4). On

the intervention day (day 6), the observations showed a dose-

response effect on neurobehavioral functioning, ranging from

significant further impairment when the sleep dose was 4 h or

less and progressively greater recuperation when the sleep dose

was 6 h or more. However, this effect was surprisingly short-
4For graphical presentation, the data in Figures 7, 8 were expressed relative

to baseline (day 0) and normalized to the build-up of neurobehavioral

impairment across the first five-day sleep restriction period common to all

study conditions (days 1–5). This accounts for systematic inter-individual

differences (109) and more clearly exposes the dynamics during and after

the intermittent sleep dose-response intervention day (43).
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lived, and the build-up of neurobehavioral impairment continued

across the second five-day sleep restriction period (days 7–11;

similar to that observed in Figure 4 for the calibration study

Cal2) with only a limited after-effect of the acute response to the

intermittent sleep dose (43). Recuperation after the first recovery

night (day 12) was incomplete, and residual neurobehavioral

impairment was similar between conditions.

Figure 7 (right panel) shows the PVT predictions of the

modified model, anchored at 12:00 (noon) for each day of the

study. Overall, the model captured the temporal dynamics of

PVT performance remarkably well. Predictions for the

intermittent sleep dose-response intervention (day 6) captured

the data mostly adequately, as would be expected based on the

results for validation study Val2 (Figure 6), which was equivalent

in study design up to that point. However, in study Val3 the

degree of recuperation for the PVT was somewhat

underpredicted for the 12 h sleep dose (Figure 7). Also, the

differentiation between the conditions in the build-up of PVT
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FIGURE 5

Observations and predictions for neurobehavioral functioning in the simulated day and night shift schedules of calibration study Cal3. Block dots (and
whiskers) are the means (±SE) of the number of lapses on the PVT (left panels) and the sleepiness score on the KSS (right panels). All data used for
calibration are shown, from the baseline day (day 0, with 10 h prior sleep opportunity) through to the recovery day (day 12, with 10 h sleep opportunity)
in the night shift condition (top panels) and the matching days in the day shift condition (bottom panels). Plotted curves are the corresponding model
predictions, with blue representing the earlier model version (53) and orange representing the modified (new) model. Gray bars indicate the sleep and
nap opportunities. Tick marks on the abscissa denote midnight for each day.

FIGURE 6

Observations and predictions for neurobehavioral functioning after the dose-response recovery night in validation study Val2. The left panel shows the
number of lapses on the PVT and the right panel shows the sleepiness score on the KSS, averaged over time of day (10:00–20:00), for each of the
recovery sleep durations investigated in the study. Black dots represent the observations (with error bars indicating ±1 SE). Blue dots represent
predictions from the earlier model version (53), and orange dots represent predictions from the modified (new) model.
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performance impairment across the second five-day sleep

restriction period (days 7–11) was less pronounced in the model

predictions than in the empirical data, although the data were

noisy and the general pattern was similar. For the subsequent
Frontiers in Environmental Health 12
recovery day (day 12), recuperation of PVT performance was

again somewhat underpredicted. Even so, the modified model

predicted the PVT data better than the earlier model version

(53), as corroborated by the goodness-of-fit statistics in Table 4.
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FIGURE 7

Observations and predictions for PVT performance in the sustained sleep restriction experiment with intermittent dose-response sleep intervention of
validation study Val3. The left panel shows the number of lapses on the PVT (day average, 10:00–20:00) as group means ± SE (colored dots and
whiskers), expressed relative to baseline (day 0) and normalized across the first five-day period of sleep restriction (days 1–5), plotted on a unitless
axis. The curves in the left panel represent statistical model fits serving to better illustrate the temporal patterns.5 The right panel shows the
corresponding predictions of the modified model, anchored at 12:00 (noon) for each day of the study, and scaled commensurate with the
normalization of the data. Colors denote the duration of the sleep opportunity for the intermittent dose-response sleep intervention (day 6). Gray
curves represent the period from the last baseline day (day 0) through to the end of the first sleep restriction period (day 5), which is common to
all study conditions.
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Figure 8 (right panel) shows the corresponding KSS predictions

of the modified model. Compared to the PVT predictions in

Figure 7 (right panel), there was a marked difference in

curvature for the accumulation of neurobehavioral impairment

across days, with predictions of PVT impairment increasing

near-linearly and predictions of KSS sleepiness leveling out after

just a few days—as also seen in the empirical data. This

showcases the model’s capability to capture such highly

differential dynamics within the same biomathematical

framework (54). As shown in Figure 8, KSS predictions for the

intermittent sleep dose-response intervention (day 6) captured

the data mostly adequately; yet, the increase in KSS sleepiness

was grossly underpredicted for the 0 h sleep dose, which deviated

considerably from the dose-response relationship seen in study

Val2 (but notice the comparatively large error bars). In contrast

with the PVT (Figure 7), the differentiation between the

conditions in the trajectories of KSS sleepiness across the second

five-day sleep restriction period (days 7–11) was more

pronounced in the model predictions than in the empirical data

(Figure 8). For the subsequent recovery day (day 12),
5Non-linear mixed-effects regression models (110) with discontinuities at the

sleep dose-response intervention day and the first recovery day, and

condition-specific offsets and rates of change across the second five-day

sleep restriction period, are used for visualization of the temporal

patterns (43).
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recuperation on the KSS appeared to be predicted well for all

study conditions. The modified model predicted the KSS data,

like the PVT data, better than the earlier model version (53), as

corroborated by the goodness-of-fit statistics in Table 4.
3.4 Goodness-of-fit for sleep inertia

Both the earlier model version and the modified model are

capable of predicting the effect of sleep inertia on

neurobehavioral functioning. However, because of the quick

dissipation of sleep inertia in the first few minutes immediately

after awakening, precise accounting of the time of awakening

based on a sleep recording for each individual person is required

to make accurate sleep inertia predictions using the model

equations in Table 1. Quantitative validation of sleep inertia

predictions was therefore beyond the scope of the present model

validation, which was based on group-average data. That said, we

examined qualitatively whether the sleep inertia predictions of

the modified model were reasonable and not substantially worse

than those of the earlier model version, which had been

developed specifically for predicting sleep inertia (53).

We considered the group-average PVT and KSS data of

the first time point after awakening from the dose-response

recovery sleep in validation study Val2 (2–10 h conditions)

and compared them to model predictions based on the

group-average times of PVT and KSS administrations after

the end of the sleep period (as a proxy for individual time

awake). Figure 9 shows the results, demonstrating the
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FIGURE 8

Observations and predictions for KSS sleepiness in the sustained sleep restriction experiment with intermittent dose-response sleep intervention of
validation study Val3. The left panel shows the observations for sleepiness score on the KSS (day average, 10:00–20:00); the right panel shows the
corresponding predictions of the modified model (anchored at 12:00). Details are otherwise the same as for Figure 7.
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expected inverse dose-response relationship between recovery

sleep duration and the magnitude of sleep inertia in both

the observations and the model predictions. Considering the

approximations made in this group-average comparison

and recognizing that the results were based on a single

time point, the observations and model predictions

were remarkably close, indicating that the sleep inertia

predictions of the modified model were in fact

reasonable and not much different from those of the earlier

model version.
FIGURE 9

Observations and predictions for sleep inertia after the dose-response reco
lapses on the PVT, and the right panel shows the sleepiness score on the
sleep durations investigated in the study. Black dots represent the observa
from the earlier model version (53), and orange dots represent predicti
prediction for the 2 h recovery sleep dose slightly exceeded the range of th
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3.5 Parameter estimates

The parameter estimates obtained during model calibration

(using studies Cal1–Cal3) are shown in Table 2. Figure 10

displays parameter distribution plots, which confirmed that

the four free parameters (including the one parameter that

was added to the model, ζw = ζs) were well defined by the

calibration dataset. The one-dimensional marginal probability

distributions were all close to normal. The pairwise

correlations were between −0.37 and 0.63, suggesting only
very night in validation study Val2. The left panel shows the number of
KSS, at the first measurement after awakening, for each of the recovery
tions (with error bars indicating ±1 SE). Blue dots represent predictions
ons from the modified (new) model. Note that the KSS sleep inertia
e scale and is therefore capped at 9 for plotting.
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FIGURE 10

One- and two-dimensional marginal probability distributions for fitted parameter pairs. The red dots are pairs of parameter estimates from the MCMC
chain (plotting 5,000 points equally distributed along the chain). The inner and outer blue curves represent contours of the approximate 50% and 95%
reliability regions, respectively. The black curves anchored on the axes are the one-dimensional marginal distributions. The bold numbers inside the
panels are the pairwise correlations. Tick marks are set at the mean and two standard errors from the mean. Note that ζ= ζw = ζs, and that μw is metric-
dependent and differentiated between PVT (P) and KSS (K).
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modest parameter interdependence and alleviating potential

concerns about model overspecification with regard to the

fitted parameters.
4 Discussion

4.1 Summary of results

4.1.1 The modified model improves the prediction
of neurobehavioral recuperation from recovery
sleep for different types of sleep loss and better
predicts the build-up of impairment from
sustained sleep restriction

These improvements were accomplished by including an

additional, reciprocal feedback mechanism between the
Frontiers in Environmental Health 15
homeostatic and allostatic processes in the model. Using six

laboratory sleep deprivation and sleep displacement studies

for model calibration and validation, we showed that the

addition of a single new model parameter improved

the predictions for recuperation due to recovery sleep, and

also improved predictions of the build-up of

neurobehavioral impairment across days of sustained sleep

restriction, without reducing the accuracy of the model

otherwise. Furthermore, the modified model preserved the

previously developed capability to predict both objective

performance impairment and subjective sleepiness, even

though these different outcomes exhibit markedly

differential dynamics. The modified model may be expected

to have enhanced potential as a tool for predicting and

managing neurobehavioral functioning and safety in 24/7

operational settings.
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4.2 Improved temporal dynamics

4.2.1 The modified model challenges presumed
mechanisms of recuperation

Despite more than 50 years of experimental and theoretical

research, the recuperative potential of sleep for neurobehavioral

functioning remains poorly understood (44). Slow wave sleep

(SWS) and the associated high-intensity EEG delta power (∼1–
4 Hz) appear to take priority over rapid eye movement (REM)

sleep in the typical sleep pattern of healthy adults (35, 65), and

SWS is highly preserved under conditions of sleep restriction and

circadian displacement (42, 62, 66, 67). As such, SWS is

commonly assumed to be the most restorative aspect of sleep

(68). However, this assumption is called into question by the

near absence of a dynamic response of SWS and EEG delta

power to sustained sleep restriction (42, 69), in contrast with the

strong rebound effect after acute total sleep deprivation (42, 70).

Sleep dose-response studies have suggested a more

straightforward relationship between sleep and neurobehavioral

functioning based simply on the total sleep duration per

circadian cycle (42, 71), but biomathematical scrutiny has shown

that perspective to be incomplete (51). Rather, it appears that the

recuperative potential of sleep depends at least in part on long-

term sleep history (43, 56, 72). This may involve both neuronal

(73, 74) and astrocytic (75, 76) mechanisms and may or may not

be reflected in any biomarkers of sleep examined to date (77, 78).
4.2.2 Data and modeling results suggest reciprocal
feedback between homeostatic and allostatic
processes

Under conditions of acute total sleep deprivation there is a

rapid build-up of neurobehavioral impairment, but there is

also a high rate of recuperation during recovery sleep

(Figure 3). By contrast, under conditions of sustained sleep

restriction there is a more gradual build-up of neurobehavioral

impairment, but the rate of recuperation during recovery sleep

is diminished (Figure 4). These sleep schedule-dependent

dynamics are represented in earlier versions of our

biomathematical model of fatigue featuring a positive feedback

mechanism between a homeostatic process and a slower

allostatic process (51–54). The inclusion of this important

regulatory mechanism notwithstanding, the earlier model

versions underestimate the rate of recuperation during

recovery after acute total sleep deprivation. They also

underestimate the rate of recuperation during recovery after

consecutive days of sleep restriction—after first

underestimating the accumulation of neurobehavioral

impairment across those sleep restriction days, especially when

the prior sleep was restricted to 4 h daily. Here, through the

addition of a single model parameter, we aimed to address

these issues by inclusion of a second, reciprocal feedback

mechanism, while keeping the model within the same, larger

class of models from which it was originally derived (51, 57)

in order to retain its previously established useful properties.
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4.2.3 Modifying the model led to multi-faceted
improvements in predictions

For both objective performance on the PVT and subjective

sleepiness on the KSS, the previous model versions’

underestimation of the rate of recuperation during recovery

after acute total sleep deprivation was resolved (Figure 3).

The previous underestimation of recuperation during recovery

sleep after consecutive days of sustained sleep restriction was

also largely resolved (Figures 4, 6–8), although recuperation

on the PVT was still somewhat underestimated after

consecutive days of sleep restriction to 4 h (Figures 4, 7). The

accumulation of PVT impairment across days of sleep

restriction to 4 h was itself more accurately predicted, leaving

only the 6 h condition to be improved in that regard

(Figure 4). Additionally, there were improvements in the

prediction of neurobehavioral functioning at baseline

(Figures 3, 5) and across rested control conditions (Figures 4, 5),

especially for KSS sleepiness.
4.2.4 Previously established model characteristics
were retained

The modified model retained important properties of the

earlier model version in areas where accurate predictions had

already been achieved. This included the effects of time

awake and time of day during acute total sleep deprivation

(Figure 3); the differentiation in the degree of non-linearity

in changes across days of sleep restriction for the PVT vs.

the KSS (Figures 4, 7 vs. Figure 8); and the magnitude of

sleep inertia after awakening (Figure 9), although the latter is

somewhat overpredicted on the KSS in both the modified

model and the earlier model version. There is still room for

improvement in the modified model in terms of the

amplitude of circadian rhythmicity after more than 24 h of

acute total sleep deprivation (Figure 3), and the level of

impairment on the PVT during simulated day and night shift

schedules is still somewhat over predicted (Figure 5). And

while the modified model captures the overall dynamics of

neurobehavioral impairment across days with sustained sleep

restriction and an intermittent sleep dose-response

intervention well (Figures 7, 8), the unexpectedly large

KSS sleepiness response to the intermittent 0 h sleep dose

remains unexplained.
4.3 Theoretical interpretation

4.3.1 The allostatic process influences the rate of
recuperation from recovery sleep

The positive feedback mechanism represented in the earlier

versions of our biomathematical model involves the allostatic

process (u) modulating the dynamics of the homeostatic

process (p) by shifting its equilibrium set point (51). During

wakefulness, this causes the asymptote toward which the

homeostatic process increases to gradually incline; and during

sleep, it causes the asymptote toward which the homeostatic
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process decreases to gradually decline. During a period of one or

two days of acute total sleep deprivation, the increase in the

homeostatic process is substantial and neurobehavioral

impairment may be considerable, while the change in the

homeostatic equilibrium set point in such a short timeframe is

comparatively small. Recuperation from acute total sleep

deprivation during recovery sleep is therefore relatively fast. By

contrast, across a number of days of sustained sleep restriction,

the incremental increase in the homeostatic process from day

to day is modest, but over consecutive days the allostatic

process produces a notable incline in the equilibrium set point,

which causes neurobehavioral impairment to accumulate.

Furthermore, across subsequent days with recovery sleep, it

takes time for the allostatic process to decline substantially,

which limits the rate by which recuperation from sustained

sleep restriction can occur.
FIGURE 11

Illustration of the effect of the additional feedback mechanism in the
modified (new) model. The orange curves show the waking build-up
of the allostatic process u from Equation (T1-2a) in calibration study
Cal1 involving 62 h of acute total sleep deprivation followed by two
recovery days (left panel); and in the 4 h condition of calibration
study Cal2 involving fourteen days of sleep restriction followed by
two recovery days (right panel). The black curves show the
associated homeostatically driven dynamics of waking PVT
performance (number of lapses), with the effect of sleep inertia
process h omitted, from Equation 4—multiplied by scaling factor
ξu and newly introduced parameter ζw—plotted on the same,
unitless axis. The difference between the orange and black curves
represents the term in square brackets in Equation (T1-2a), which
modulates the wakefulness-based incline of the allostatic process.
The impact of the modulation can be appreciated by comparing to
the waking temporal profile of the allostatic process u in the
previous model version (53), which did not have this additional
feedback mechanism, as represented by the blue curves. During
sleep, the same principle applies (not shown in the figure). Note
that the initial values of each of the curves in both panels are
determined by the prior baseline conditions, which involved a 10 h
daily sleep opportunity in study Cal1 (left panel) and an 8 h daily
sleep opportunity in study Cal2; the difference between models in
the initial values of u (orange versus blue curves) reflects the
improved recovery dynamics of the modified model, predicting
baseline sleep to be more recuperative. Gray bars indicate
sleep opportunities.

Frontiers in Environmental Health 17
4.3.2 The added feedback mechanism modulates
the dynamics of the allostatic process

Earlier model versions with only the one positive feedback

mechanism underestimated recuperation during recovery after

acute total sleep deprivation and after sustained sleep

restriction, and it underestimated the accumulation of

neurobehavioral impairment across consecutive days of sleep

restriction. The additional feedback mechanism in the modified

model largely remediates these limitations by modulating the

wake-based incline and sleep-based decline of the allostatic

process. Per the term in square brackets in Equations (T1-2),

this modulation occurs in proportion to the difference between

the homeostatic (p) and allostatic (u) processes (and controlled

in part by the new parameter ζw = ζs), as illustrated in

Figure 11. When the homeostatic process is elevated

considerably but the allostatic process is elevated only

modestly, given that the rate constant ηw in Equations (T1-2a)

is positive and thus –ηw is negative, the result is a dampening

of the growth of the allostatic process during wakefulness. This

allows for recuperation from acute total sleep deprivation

during recovery sleep to be even faster in the modified model,

thereby addressing the underestimation of recuperation after

acute total sleep deprivation in the earlier model versions. On

the other hand, when the allostatic process is elevated

considerably and the difference between the homeostatic and

allostatic processes is therefore reduced, as is the case after

sustained sleep restriction, the growth of the allostatic process

is less tempered. This allows for greater build-up of

neurobehavioral impairment during sustained sleep restriction,

thereby addressing the underestimation of the accumulation of

neurobehavioral impairment across consecutive days of sleep

restriction in the earlier model versions. Finally, given that the

rate constant ηs in Equations (T1-2b) is positive, the decline of

the allostatic process during sleep is somewhat accelerated in

the modified model compared to the earlier model versions. To

some degree this also addressed the previous underestimation

of recuperation after sustained sleep restriction.
4.4 Molecular underpinnings

4.4.1 The biomathematical model may represent
adenosinergic mechanisms

There is a plethora of molecular substrates for sleep/wake

regulation and its impact on neurobehavioral functioning

(78–81). The neuromodulator adenosine appears to be pivotal,

with the interplay between adenosine and its receptors providing

a basis for sleep homeostasis (82, 83), long-term (use-dependent

and allostatic) dynamics (84, 85), waking function (86, 87), and

sleep inertia (88, 89). Adenosine is a metabolic (by) product of

brain energy metabolism (90) and has been implicated in a

cascade of sleep regulatory substances (85), and adenosine and

adenosine A1 receptor availability may be rate-limiting drivers

of the pharmacokinetics of sleep/wake regulation and

neurobehavioral functioning. Both extracellular adenosine and

adenosine A1 receptor density change dynamically with sleep loss
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and recovery sleep (84, 90–92); and sleep loss-induced increases in

extracellular adenosine lead to concomitant increases in A1

receptor expression, implicating positive feedback regulation (93).

As such, the effects of sleep loss and recovery sleep on

neurobehavioral functioning may be understood in terms of

adenosine binding to receptors that are up- and down-regulated

dynamically across sleep/wake cycles. We incorporated this

positive feedback mechanism in our biomathematical model of

fatigue early on (51) and postulated that extracellular adenosine

flux is represented by p (as well as the much faster sleep

inertia process h) while adenosine receptor density is represented

by u (51, 53).

4.4.2 The added feedback mechanism may
also be adenosinergic

In this framework, the additional feedback mechanism added

in the present model modification may be understood in terms

of the availability of adenosine receptors for binding (92), which

would be captured by the p vs. u difference term in the square

brackets of Equations (T1-2). Through this additional

mechanism, increased adenosine production during extended

wakefulness would cause increased sleep homeostatic pressure,

leading to neurobehavioral impairment, as well as upregulation

of the A1 receptor—but the latter would be modulated by

receptor availability (through the additional feedback

mechanism). The receptor upregulation would enhance

sensitivity to sleep loss on subsequent days (56, 93), which could

be interpreted as an allostatic adaptation decoupled from sleep/

wake regulation itself (51, 86) and would cause cumulative

neurobehavioral impairment across days of sustained sleep

restriction as a consequence. Receptor downregulation during

consecutive recovery sleep periods would reverse this process. To

the extent that such a mapping of model components to

adenosinergic substrates resembles a simplified version of reality,

it seems plausible that the regulation of adenosine and its

receptor could explain the main dynamics observed in our

calibration and validation sets.

4.4.3 The bidirectionality of the feedback
mechanisms appears to be essential

In another adenosine-based model, a conceptual approach

comparable to ours has been pursued (94). That model produces

similar dynamics based on a feedback mechanism involving

adenosine receptor upregulation in response to adenosine

production—but does not contain the same dual feedback

mechanisms. While that model provides reasonable estimates of

the accumulation of impairment across days of sustained sleep

restriction and recuperation during subsequent recovery days, it

is not clear how well it captures the different recuperation rates

after sustained sleep restriction vs. acute total sleep deprivation.

Moreover, that model does not feature a bifurcation

differentiating the neurobehavioral response to sustained sleep

restriction for daily amounts of wakefulness less than or greater

than a critical amount Wc (see Table 2), and therefore does not

produce the escalation of neurobehavioral impairment that has

been observed when daily sleep is restricted too severely (41, 51).
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As such, the assumption of bidirectional feedback regulation

between adenosine and its receptor, which was first proposed in

the context of neurobehavioral functioning and local sleep (95)

and first implemented in the present model modification,

appears to be essential to capture a wider range of dynamic

behaviors pertaining to neurobehavioral functioning, sleep loss,

and recovery sleep.
4.5 Limitations

4.5.1 Generalizability may be limited and real-
world validation is needed

Our focus was on adenosinergic mechanisms on which the

biomathematical model was based from the outset (51), but other

regulatory processes, such as cortical waste clearance through the

glymphatic system (96), have been proposed to be involved in the

recuperative potential of recovery sleep as well (97) and could

generate similar dynamics (98); we did not explore this here.

Another important caveat for our findings is that the population

from which we sampled in all six calibration and validation studies

was comprised of healthy young adults. While that may be

applicable for many of the operational settings where the modified

model could be deployed, we do not know to what extent our

findings generalize to other age categories and to individuals with

sleep/circadian or other medical disorders. The modified model

also needs to be validated in real-world operations before being

deployed as a fatigue risk management tool. It should be

recognized that the model seeks to predict basal fatigue levels in

the absence of aggravating or mitigating conditions, such as the

use of fatigue countermeasures (e.g., caffeine intake), and without

accounting for inter-individual differences. It is generally

recommended, therefore, to use the model to make relative

comparisons of predicted fatigue—e.g., in order to decide between

different work schedules—rather than to rely on absolute levels of

predicted fatigue for managing fatigue risk (99).
4.6 Practical implications

4.6.1 Prior sleep/wake history has long-term
influence

Over the last two decades, studies have provided new insights

into the long-term dynamics of neurobehavioral impairment due

to sleep loss and recuperation due to recovery sleep (41, 42, 46,

71, 72, 100–103). Studies in adults (43) and adolescents (104)

have revealed a need to differentiate between short-term and

long-term recuperation of neurobehavioral functioning. As

shown in Figures 7, 8, extended sleep for recovery may provide

recuperation to near-baseline performance levels acutely—but if

prior sleep loss was incurred through sustained partial sleep

restriction (as opposed to acute total sleep deprivation), a

lingering sensitivity to further sleep loss remains. This

dependence of sleep/wake neurobiology on its history, which is

referred to as hysteresis, appears to be a fundamental aspect of

the regulation of neurobehavioral functioning (43). This makes
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sense given the involvement of (at least) two interacting sleep/wake

regulatory processes operating at timescales of a day or longer: the

homeostatic process (represented by p) and the allostatic process

(represented by u). The feedback mechanisms between the two

processes confer hysteresis in the model dynamics.

4.6.2 This research suggests a need to
differentiate between acute and sustained
recuperation

Full recuperation from prior sleep loss requires restoration to

baseline levels of both the faster homeostatic process—which we

may call acute recuperation—and the slower allostatic process—

which we may call sustained recuperation. As acute recuperation

may be largely achieved within a day or two but sustained

recuperation typically cannot, individuals facing repeated cycles

of sustained sleep restriction punctuated by brief periods of

catch-up sleep may experience a false sense of readiness to

perform based on incomplete (acute-only) recuperation. This can

create fatigue-related risks to cognitive function, safety, and

health in a wide range of work settings. In many such settings,

critical scheduling decisions are made regarding the duration of

time off needed before workers can be expected to return to the

work floor and considered fit for duty (26). A biomathematical

model of fatigue that can make quantitative, trustworthy

predictions of acute and sustained recuperation of

neurobehavioral functioning, as we aimed to develop in this

paper, is therefore an important tool for fatigue risk management

in many operational settings.

4.6.3 The modified model may support predictive,
proactive, and reactive phases of work scheduling

Biomathematical modeling has a range of applications in

operational contexts (105), including (but not limited to) a predictive

work scheduling phase in which possible schedules are compared to

distinguish those that cause the least and most fatigue risk; a

proactive work scheduling phase in which situations that could lead

to neurobehavioral impairment are identified and mitigated during

the day of operations; and a reactive work scheduling phase in which

fatigue encountered during the day of operations is evaluated posthoc

in order to improve future work scheduling practices (106). In all

three phases, the modified model can advise workers and schedulers

of the potential impacts of scheduling decisions and how

improvements in fatigue-related risks can most likely be achieved.

With the modified model, the long-term influence of prior sleep/

wake history is accounted for more accurately, which puts greater

emphasis on strategic planning and advance preparation for work as

a viable strategy to mitigate risks. This in turn should help to

improve performance and safety in the workplace.
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